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We introduced a viscosity iterative scheme for approximating the common zero of two accretive operators in a strictly convex
Banach space which has a uniformly Gâteaux differentiable norm. Some strong convergence theorems are proved, which improve
and extend the results of Ceng et al. (2009) and some others.

1. Introduction and Preliminaries

Let 𝐸 be a real Banach space, 𝐶 a nonempty closed convex
subset of 𝐸, and 𝑇 : 𝐶 → 𝐶 a mapping. Recall that 𝑇 is
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶. A
point 𝑥 ∈ 𝐶 is a fixed point of 𝑇 provided that 𝑇𝑥 = 𝑥.
Denote by 𝐹(𝑇) the set of fixed points of 𝑇; that is, 𝐹(𝑇) =

{𝑥 ∈ 𝐶, 𝑇𝑥 = 𝑥}. Throughout this paper, we assume that
𝑇 is a nonexpansive mapping such that 𝐹(𝑇) ̸=Ø. Recall that
a self-mapping 𝑓 : 𝐶 → 𝐶 is a contraction on 𝐶 if there
exists a constant 𝛼 ∈ (0, 1) such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤

𝛼‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶. Let Σ𝐶 = {𝑓 : 𝐶 → 𝐶 |

𝑓 is a contraction with constant 𝛼}. The normalized duality
mapping 𝐽 from 𝐸 into 2

𝐸
∗

is given by 𝐽(𝑥) = {𝑓 ∈ 𝐸
∗

:

⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

= ‖𝑓‖
2
}, 𝑥 ∈ 𝐸, where 𝐸

∗ denotes the dual
space of 𝐸 and ⟨⋅, ⋅⟩ denotes the generalized duality pairing.

A Banach space 𝐸 is said to be strictly convex if ‖(𝑥 +

𝑦)/2‖ < 1, for all 𝑥 ̸= 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1. It is said
to be uniformly convex if lim

𝑛→∞
‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0, for any

two sequences {𝑥
𝑛
}, {𝑦
𝑛
} in 𝐸 such that ‖𝑥‖ = ‖𝑦‖ = 1 and

lim
𝑛→∞

(‖𝑥
𝑛
+ 𝑦
𝑛
‖/2) = 1.

The norm of 𝐸 is said to be Gâteaux differentiable if

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(1)

exists for each 𝑥, 𝑦 in its unit sphere 𝑈 = {𝑥 ∈ 𝐸, ‖𝑥‖ = 1}.
Such an 𝐸 is called a smooth Banach space. The norm is said

to be uniformly Gâteaux differentiable if, for each 𝑦 ∈ 𝑈, the
limit is attained uniformly for 𝑥 ∈ 𝑈. It is well known that 𝐸
is smooth if and only if the duality mapping 𝐽 is single valued
and that, if 𝐸 has a uniformly Gâteaux differentiable norm,
𝐽 is uniformly norm to weak∗ continuous on each bounded
subset of 𝐸 (cf. [1]).

Let 𝐷 be a subset of 𝐶. Then 𝑄 : 𝐶 → 𝐷 is called
a retraction from 𝐶 onto 𝐷 if 𝑄(𝑥) = 𝑥 for all 𝑥 ∈ 𝐷. A
retraction 𝑄 : 𝐶 → 𝐷 is said to be sunny if 𝑄(𝑄𝑥 + 𝑡(𝑥 −

𝑄𝑥)) = 𝑄𝑥 for all 𝑥 ∈ 𝐶 and 𝑡 ≥ 0whenever𝑄𝑥+𝑡(𝑥−𝑄𝑥) ∈

𝐶. A subset𝐷 of 𝐶 is said to be a sunny nonexpansive retract
of 𝐶 if there exists a sunny nonexpansive retraction of 𝐶 onto
𝐷. In a smooth Banach space 𝐸, it is known that 𝑄 : 𝐶 → 𝐷

is a sunny nonexpansive retraction if and only if the following
condition holds (cf. [2, page 48]):

⟨𝑥 − 𝑄𝑥, 𝐽 (𝑧 − 𝑄𝑥)⟩ ≤ 0, 𝑥 ∈ 𝐶, 𝑧 ∈ 𝐷. (2)

Recall that an operator𝐴with𝐷(𝐴) and 𝑅(𝐴) in 𝐸 is said
to be accretive if, for each 𝑥

𝑖
∈ 𝐷(𝐴) and 𝑦

𝑖
∈ 𝐴𝑥
𝑖
, 𝑖 = 1, 2,

there exists a 𝑗 ∈ 𝐽(𝑥
2
− 𝑥
1
) such that ⟨𝑦

2
− 𝑦
1
, 𝑗⟩ ≥ 0. An

accretive operator 𝐴 is 𝑚-accretive if 𝑅(𝐼 + 𝜆𝐴) = 𝐸, for all
𝜆 > 0. Denote by 𝐴

−1
0 the set of zeros of 𝐴; that is, 𝐴−10 =

{𝑥 ∈ 𝐷(𝐴), 𝐴𝑥 = 0}.
Denote by 𝐽

𝑟
(𝑟 > 0) the resolvent of 𝐴; that is, 𝐽

𝑟
= (𝐼 +

𝑟𝐴)
−1. It is well known that 𝐹(𝐽

𝑟
) = 𝐴
−1
0, for all 𝑟 > 0. And if

𝐷(𝐴) is convex, then 𝐽
𝑟
is a nonexpansive mapping from 𝐸 to
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𝐷(𝐴). If 𝐸 is a Hilbert space, then 𝐴 is a maximal monotone
operator if and only if 𝐴 is an𝑚-accretive operator.

Recently, the approximation of zeros of accretive opera-
tors has been studied extensively (see, e.g., [3–9]). Specially,
Ceng et al. [10] studied the following composite iterative
scheme in uniformly smooth Banach spaces:

𝑦𝑛 = 𝛼𝑛𝑢 + (1 − 𝛼𝑛) 𝐽𝑟
𝑛

𝑥𝑛,

𝑥
𝑛+1

= 𝛽
𝑛
𝑦
𝑛
+ (1 − 𝛽

𝑛
) 𝐽
𝑟
𝑛

𝑦
𝑛
,

(3)

where 𝑢 ∈ 𝐷(𝐴) is an arbitrary (but fixed) element. They
proved that {𝑥

𝑛
} generated by (3) converges strongly to a

zero of 𝑚-accretive operator 𝐴 under certain appropriate
conditions.

Very recently, Chen et al. [11] considered the following
viscosity iterative scheme in a reflexive Banach space having
a weakly sequentially continuous duality mapping:

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
,

(4)

where {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ (0, 1). Under some conditions, they

showed that {𝑥
𝑛
} generated by (4) converges strongly to a zero

of𝑚-accretive operator 𝐴.
In this paper, motivated by [10–14], we will consider the

following so-called composite viscosity iterative scheme for
finding a common zero of two𝑚-accretive operators:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
,

(5)

where𝐴 and𝐵 are𝑚-accretive operators, 𝑆
𝑟
𝑛

= (1−𝜆)𝐽
𝐴

𝑟
+𝜆𝐽
𝐵

𝑟

such that 𝐹(𝑆𝑟) = 𝐴
−1
0 ∩ 𝐵

−1
0 ̸=Ø, 𝐶 = 𝐷(𝐴) = 𝐷(𝐵),

𝑓 ∈ Σ𝐶, and {𝛼𝑛}, {𝛽𝑛} ⊂ (0, 1). Under some conditions, we
will prove that {𝑥𝑛} generated by (5) converges strongly to a
common zero of 𝐴 and 𝐵 in a strictly convex and reflexive
Banach space having a uniformly Gâteaux differentiable
norm, which improve the corresponding results in [10–13].

Lemma 1 (see [10]). In a Banach space 𝐸, the following
inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐸, (6)

where 𝑗(𝑥 + 𝑦) ∈ 𝐽(𝑥 + 𝑦).

Lemma 2 (see [10, 13]). Let {𝛼
𝑛} be a sequence of nonnegative

real numbers satisfying the condition

𝛼
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝛼
𝑛
+ 𝜎
𝑛
𝛾
𝑛
, ∀𝑛 ≥ 0, (7)

where {𝛾
𝑛
} ⊂ (0, 1) and {𝜎

𝑛
} such that

(i) lim
𝑛→∞

𝛾
𝑛
= 0 and ∑

∞

𝑛=1
𝛾
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝜎𝑛 ≤ 0 or ∑∞
𝑛=1

|𝛾𝑛𝜎𝑛| < ∞.

Then lim
𝑛→∞

𝛼
𝑛
= 0.

Lemma 3 (the resolvent identity [10]). For 𝜆 > 0, 𝜇 > 0 and
𝑥 ∈ 𝐸,

𝐽
𝜆
𝑥 = 𝐽
𝜇
(
𝜇

𝜆
𝑥 + (1 −

𝜇

𝜆
) 𝐽
𝜆
𝑥) . (8)

Lemma 4 (see [3, Theorem 4.1, page 287]). Let 𝐸 be a
uniformly smooth Banach space, 𝐶 be a closed convex subset
of 𝐸, 𝑇 : 𝐶 → 𝐶 a nonexpansive mapping with 𝐹(𝑇) ̸=Ø, and
𝑓 ∈ Σ

𝐶
. Then {𝑧

𝑡
} defined by the following

𝑧
𝑡
= 𝑡𝑓 (𝑧

𝑡
) + (1 − 𝑡) 𝑇𝑧𝑡, 𝑧

𝑡
∈ 𝐶, (9)

converges strongly to a point in Fix(𝑇). If, moreover, one defines
𝑄 : Σ
𝐶

→ 𝐹(𝑇) by

𝑄 (𝑓) := lim
𝑡→0

𝑧
𝑡
, 𝑓 ∈ Σ

𝐶
, (10)

then 𝑄(𝑓) solves the variational inequality

⟨(𝐼 − 𝑓)𝑄 (𝑓) , 𝐽 (𝑄 (𝑓) − 𝑝)⟩ ≤ 0,

𝑓 ∈ Σ𝐶, 𝑝 ∈ 𝐹 (𝑇) .

(11)

Recall that a mapping 𝑔 : 𝐶 → 𝐶 is said to be weakly
contractive [15, 16] if

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 − 𝜓 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) , ∀𝑥, 𝑦 ∈ 𝐶,

(12)

where 𝜓 : [0, +∞) → [0, +∞) is a continuous and strictly
increasing function such that 𝜓 is positive on (0, +∞) and
𝜓(0) = 0. As a special case, if 𝜓(𝑡) = (1 − 𝑘)𝑡 for 𝑡 ∈ [0, +∞),
where 𝑘 ∈ (0, 1), then the weakly contractive mapping 𝑔

is a contraction with constant 𝑘. Rhodes [17] obtained the
following result for weakly contractive mapping (see also
[16]).

Lemma 5 (see [17, Theorem 2]). Let (𝑋, 𝑑) be a complete
metric space and 𝑔 a weakly contractive mapping on 𝑋. Then
𝑔 has a unique fixed point 𝑝 in𝑋.

Lemma 6. Let {𝑠
𝑛
} and {𝛾

𝑛
} be two sequences of nonnegative

real numbers and {𝜆
𝑛
} a sequence of positive numbers satisfying

the conditions

(i) ∑∞
𝑛=1

𝜆𝑛 = +∞,
(ii) lim

𝑛→∞(𝛾𝑛/𝜆𝑛) = 0.

Let the recursive inequality

𝑠
𝑛+1

≤ 𝑠
𝑛
− 𝜆
𝑛
𝜓 (𝑠
𝑛
) + 𝜆
𝑛
𝛾
𝑛
, 𝑛 = 0, 1, 2, . . . , (13)

be given where 𝜓(𝑡) is a continuous and strict increasing
function on [0, +∞) with 𝜓(0) = 0. Then lim

𝑛→∞
𝑠
𝑛
= 0.

2. Main Results

Throughout this section, we assume the following.
(i) 𝐸 is a strictly convex Banach space which has a

uniformly Gâteaux differentiable norm, and 𝐶 is a nonempty
closed convex subset of 𝐸.
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(ii) Take 𝑆
𝑟
= (1 − 𝜆)𝐽

𝐴

𝑟
+ 𝜆𝐽
𝐵

𝑟
, 0 < 𝜆 < 1. Obviously 𝑆

𝑟

is nonexpansive mapping and 𝐹(𝑆
𝑟
) = 𝐴

−1
0 ∩ 𝐵

−1
0, if 𝐸 is

a strictly convex Banach space. Indeed, it is easy to see that
𝐹(𝑆
𝑟) ⊃ 𝐴

−1
0 ∩ 𝐵
−1
0. Let 𝑞 ∈ 𝐹(𝑆𝑟), 𝑝 ∈ 𝐴

−1
0 ∩ 𝐵
−1
0; then

󵄩󵄩󵄩󵄩𝑞 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 − 𝜆)

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑞 − 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝜆

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑞 − 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑞 − 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝜆

󵄩󵄩󵄩󵄩𝑞 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑞 − 𝑝
󵄩󵄩󵄩󵄩 .

(14)

From the above formula, we obtain (1−𝜆)‖𝐽
𝐴

𝑟
𝑞−𝑝‖+𝜆‖𝑞−𝑝‖ =

‖𝑞−𝑝‖, so ‖𝐽
𝐴

𝑟
𝑞−𝑝‖ = ‖𝑞−𝑝‖. Similarly, ‖𝐽𝐵

𝑟
𝑞−𝑝‖ = ‖𝑞−𝑝‖.

But
󵄩󵄩󵄩󵄩𝑞 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
(1 − 𝜆) (𝐽

𝐴

𝑟
𝑞 − 𝑝) + 𝜆 (𝐽

𝐵

𝑟
𝑞 − 𝑝)

󵄩󵄩󵄩󵄩󵄩
. (15)

Then the strict convexity of 𝐸 implies that 𝑞 − 𝑝 = 𝐽
𝐴

𝑟
𝑞 − 𝑝 =

𝐽
𝐵

𝑟
𝑞 − 𝑝, that is, 𝑞 = 𝐽

𝐴

𝑟
𝑞 = 𝐽
𝐵

𝑟
𝑞, or 𝑞 ∈ 𝐴

−1
0 ∩ 𝐵
−1
0.

Theorem 7. Let 𝐸 be a strictly convex Banach space which has
a uniformly Gâteaux differentiable norm,𝐴, 𝐵 twom-accretive
maps in 𝐸 such that 𝐶 = 𝐷(𝐴) = 𝐷(𝐵) is convex and 𝐴

−1
0 ∩

𝐵
−1
0 ̸=Ø, and 𝑓 : 𝐶 → 𝐶 a fixed contraction mapping with

contract constant 𝛼. Suppose that 𝛼𝑛 ⊂ (0, 1), 𝛽𝑛 ⊂ (0, 1), and
𝑟𝑛 > 0 satisfy the following conditions:

(i) ∑∞
𝑛=1

𝛼
𝑛
= ∞, 𝛼

𝑛
→ 0, as 𝑛 → ∞;

(ii) 𝛽
𝑛
→ 0, and 𝑟

𝑛
→ 𝑟 > 𝜀 > 0 as 𝑛 → ∞;

(iii) ∑∞
𝑛=1

|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞, ∑∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞, and

∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞.

Let {𝑥
𝑛
} be the composite viscosity process defined by

𝑦
𝑛 = 𝛼𝑛𝑓 (𝑥𝑛) + (1 − 𝛼𝑛) 𝑆𝑟

𝑛

𝑥𝑛,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
.

(16)

Then {𝑥
𝑛} converges strongly to 𝑝 ∈ 𝐴

−1
0 ∩ 𝐵
−1
0, where 𝑝 is

the unique solution of the following variational inequality:

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑞)⟩ ≤ 0, 𝑓 ∈ Σ𝐶, 𝑞 ∈ 𝐴
−1
0 ∩ 𝐵
−1
0.

(17)

Proof. First, by using Lemma 4, we know that there exists the
unique solution 𝑝 of a variational inequality

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑞)⟩ ≤ 0, 𝑓 ∈ Σ
𝐶
, 𝑞 ∈ 𝐴

−1
0 ∩ 𝐵
−1
0,

(18)

where 𝑝 = lim
𝑡→0 𝑧𝑡 and 𝑧𝑡 is defined by 𝑧𝑡 = 𝑡𝑓(𝑧𝑡) + (1 −

𝑡)𝑆𝑟(𝑧𝑡) for each 𝑟 > 0 and 0 < 𝑡 < 1.
Next, we will divide our discussion into the following

steps.

Step 1. We will show that {𝑥𝑛} is bounded.
In fact, take 𝑝 ∈ 𝐴

−1
0 ∩ 𝐵
−1
0. Then

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 .

(19)

Therefore,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛽𝑛𝑓 (𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

≤ [1 − (1 − 𝛼) (𝛽𝑛 + 𝛼
𝑛
− 𝛼
𝑛
𝛽
𝑛 (1 − 𝛼))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ [𝛽
𝑛 + 𝛼𝑛 − 𝛼𝑛𝛽𝑛 (1 − 𝛼)]

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

≤ max { 1

1 − 𝛼

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩} .

(20)

Using the induction method, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max { 1

1 − 𝛼

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥0 − 𝑝
󵄩󵄩󵄩󵄩} , 𝑛 ≥ 0,

(21)

which implies that {𝑥
𝑛}, {𝑓(𝑥𝑛)}, {𝑦𝑛}, and {𝑓(𝑦𝑛)} are all

bounded. Since ‖𝑆𝑟
𝑛

𝑥𝑛 − 𝑝‖ ≤ ‖𝑥𝑛 − 𝑝‖, then {𝑆𝑟
𝑛

𝑥𝑛} is
bounded. Following the conditions of (i) and (ii), we obtain
that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛) − 𝑦

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞,

(22)
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛 − 𝑆𝑟

𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
= 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑛) − 𝑆𝑟

𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑛 󳨀→ ∞.

(23)

Step 2. We show that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0.

For this, we estimate 𝑦
𝑛+1

− 𝑦
𝑛
first. From (16), we know

that

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛−1 = 𝛼𝑛−1𝑓 (𝑥𝑛−1) + (1 − 𝛼𝑛−1) 𝑆𝑟

𝑛−1

𝑥𝑛−1.

(24)

Then simple calculations show that

𝑦𝑛 − 𝑦𝑛−1 = (1 − 𝛼𝑛) (𝑆𝑟
𝑛

𝑥𝑛 − 𝑆𝑟
𝑛−1

𝑥𝑛−1)

+ 𝛼
𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1))

+ (𝛼
𝑛
− 𝛼
𝑛−1

) (𝑓 (𝑥
𝑛−1

) − 𝑆
𝑟
𝑛−1

𝑥
𝑛−1

) .

(25)

It follows from (25) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛)

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑛

𝑥𝑛 − 𝑆𝑟
𝑛−1

𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩
+ 𝛼
𝑛𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑛−1

) − 𝑆
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
.

(26)

In view of Lemma 3, we have

𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
= 𝐽
𝐴

𝑟
𝑛−1

(
𝑟
𝑛−1

𝑟
𝑛

𝑥
𝑛
+ (1 −

𝑟
𝑛−1

𝑟
𝑛

) 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
) . (27)
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If 𝑟
𝑛−1

≤ 𝑟
𝑛
, then

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
− 𝐽
𝐴

𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐽
𝐴

𝑟
𝑛−1

(
𝑟
𝑛−1

𝑟𝑛

𝑥
𝑛
+ (1 −

𝑟
𝑛−1

𝑟𝑛

) 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
) − 𝐽
𝐴

𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟
𝑛−1

𝑟
𝑛

𝑥
𝑛
+ (1 −

𝑟
𝑛−1

𝑟
𝑛

) 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟
𝑛−1

𝑟
𝑛

(𝑥𝑛 − 𝑥𝑛−1) + (1 −
𝑟
𝑛−1

𝑟
𝑛

) (𝐽
𝐴

𝑟
𝑛

𝑥𝑛 − 𝑥𝑛−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑟
𝑛−1

𝑟
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

𝑟
𝑛 − 𝑟𝑛−1

𝑟
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑛

𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
𝑟
𝑛 − 𝑟𝑛−1

𝜀

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
.

(28)

Similarly,

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+
𝑟
𝑛
− 𝑟
𝑛−1

𝜀

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
.

(29)

Thus, let 𝑀 = sup{(1/𝜀)‖𝐽𝐴
𝑟
𝑛

𝑥𝑛 − 𝑥𝑛−1‖, (1/𝜀)‖𝐽
𝐵

𝑟
𝑛

𝑥𝑛 − 𝑥𝑛−1‖};
we have
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑛

𝑥𝑛 − 𝑆𝑟
𝑛−1

𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑛

𝑥𝑛 − 𝐽
𝐴

𝑟
𝑛−1

𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩
+ 𝜆

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

𝑥𝑛 − 𝐽
𝐵

𝑟
𝑛−1

𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 + (𝑟
𝑛
− 𝑟
𝑛−1

)𝑀.

(30)

Substituting (30) into (26) we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

𝑛) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + (𝑟
𝑛 − 𝑟𝑛−1)𝑀)

+ 𝛼
𝑛
𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑛−1

) − 𝑆
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
) (𝑟
𝑛
− 𝑟
𝑛−1

)𝑀

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑛−1

) − 𝑆
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝑀
1
(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛 − 𝑟

𝑛−1

󵄨󵄨󵄨󵄨) ,

(31)

where𝑀
1
is a constant such that

𝑀
1
> max {𝑀,

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑛−1

) − 𝑆
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
} . (32)

On the other hand, we have

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
,

𝑥
𝑛
= 𝛽
𝑛−1

𝑓 (𝑦
𝑛−1

) + (1 − 𝛽
𝑛−1

) 𝑦
𝑛−1

.

(33)

Simple calculations show that

𝑥
𝑛+1

− 𝑥
𝑛
= (1 − 𝛽

𝑛
) (𝑦
𝑛
− 𝑦
𝑛−1

) + 𝛽
𝑛
(𝑓 (𝑦
𝑛
) − 𝑓 (𝑦

𝑛−1
))

+ (𝛽
𝑛
− 𝛽
𝑛−1

) (𝑓 (𝑦
𝑛−1

) − 𝑦
𝑛−1

) .

(34)

It follows that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ (1 − 𝛽

𝑛)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩 + 𝛽
𝑛𝛼

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛−1

) − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩

= (1 − 𝛽
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛−1

) − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 .

(35)

Substituting (31) into (35) we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛 (1 − 𝛼)) {(1 − 𝛼

𝑛 (1 − 𝛼))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
1 (

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑟𝑛 − 𝑟𝑛−1
󵄨󵄨󵄨󵄨) }

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛−1

) − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀
2 (

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑟𝑛 − 𝑟𝑛−1
󵄨󵄨󵄨󵄨) ,

(36)

where𝑀
2
is a constant such that

𝑀
2
> max {󵄩󵄩󵄩󵄩𝑓 (𝑦

𝑛−1) − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 ,𝑀1} . (37)

From conditions (i)–(iii), we have that

∞

∑

𝑛=1

𝛼
𝑛
= ∞, 𝛼

𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞,

∞

∑

𝑛=1

(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛 − 𝑟

𝑛−1

󵄨󵄨󵄨󵄨) < +∞.

(38)

Hence, noticing (36) and applying Lemma 2, we obtain
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0. Then by (22) we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0, (𝑛 󳨀→ ∞) .

(39)

Step 3. We prove that ‖𝑥
𝑛
− 𝑆
𝑟
𝑥
𝑛
‖ → 0, ‖𝑦

𝑛
− 𝑆
𝑟
𝑦
𝑛
‖ → 0.

In fact, since

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛 − 𝑆𝑟

𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛 − 𝑆𝑟

𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
,

(40)
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from (22) and (23), we have ‖𝑥
𝑛
− 𝑆
𝑟
𝑛

𝑥
𝑛
‖ → 0. Then

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑛

𝑥𝑛 − 𝑆𝑟𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴

𝑟
𝑛

𝑥𝑛 − 𝐽
𝐴

𝑟
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝜆

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

𝑥𝑛 − 𝐽
𝐵

𝑟
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐽
𝐴

𝑟
(

𝑟

𝑟
𝑛

𝑥𝑛 + (1 −
𝑟

𝑟
𝑛

) 𝐽
𝐴

𝑟
𝑛

𝑥𝑛) − 𝐽
𝐴

𝑟
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐽
𝐵

𝑟
(

𝑟

𝑟𝑛

𝑥
𝑛
+ (1 −

𝑟

𝑟𝑛

) 𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
) − 𝐽
𝐵

𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑟

𝑟
𝑛

𝑥
𝑛
+ (1 −

𝑟

𝑟
𝑛

) 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
) − 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑟

𝑟
𝑛

𝑥𝑛 + (1 −
𝑟

𝑟
𝑛

) 𝐽
𝐵

𝑟
𝑛

𝑥𝑛) − 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

max {󵄩󵄩󵄩󵄩󵄩𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
} 󳨀→ 0.

(41)

Hence, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑆
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, 𝑛 󳨀→ ∞,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑆𝑟𝑦𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆

𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑟𝑦𝑛 − 𝑆

𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑟𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑛 󳨀→ ∞.

(42)

Step 4. We show that lim sup
𝑛→∞

⟨(𝐼 − 𝑓)𝑝, 𝐽(𝑦
𝑛
− 𝑝)⟩ ≤ 0,

lim sup
𝑛→∞

⟨(𝐼 − 𝑓)𝑝, 𝐽(𝑥
𝑛+1

− 𝑝)⟩ ≤ 0.
To prove this, let {𝑦

𝑛
𝑗

} be a subsequence of {𝑦
𝑛
} such that

lim sup
𝑛→∞

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑦
𝑛
− 𝑝)⟩

= lim
𝑗→∞

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑦
𝑛
𝑗

− 𝑝)⟩ .

(43)

By Lemma 4, lim𝑡→0+𝑧𝑡 = 𝑝 ∈ 𝐹(𝑆𝑟), where 𝑧𝑡 = 𝑡𝑓(𝑧𝑡) +

(1 − 𝑡)𝑆𝑟(𝑧𝑡). Then

𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

= 𝑡
𝑛
(𝑓 (𝑧
𝑡
𝑛

) − 𝑦
𝑛
𝑗

) + (1 − 𝑡
𝑛
) (𝑆
𝑟
(𝑧
𝑡
𝑛

) − 𝑦
𝑛
𝑗

) .

(44)

For each integer 𝑛 ≥ 0, let 𝑡
𝑛
∈ (0, 1) such that

𝑡
𝑛
󳨀→ 0,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑦
𝑛
𝑗

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑡
𝑛

󳨀→ 0, 𝑛 󳨀→ ∞. (45)

Using Lemma 1, we get

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑡
𝑛

− 𝑦𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑡
𝑛
)
2󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
(𝑧
𝑡
𝑛

) − 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑡
𝑛
⟨𝑓 (𝑧

𝑡
𝑛

) − 𝑦
𝑛
𝑗

, 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩

≤ (1 − 2𝑡
𝑛
+ 𝑡
2

𝑛
) (

󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
(𝑧
𝑡
𝑛

) − 𝑆
𝑟
𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛
𝑗

− 𝑆
𝑟
𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
)

2

+ 2𝑡𝑛 ⟨𝑓 (𝑧𝑡
𝑛

) − 𝑧𝑡
𝑛

, 𝐽 (𝑧𝑡
𝑛

− 𝑦𝑛
𝑗

)⟩ + 2𝑡𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑦𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 + 𝑡
2

𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑦𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ (1 + 𝑡𝑛)
2 󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝑟𝑦𝑛
𝑗

− 𝑦𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

× (2
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑦
𝑛
𝑗

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
)

+ 2𝑡
𝑛
⟨𝑓 (𝑧

𝑡
𝑛

) − 𝑧
𝑡
𝑛

, 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩ ,

(46)

and hence

⟨𝑧
𝑡
𝑛

− 𝑓 (𝑧
𝑡
𝑛

) , 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩

≤
𝑡
𝑛

2

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

+

(1 + 𝑡
𝑛
)
2 󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
𝑟
𝑦
𝑛
𝑗

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2𝑡𝑛

× (2
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑦
𝑛
𝑗

− 𝑦
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
) .

(47)

Since {𝑥
𝑛
}, {𝑧
𝑡
𝑛

}, and {𝑆
𝑟
𝑦
𝑛
} are bounded, then ‖𝑆

𝑟
𝑦
𝑛
𝑗

−

𝑦𝑛
𝑗

‖/2𝑡𝑛 → 0. Therefore,

lim sup
𝑗→∞

⟨𝑧
𝑡
𝑛

− 𝑓 (𝑧
𝑡
𝑛

) , 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩ ≤ 0. (48)

We also know that

⟨𝑝 − 𝑓 (𝑧
𝑡
𝑛

) , 𝐽 (𝑦𝑛
𝑗

− 𝑝)⟩

= ⟨𝑝 − 𝑓 (𝑧
𝑡
𝑛

) , 𝐽 (𝑦
𝑛
𝑗

− 𝑝) − 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩

+ ⟨𝑝 − 𝑧
𝑡
𝑛

, 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩

+ ⟨𝑧
𝑡
𝑛

− 𝑓 (𝑧
𝑡
𝑛

) , 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩ .

(49)

Notice that 𝑧
𝑡
𝑛

→ 𝑝, 𝑝 ∈ 𝐹(𝑆
𝑟
), 𝑛 → ∞, and 𝐽 is norm to

weak∗ uniformly continuous on bounded subset of 𝐸; then
we obtain

⟨𝑝 − 𝑧
𝑡
𝑛

, 𝐽 (𝑧
𝑡
𝑛

− 𝑦
𝑛
𝑗

)⟩ 󳨀→ 0, 𝑛 󳨀→ ∞,

⟨𝑝 − 𝑓 (𝑧𝑡
𝑛

) , 𝐽 (𝑦𝑛
𝑗

− 𝑝) − 𝐽 (𝑧𝑡
𝑛

− 𝑦𝑛
𝑗

)⟩ 󳨀→ 0,

𝑛 󳨀→ ∞.

(50)
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From (48), (49), and the two results mentioned above, we
have

lim sup
𝑛→∞

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑦
𝑛
− 𝑝)⟩ ≤ 0. (51)

Using (22) and the property of 𝐽, we obtain the result that

lim sup
𝑛→∞

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑦
𝑛
− 𝑝)⟩

= lim sup
𝑛→∞

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ≤ 0.

(52)

Step 5. lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0.

Using (16), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑝) + (1 − 𝛼

𝑛
) (𝑆
𝑟
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑆
𝑟
𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑓 (𝑥
𝑛
) − 𝑓 (𝑝))

+𝛼𝑛 (𝑓 (𝑝) − 𝑝)
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦𝑛 − 𝑝)⟩ .

(53)

Applying Lemma 1, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑓 (𝑦

𝑛
) − 𝑝) + (1 − 𝛽

𝑛
) (𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛽

𝑛
) (𝑦
𝑛
− 𝑝)

+𝛽
𝑛 (𝑓 (𝑦𝑛) − 𝑓 (𝑝)) + 𝛽𝑛 (𝑓 (𝑝) − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛 (1 − 𝛼))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ (1 − 𝛼
𝑛 (1 − 𝛼)) (1 − 𝛽

𝑛 (1 − 𝛼))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛽

𝑛 (1 − 𝛼)) ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦
𝑛
− 𝑝)⟩

+ 2𝛽
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ [1 − (𝛼𝑛 + 𝛽𝑛) (1 − 𝛼)]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝛽
𝑛(1 − 𝛼)

2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 2𝛼𝑛𝛽𝑛 (1 − 𝛼) ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦
𝑛 − 𝑝)⟩

+ 2 (𝛼
𝑛
+ 𝛽
𝑛
) ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝) − 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ [1 − (𝛼𝑛 + 𝛽
𝑛) (1 − 𝛼)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝛼
𝑛
+ 𝛽
𝑛
)

𝛼
𝑛
𝛽
𝑛

𝛼𝑛 + 𝛽𝑛

(1 − 𝛼)
2
𝐿
2

+ 2 (𝛼
𝑛
+ 𝛽
𝑛
)

𝛼
𝑛
𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

(1 − 𝛼) 𝐿
2

+ 2 (𝛼
𝑛
+ 𝛽
𝑛
) ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

+ (𝛼
𝑛
+ 𝛽
𝑛
)

2𝛼
𝑛

𝛼
𝑛
+ 𝛽
𝑛

× ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦
𝑛
− 𝑝) − 𝐽 (𝑥

𝑛+1
− 𝑝)⟩ ,

(54)

where 𝐿 = sup
𝑛≥0

{‖𝑥
𝑛
− 𝑝‖, ‖𝑦

𝑛
− 𝑝‖, ‖𝑓(𝑝) − 𝑝‖}. Put

𝛾
𝑛
= (𝛼
𝑛
+ 𝛽
𝑛
) (1 − 𝛼) ,

𝜎𝑛 =
𝛼
𝑛
𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

(1 − 𝛼) 𝐿
2
+

2𝛼
𝑛
𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

𝐿
2

+
2

1 − 𝛼
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

+
𝛼
𝑛

𝛼𝑛 + 𝛽𝑛

2

1 − 𝛼

× ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦
𝑛
− 𝑝) − 𝐽 (𝑥

𝑛+1
− 𝑝)⟩ .

(55)

From the conditions (i) and (ii), the result of Step 4, and the
facts that 𝛼𝑛𝛽𝑛/(𝛼𝑛 + 𝛽𝑛) → 0 and ⟨𝑓(𝑝) − 𝑝, 𝐽(𝑦𝑛 − 𝑝) −

𝐽(𝑥
𝑛+1

−𝑝)⟩ → 0, we know that 𝛾
𝑛
→ 0,∑∞

𝑛=1
𝛾
𝑛
= +∞ and

lim sup
𝑛→∞

𝜎
𝑛
≤ 0. In view of Lemma 2, (54) reduces to

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛾
𝑛
𝜎
𝑛
; (56)

then we know that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = 0. (57)

This completes the proof.

Remark 8. If we modify (16) as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
,

(58)

𝑦
𝑛
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1 = 𝛽𝑛𝑓 (𝑦𝑛) + (1 − 𝛽𝑛) 𝑦𝑛,

(59)

or

𝑦
𝑛 = 𝛼𝑛𝑢 + (1 − 𝛼𝑛) 𝑆𝑟

𝑛

𝑥𝑛,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑆
𝑟
𝑛

𝑦
𝑛
.

(60)

Then, imitating the proof of Theorem 7, we can also get
the result of Theorem 7. Therefore, from the compare of
iterative scheme, the conclusions of [10, 11] are special cases
of Theorem 7.
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Example 9. Next we study the following optimization prob-
lem:

min
𝑥∈𝐶

ℎ (𝑥) , min
𝑥∈𝐶

𝑘 (𝑥) , (61)

where 𝐶 is an interior nonempty closed convex subset of a
Hilbert space and ℎ, 𝑘 : 𝐶 → 𝑅 are two proper convex
and lower semicontinuous functionals. To solve optimization
problem (61), we will list the following well known results.

Proposition 10 (see [18]). Let 𝜑 : 𝐶 → 𝑅 be a proper convex
and lower semicontinuous functional. Then

(i) 𝜕𝜑 : 𝐶 → 𝐸
∗ (𝜕 denotes the subdifferential in the sense

of convex analysis) is a maximal monotone mapping;
(ii) 𝜕𝜑(𝑥

0
) = min

𝑥∈𝐶
𝜑(𝑥) if and only if 0 ∈ 𝜕𝜑(𝑥

0
).

In Hilbert space 𝜕𝜑 is a 𝑚-accretive mapping. Thus
𝐴 = 𝜕ℎ, 𝐵 = 𝜕𝑘 are two 𝑚-accretive mappings. Solving
optimization problem (61) is equivalent to finding a common
zero of 𝐴 and 𝐵.

Let

𝐽
𝐴

𝑟
= (𝐼 + 𝑟𝐴)

−1
= (𝐼 + 𝑟𝜕ℎ)

−1
,

𝐽
𝐵

𝑟
= (𝐼 + 𝑟𝐵)

−1
= (𝐼 + 𝑟𝜕𝑘)

−1
,

𝑆
𝑟
= (1 − 𝜆) 𝐽

𝐴

𝑟
+ 𝜆𝐽
𝐵

𝑟
, 𝛼

𝑛
= 𝛽
𝑛
=

1

𝑛
,

𝑟
𝑛
=

𝑟𝑛

𝑛 + 1
, (𝑟 > 𝜀) .

(62)

Then the conditions (i), (ii), and (iii) of Theorem 7 are
satisfied. For arbitrary𝑓 ∈ Σ

𝐶
the sequence {𝑥

𝑛
} generated by

(16) converges strongly to a common zero of 𝐴 and 𝐵, which
is also the solution of the optimization problem (60).

Theorem 11. Let 𝐴, 𝐵 be two accretive maps in 𝐸 with 𝐴
−1
0 ∩

𝐵
−1
0 ̸=Øand satisfying the following range conditions:𝐷(𝐴) ⊆

𝐶 ⊂ 𝑅(𝐼 + 𝑟𝐴) ∩ 𝑅(𝐼 + 𝑟𝐵),𝐷(𝐵) ⊆ 𝐶 ⊂ 𝑅(𝐼 + 𝑟𝐴) ∩ 𝑅(𝐼 + 𝑟𝐵)

which are convex. Let 𝑓, {𝛼𝑛}, {𝛽𝑛}, {𝑟𝑛}, and {𝑥𝑛}, {𝑦𝑛} be the
same as those in Theorem 7. Let {𝑥𝑛} be a sequence generated
by (16).Then {𝑥

𝑛
} converges strongly to 𝑝 ∈ 𝐴

−1
0∩𝐵
−1
0, where

𝑝 is the unique solution of the following variational inequality:

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑞)⟩ ≤ 0, 𝑓 ∈ Σ
𝐶
, 𝑞 ∈ 𝐴

−1
0 ∩ 𝐵
−1
0.

(63)

Theorem 12. Let 𝐴, 𝐵 be two accretive maps in 𝐸 with 𝐹 =

𝐴
−1
0 ∩ 𝐵
−1
0 ̸=Ø and satisfying the following range conditions:

𝐷(𝐴) ⊆ 𝐶 ⊂ 𝑅(𝐼+𝑟𝐴)∩𝑅(𝐼+𝑟𝐵),𝐷(𝐵) ⊆ 𝐶 ⊂ 𝑅(𝐼+𝑟𝐴)∩𝑅(𝐼+

𝑟𝐵) which are convex. Let 𝑓, {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝑟

𝑛
} be the same

as those in Theorem 7. Let 𝑔 : 𝐶 → 𝐶 be a weakly contractive
mapping with the function 𝜓. Let {𝑥

𝑛
} be a sequence generated

by

𝑦
𝑛
= 𝛼
𝑛
𝑔 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1 = 𝛽𝑛𝑓 (𝑦𝑛) + (1 − 𝛽𝑛) 𝑦𝑛.

(64)

Then {𝑥
𝑛
} converges strongly to 𝑝 = 𝑄(𝑔(𝑝)) ∈ 𝐴

−1
0 ∩ 𝐵
−1
0,

where 𝑄 is a sunny nonexpansive retraction from 𝐶 onto 𝐹.

Proof. Since 𝐸 is a uniformly smooth Banach space, then
there is a sunny nonexpansive retraction 𝑄 from 𝐶 onto 𝐹.
Then 𝑄 ∘ 𝑔 is a weakly contractive mapping of 𝐶 into itself.
Indeed, for all 𝑥, 𝑦 ∈ 𝐶,

󵄩󵄩󵄩󵄩𝑄 (𝑔 (𝑥)) − 𝑄 (𝑔 (𝑦))
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 − 𝜓 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) .

(65)

Lemma 5 assures that there exists a unique element 𝑝 ∈ 𝐶

such that 𝑝 = 𝑄(𝑔(𝑝)). Such 𝑝 ∈ 𝐶 is an element of 𝐴−10 ∩

𝐵
−1
0. Now we define a iterative scheme as follows:

𝑧
𝑛 = 𝛼𝑛𝑔 (𝑝) + (1 − 𝛼𝑛) 𝑆𝑟

𝑛

𝑤𝑛,

𝑤
𝑛+1

= 𝛽
𝑛
𝑓 (𝑧
𝑛
) + (1 − 𝛽

𝑛
) 𝑧
𝑛
.

(66)

Let𝑤
𝑛
be the sequence generated by (66).ThenRemark 8 (59)

assures that 𝑤
𝑛
converges strongly to 𝑝 = 𝑄(𝑔(𝑝)) as 𝑛 →

∞. For any 𝑛, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑤

𝑛+1

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑓 (𝑧

𝑛
)
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑛
) − 𝑔 (𝑝)

󵄩󵄩󵄩󵄩 + (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑟
𝑛

𝑤
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑛
) − 𝑔 (𝑤

𝑛
)
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔 (𝑤
𝑛
) − 𝑔 (𝑝)

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤𝑛

󵄩󵄩󵄩󵄩 − 𝛼
𝑛𝜓 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩 − 𝜓 (
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩))

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤𝑛

󵄩󵄩󵄩󵄩 − 𝛼
𝑛𝜓 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩) + 𝛼

𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(67)

Thus, we obtain for 𝑠
𝑛

= ‖𝑥
𝑛
− 𝑤
𝑛
‖ the following recursive

inequality:

𝑠
𝑛+1

= 𝑠
𝑛
− 𝛼
𝑛
𝜓 (𝑠
𝑛) + 𝛼

𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (68)

Since ‖𝑤
𝑛

− 𝑝‖ → 0, it follows from Lemma 6 that
lim
𝑛→∞

‖𝑥
𝑛
− 𝑤
𝑛
‖ = 0. Hence

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ lim
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩) = 0. (69)

This completes the proof.

In virtue of the weakly contractive mapping 𝑔 being a
contraction, usingTheorem 12 we may obtain the following.

Corollary 13. Let 𝐴, 𝐵 be two accretive maps in 𝐸 with 𝐹 =

𝐴
−1
0 ∩ 𝐵
−1
0 ̸=Ø and satisfying the following range conditions:

𝐷(𝐴) ⊆ 𝐶 ⊂ 𝑅(𝐼+𝑟𝐴)∩𝑅(𝐼+𝑟𝐵),𝐷(𝐵) ⊆ 𝐶 ⊂ 𝑅(𝐼+𝑟𝐴)∩𝑅(𝐼+

𝑟𝐵) which are convex. Let 𝑓, 𝑔 ∈ Σ
𝐶
, {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝑟

𝑛
} be the

same as those in Theorem 7. Let {𝑥
𝑛
} be a sequence generated

by

𝑦
𝑛
= 𝛼
𝑛
𝑔 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
.

(70)
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Then {𝑥
𝑛
} converges strongly to 𝑝 = 𝑄(𝑔(𝑝)) ∈ 𝐴

−1
0 ∩ 𝐵
−1
0,

where 𝑄 is a sunny nonexpansive retraction from 𝐶 onto 𝐹.

Example 14. Next we give an essential example.
Let Ω be an bounded domain in a Euclidean space 𝑅

𝑁

with Lipschitz boundary Γ. Let 𝜙 : Γ × 𝑅 → 𝑅 be a given
function shch that for each 𝑥 ∈ Γ

(i) 𝜙𝑥 = 𝜙(𝑥, ⋅) : 𝑅 → 𝑅 is a proper, convex, lower
semicontinuous function with 𝜙𝑥(0) = 0.

(ii) 𝛽
𝑥

= 𝜕𝜙
𝑥
(subdifferential of 𝜙

𝑥
) is the maximal

monotone mapping on 𝑅 with 0 ∈ 𝛽
𝑥
(0) and for each

𝑡 ∈ 𝑅, the function 𝑥 ∈ Γ → (𝐼 + 𝜆𝛽
𝑥
)
−1
(𝑡) ∈ 𝑅 is

measurable for 𝜆 > 0.
Let 𝛼 : 𝑅

𝑁
→ 𝑅
𝑁 be a continuous, monotone function

such that there exist constants 𝑘1, 𝑘2 satisfying (i) |𝛼(𝜉)| ≤

𝑘
1
|𝜉| and (ii) ⟨𝛼(𝜉), 𝜉⟩ ≥ 𝑘

2
|𝜉|
2 for each 𝜉 ∈ 𝑅

𝑁.

Definition 15 (see [19]). One first defines a mapping 𝐴
𝛼

:

𝐻
1
(Ω) → (𝐻

1
(Ω))
∗ (𝐻1(Ω) is a sobolev space) by

(𝐴
𝛼
𝑢, V) = ∫

Ω

⟨𝛼 (grad 𝑢) , grad V⟩ 𝑑𝑥 (71)

for 𝑢, V ∈ 𝐻
1
(Ω). Clearly𝐴𝛼 is an everywhere defined,mono-

tone, demicontinuous operator from 𝐻
1
(Ω) into (𝐻

1
(Ω))
∗.

Second one defines an operator 𝐴
𝛼

𝑝
: 𝐿
𝑝
(Ω) → 2

𝐿
𝑝

(Ω) for
1 < 𝑝 < +∞ as follows.

(i) For 𝑝 ≥ 2 one defines the domain of 𝐴𝛼
𝑝
by

𝐷(𝐴
𝛼

𝑝
) = {𝑢 ∈ 𝐿

𝑝
(Ω) : there exists an 𝑓 ∈ 𝐿

𝑝
(Ω)

such that 𝐴𝛼𝑢 + 𝜕Φ (𝑢) ∋ 𝑓} .

(72)

Here Φ(𝑢) = ∫
Γ
𝜙
𝑥
(𝑢|
Γ
(𝑥))𝑑Γ(𝑥) is the proper, convex, l.s.c.

function (see [19, Lemma 3.1]). For 𝑢 ∈ 𝐷(𝐴
𝛼

𝑝
) we set

𝐴
𝛼

𝑝
(𝑢) = {𝑓 ∈ 𝐿

𝑝
(Ω) | 𝐴

𝛼
𝑢 + 𝜕Φ (𝑢) ∋ 𝑓} . (73)

(ii) For 1 < 𝑝 < 2, one defines 𝐴𝛼
𝑝
as the 𝐿𝑝-closure of𝐴𝛼

2

defined in (i) above.

For the operator 𝐴𝛼
𝑝
one has following results.

Lemma 16 (see [19, Lemma 3.4]). 𝐴
𝛼

𝑝
: 𝐿
𝑝
(Ω) → 2

𝐿
𝑝

(Ω) is
m-accretive operator (1 < 𝑝 < +∞).

Lemma 17 (see [19, Proposition 3.2]). Let 𝑓 ∈ 𝐿
𝑝
(Ω), 𝑢 ∈

𝐿
𝑝
(Ω) such that 𝑓 ∈ 𝐴

𝛼

𝑝
𝑢. Then

(i) div(𝛼(grad 𝑢)) = 𝑓, a.e. on Ω and
(ii) ⟨𝑛, 𝛼(grad 𝑢)⟩ ∈ 𝛽

𝑥
(𝑢(𝑥)) for a.e. 𝑥 ∈ Γ.

Lemma 18 (see [19, Proposition 3.3]). Let 𝛽
𝑥
≡ 0 for 𝑥 ∈ Γ.

Then (𝐴
𝛼

𝑝
)
−1
0 = {𝑢 ∈ 𝐿

𝑝
(Ω) | 𝑢 = a constant function}.

Clearly for different 𝛼
1
, 𝛼
2
, 𝐴𝛼1
𝑝
, 𝐴
𝛼
2

𝑝
are two m-accretive

operators. The above results show that

Ø ̸= (𝐴
𝛼
1

𝑝
)
−1

0 ∩ (𝐴
𝛼
2

𝑝
)
−1

0

= {𝑢 ∈ 𝐿
𝑝
(Ω) | 𝑢 = a constant function} .

(74)

For the sake of finding a common zero, Theorems 7, 11, and
12 provided three different iterative algorithms. Therefore the
study of a common zero of two accretive operators makes sense.

Remark 19. The results presented in this paper substantially
improve and extend the results of Ceng et al. [10] from the
following aspects.

(1) Theorems 7 and 12 extend the result on the iterative
construction of the zero for a single accretive operator
to the case of that for common zeros of two accretive
operators. If we modify two accretive operators as
finite accretive operators, then, imitating the proof of
Theorem 7, we can also get the result of Theorem 7.

(2) Our results include one or two different viscosity
items. Remark 8 shows that the conclusions of Ceng
et al. are special cases of this paper.

(3) The viscosity item is changed from a contractive
mapping 𝑓 to weakly contractive mapping 𝑔 in
Theorem 12.
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