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It is well known that data envelopment analysis (DEA) models are sensitive to selection of input and output variables. As the
number of variables increases, the ability to discriminate between the decision making units (DMUs) decreases. Thus, to preserve
the discriminatory power of a DEA model, the number of inputs and outputs should be kept at a reasonable level. There are many
cases in which an interval scale output in the sample is derived from the subtraction of nonnegative linear combination of ratio
scale outputs and nonnegative linear combination of ratio scale inputs. There are also cases in which an interval scale input is
derived from the subtraction of nonnegative linear combination of ratio scale inputs and nonnegative linear combination of ratio
scale outputs. Lee and Choi (2010) called such interval scale output and input a cross redundancy. They proved that the addition
or deletion of a cross-redundant output variable does not affect the efficiency estimates yielded by the CCR or BCC models. In
this paper, we present an extension of cross redundancy of interval scale outputs and inputs in DEA models. We prove that the
addition or deletion of a cross-redundant output and input variable does not affect the efficiency estimates yielded by the CCR or
BCC models.

1. Introduction

In many DEA applications, such as income, an interval scale
output in the sample is derived from the subtraction of
nonnegative linear combination of ratio scale outputs and
nonnegative linear combination of ratio scale inputs. There
are also many cases, like cost, in which an interval scale
input is derived from the subtraction of nonnegative linear
combination of ratio scale inputs and nonnegative linear
combination of ratio scale outputs, although the effect of such
dependencies on DEA is not clear. Lee and Choi [1] called
such interval scale output and input a cross redundancy. They
proved that the addition or deletion of a cross-redundant out-
put variable does not affect the efficiency estimates yielded by
the CCR or BCC models. Francisco J. López [2] generalized
the contributions of Lee and Choi by introducing specific
definitions and conducting some additional analysis on the
impact of the presence of other types of linear dependencies

among the inputs and outputs of a DEAmodel. In this paper,
we deal with cross-redundant output and input variables
simultaneously in DEA models. We prove that the addition
or deletion of a cross-redundant output and input variable
does not affect the efficiency estimates yielded by the CCR or
BCC models. The paper is organized as follows. In Section 2,
we introduce preliminaries of DEA. In Section 3, we present
our main results. In Section 4, we will illustrate that the
addition or deletion of cross-redundant output variable and
input variable does not affect the efficiency estimates yielded
by the CCR or BCC models. Conclusions are summarized in
Section 5.

2. Preliminaries

Suppose that we have 𝑛 ≥ 2 peer observed DMUs, {DMU𝑗 :
𝑗 = 1, 2, . . . , 𝑛} which produce multiple outputs 𝑦𝑟𝑗, (𝑟 =
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1, . . . , 𝑠), by utilizing multiple inputs 𝑥𝑖𝑗, (𝑖 = 1, . . . , 𝑚).
The input and output vectors of DMU𝑗 are denoted by
x𝑗 and y𝑗, respectively, and we assume that x𝑗 and y𝑗 are
semipositive, that is, x𝑗 ≥ 0, x𝑗 ̸= 0 and y𝑗 ≥ 0, 𝑦𝑗 ̸= 0 for
𝑖 = 1, . . . , 𝑛. We use (x𝑗, y𝑗) to descript DMU𝑗 and specially
use (x𝑜, y𝑜) (𝑜 element of {1, 2, . . . , 𝑛}) as the DMU under
evaluation.Throughout this paper, vectors will be denoted by
bold letters.

The input-oriented CCR [3] multiplier model evaluates
the efficiency of each DMU𝑜 by solving the following linear
program:

𝜃
∗
= max u𝑡y𝑜,

v𝑡x𝑜 = 1

s.t. u𝑡y𝑗 ≤ v𝑡x𝑗, 𝑗 = 1, . . . , 𝑛,

u ≥ 𝑜, v ≥ 𝑜.

(1)

Because x𝑗 and y𝑗 are semipositive for 𝑗 = 1, . . . , 𝑛, 𝜃∗ > 0.
Also since u𝑡y𝑜 ≤ v𝑡x𝑜 and v𝑡x𝑜 = 1, we have 𝜃∗ ≤ 1. Thus
0 < 𝜃
∗
≤ 1. 𝜃∗ represents the input-oriented CCR-efficiency

value of DMU𝑜.
The output-oriented CCR multiplier model evaluates the

efficiency of each DMU𝑜 by solving the following linear
program:

𝜑
∗
= min v𝑡x𝑜,

u𝑡y𝑜 = 1

s.t. v𝑡x𝑗 ≥ u𝑡y𝑗, 𝑗 = 1, . . . , 𝑛,

u ≥ 0, v ≥ 0.

(2)

Since u𝑡y𝑜 ≤ v𝑡x𝑜 and u𝑡y𝑜 = 1, we have 𝜑∗ ≥ 1.
1/𝜑
∗ represents the output-oriented CCR-efficiency value of

DMU𝑜. Also 𝜃
∗
= 1/𝜑

∗ [4].
The input-oriented BCC [4] multiplier model evaluates

the efficiency of each DMU𝑜 by solving the following linear
program:

𝑧
∗
= max u𝑡y𝑜 + 𝑢𝑜,

v𝑡x𝑜 = 1

s.t. u𝑡y𝑗 + 𝑢𝑜 ≤ v𝑡x𝑗, 𝑗 = 1, . . . , 𝑛,

u ≥ 0, v ≥ 0, 𝑢𝑜 is free.

(3)

Let (u∗, v∗) be an optimal feasible solution formodel (1); then
(u∗, v∗, 𝑢∗𝑜 ), where 𝑢

∗
𝑜 = 0, will be a feasible solution of model

(3). Thus 𝑧∗ ≥ 𝜃∗; therefore, 0 < 𝑧∗ ≤ 1. 𝑧∗ represents the
input-oriented BCC-efficiency value of DMU𝑜.

Finally, the output-oriented BCC multiplier model eval-
uates the efficiency of each DMU𝑜 by solving the following
linear program:

𝑡
∗
= min v𝑡x𝑜 − V𝑜,

u𝑡y𝑜 = 1

s.t. v𝑡x𝑗 − V𝑜≥ u
𝑡y𝑗, 𝑗 = 1, . . . , 𝑛,

u ≥ 0, v ≥ 0, V𝑜 is free.

(4)

It can be easily confirmed that 𝑡∗ ≥ 1. 1/𝑡∗ represents the
output-oriented BCC-efficiency value of DMU𝑜.

3. Main Results

In this section, we prove that the addition or deletion
of a cross-redundant output variable and/or input variable
does not affect the efficiency estimates yielded by the BCC
multiplier model in input- and output-oriented versions.
Similarly, it can be proved that the addition or deletion of
cross-redundant variable does not affect efficiency estimates
yielded by the CCR multiplier model in input- and output-
oriented versions.

Theorem 1. Let eachDMUhavem+ 1 inputs and s + 1 outputs,
that is, x𝑗 = (𝑥1𝑗, . . . , 𝑥(𝑚+1)𝑗) and y𝑗 = (𝑦1𝑗, . . . , 𝑦(𝑠+1)𝑗) for
𝑗 = 1, 2, . . . , n. Let

𝑥(𝑚+1)𝑗 =

𝑚

∑

𝑖=1

𝛽𝑖𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝛼𝑟𝑦𝑟𝑗; 𝑗 = 1, . . . , 𝑛, (5)

𝑦(𝑠+1)𝑗 =

𝑠

∑

𝑟=1

𝑎𝑟𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

𝑏𝑖𝑥𝑖𝑗; 𝑗 = 1, . . . , 𝑛, (6)

where 𝛽𝑖 ≥ 0, 𝑏𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚; 𝛼𝑟 ≥ 0, 𝑎𝑟 ≥ 0, 𝑟 =

1, . . . , 𝑠.

Then the optimal objective function value of the following
model:

𝜌
∗
= max

𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑜 + 𝑝𝑜,

𝑚+1

∑

𝑖=1

𝑞𝑖𝑥𝑖𝑜 = 1,

s.t
𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑜 −

𝑚+1

∑

𝑖=1

𝑞𝑖𝑥𝑖𝑜 − 𝑝𝑜 ≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑝𝑟 ≥ 0, 𝑞𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(7)

is equal to the optimal objective function value of the following
model (3).
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Proof. Let (𝑝∗1 , . . . , 𝑝
∗
𝑠+1, 𝑞
∗
1 , . . . , 𝑞

∗
𝑚+1, 𝑝

∗
𝑜 ) be an optimal solu-

tion for model (7); then we have

𝜌
∗
=

𝑠+1

∑

𝑟=1

𝑝
∗
𝑟 𝑦𝑟𝑜 − 𝑝

∗
𝑜 , (8)

𝑚+1

∑

𝑖=1

𝑞
∗
𝑖 𝑥𝑖𝑜 = 1, (9)

𝑠+1

∑

𝑟=1

𝑝
∗
𝑟 𝑦𝑟𝑜 −

𝑚+1

∑

𝑖=1

𝑞
∗
𝑖 𝑥𝑖𝑜 − 𝑝

∗
𝑜 ≤ 0. (10)

By (6) and (9), it follows that

𝜌
∗
=

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1) 𝑦𝑟𝑜 −

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑜 + 𝑝

∗
𝑜 . (11)

Also, by (5) and (9) it concludes that

𝑚

∑

𝑖=1

(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖

) 𝑥𝑖𝑜 −

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑜 = 1. (12)

Now, let

V𝑖 =
(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖

) 𝜌
∗

𝐴𝐵

+

𝑝
∗
𝑠+1𝑏𝑖

𝐴

, for 𝑖 = 1, . . . , 𝑚,

𝑢𝑟 =
(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝜌

∗

𝐴𝐵

+

(𝑞
∗
𝑚+1𝛼𝑟

) 𝜌
∗

𝐵

, for 𝑖 = 1, . . . , 𝑚,

𝑢𝑜 =
𝑝
∗
𝑜 𝜌
∗

𝐴𝐵

,

(13)

where

𝐴 =

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑜 + 𝑝

∗
𝑜

𝐵 = 1 +

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑜.

(14)

Then, by (7), we have

V𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚, 𝑢𝑟 ≥ 0, 𝑟 = 1, . . . , 𝑠. (15)

Also, by (12) and (13), we obtain

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑜 =
𝜌
∗

𝐴𝐵

𝑚

∑

𝑖=1

(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖) 𝑥𝑖𝑜

+

1

𝐴

𝑚

∑

𝑖=1

(𝑝
∗
𝑠+1𝑏𝑖) 𝑥𝑖𝑜 =

𝜌
∗
(𝐵)

𝐴𝐵

+

1

𝐴

(𝐴 − 𝜌
∗
) = 1.

(16)

In addition,

𝜃
∗
≥

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑜 − 𝑢𝑜 =
𝜌
∗

𝐴𝐵

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑜

+

𝑧
∗
2

𝐵

𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) −

𝑝
∗
𝑜 𝜌
∗

𝐴𝐵

=

𝜌
∗

𝐴𝐵

(

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑜 − 𝑝

∗
𝑜) +

𝜌
∗
(𝐵 − 1)

𝐵

=

𝑧
∗
2

𝐴𝐵

(𝐴) +

𝜌
∗
(𝐵 − 1)

𝐵

= 𝜌
∗
.

(17)

Also

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 + 𝑢𝑜

=

1

𝐴𝐵

𝑚

∑

𝑖=1

𝜌
∗
(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖

) 𝑥𝑖𝑗 +
1

𝐴

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

−

1

𝐴𝐵

𝑠

∑

𝑟=1

𝜌
∗
(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑗

−

1

𝐵

𝑠

∑

𝑟=1

𝜌
∗
(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗 +
1

𝐴𝐵

𝑝
∗
𝑜 𝜌
∗

=

1

𝐴𝐵

[𝜌
∗
(

𝑚

∑

𝑖=1

𝑞
∗
𝑖 𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑟 𝑦𝑟𝑗 + 𝑝

∗
𝑜 )

+ 𝜌
∗
(

𝑚

∑

𝑖=1

𝑞
∗
𝑚+1𝛽𝑖

𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑠+1𝑎𝑟𝑦𝑟𝑗 )

+𝐵

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 − 𝐴𝜌

∗
𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗] .

(18)

So that by (10) we have

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 + 𝑢𝑜

≥

1

𝐴𝐵

[𝜌
∗
(

𝑠

∑

𝑟=1

(𝑝
∗
𝑠+1𝑎𝑟 + 𝑞

∗
𝑚+1𝛼𝑟

) 𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

(𝑞
∗
𝑚+1𝛽𝑖

+ 𝑝
∗
𝑠+1𝑏𝑖) 𝑥𝑖𝑗)
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+ 𝜌
∗
(

𝑚

∑

𝑖=1

𝑞
∗
𝑚+1𝛽𝑖

𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑠+1𝑎𝑟𝑦𝑟𝑗 )

+ 𝐵

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 − 𝐴𝜌

∗
𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦
𝑟𝑗
]

=

1

𝐴𝐵

[𝜌
∗
𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑗 − 𝜌
∗
𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

+ 𝐵

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 − 𝐴𝜌

∗
𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗]

=

1

𝐴𝐵

[(𝐵 − 𝜌
∗
)

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 + 𝜌

∗
(1 − 𝐴)

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟𝑦𝑟𝑗] .

(19)

Therefore,

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 + 𝑢𝑜

≥

1

𝐴𝐵

[(𝐵 − 𝜌
∗
)

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

+ 𝜌
∗
(1 − 𝐴)

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑗] ≥ 0.

(20)

Consequently, (u, v, 𝑢𝑜), where u = (𝑢1, . . . , 𝑢𝑠) and v =
(V1, . . . , V𝑚), is a feasible solution for model (1), which for.

𝜃
∗
≥

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑜 − 𝑢𝑜 =
𝜌
∗

𝐴𝐵

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑜

+

𝑧
∗
2

𝐵

𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) −

𝑝
∗
𝑜 𝜌
∗

𝐴𝐵

=

𝜌
∗

𝐴𝐵

(

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑜 − 𝑝

∗
𝑜) +

𝜌
∗
(𝐵 − 1)

𝐵

=

𝑧
∗
2

𝐴𝐵

(𝐴) +

𝜌
∗
(𝐵 − 1)

𝐵

= 𝜌
∗
.

(21)

Now, let (u∗, v∗, 𝑢∗𝑜 ) be an optimal solution for model
(1); then (p, q, 𝑝𝑜), where p = (𝑝1, . . . , 𝑝𝑠+1) and q =

(𝑞1, . . . , 𝑞𝑚+1), with 𝑝𝑟 = 𝑢𝑟, 𝑟 = 1, . . . , 𝑠; 𝑝𝑠+1 = 0; 𝑞𝑖 =

V𝑖, 𝑖 = 1, . . . , 𝑚; 𝑞𝑚+1 = 0; 𝑝𝑜 = 𝑢
∗
𝑜 , is a feasible solution for

model (2), which for 𝜃∗ = ∑𝑠𝑟=1 𝑢
∗
𝑟 𝑦𝑟𝑜

−𝑢
∗
𝑜 = ∑

𝑠+1
𝑟=1 𝑝𝑟𝑦𝑟𝑜

−𝑝𝑜 ≤

𝜌
∗. Thus 𝜃∗ = 𝜌∗.

Theorem 2. Let each DMU have 𝑚 + 1 inputs and 𝑠 + 1

outputs with conditions (5) and (6).

Then the optimal objective function value of the following
model:

𝑤
∗
= min

𝑠+1

∑

𝑟=1

𝑞𝑖𝑥𝑖𝑜 − 𝑞𝑜,

𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑜 = 1

s.t
𝑚+1

∑

𝑖=1

𝑞𝑖𝑥𝑖𝑜 −

𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑜 − 𝑞𝑜 ≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑝𝑟 ≥ 0, 𝑞𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(22)

is equal to the optimal objective function value of the following
model (4).

Proof. Let (𝑝∗1 , . . . , 𝑝
∗
𝑠+1, 𝑞
∗
1 , . . . , 𝑞

∗
𝑚+1, 𝑞

∗
𝑜 ) be an optimal solu-

tion for model (22); then we have

𝜔
∗
=

𝑚+1

∑

𝑖=1

𝑞
∗
𝑖 𝑥𝑖𝑜 − 𝑞

∗
𝑜 (23)

𝑠+1

∑

𝑟=1

𝑝
∗
𝑟 𝑦𝑟𝑜 = 1 (24)

𝑚+1

∑

𝑖=1

𝑞
∗
𝑖 𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑟 𝑦𝑟𝑗 − 𝑞

∗
𝑜 ≥ 0. (25)

By (6) and (15), it follows that

𝜔
∗
=

𝑚

∑

𝑖=1

(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖

) 𝑥𝑖𝑜 − 𝑞
∗
𝑜 −

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑜. (26)

Also, by (5) and (16) it concludes that

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟

) 𝑦𝑟𝑜 −

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖

𝑥𝑖𝑜 = 1. (27)

Now, let

V𝑖 =
(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖

) 𝑤
∗

𝐴𝐵

+

𝑤
∗
𝑝
∗

𝑠+1𝑏𝑖

𝐵

, for 𝑖 = 1, . . . , 𝑚,

𝑢𝑟 =
(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑤

∗

𝐴𝐵

+

(𝑞
∗
𝑚+1𝛼𝑟

)

𝐴

, for 𝑟 = 1, . . . , 𝑠,

V𝑜 =
𝑞
∗
𝑜𝑤
∗

𝐴𝐵

,

(28)

where

𝐴 =

𝑚

∑

𝑖=1

(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖

) 𝑥𝑖𝑜 − 𝑞
∗
𝑜 ,

𝐵 = 1 +

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑜.

(29)
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Then, by (7), we have

V𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚,

𝑢𝑟 ≥ 0, 𝑟 = 1, . . . , 𝑠.

(30)

Also, by (26) and (27), we obtain

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑜 =
𝑤
∗

𝐴𝐵

𝑚

∑

𝑖=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝛼𝑟

) 𝑦𝑟𝑜

+

𝑤
∗

𝐵

𝑚

∑

𝑖=1

(𝑞
∗
𝑚+1𝛼𝑟) 𝑦𝑟𝑜 =

𝑤
∗
(𝐵)

𝐴𝐵

+

(𝐴 − 𝑤
∗
)

𝐴

= 1 .

(31)

In addition
𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 − V𝑜

=

1

𝐴𝐵

𝑚

∑

𝑖=1

𝑤
∗
(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑖) 𝑥𝑖𝑗

+

𝑤
∗

𝐵

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

−

𝑤
∗

𝐴𝐵

𝑠

∑

𝑟=1

(𝑝
∗
𝑟 + 𝑝
∗
𝑠+1𝑎𝑟) 𝑦𝑟𝑗

−

1

𝐴

𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗 −
1

𝐴𝐵

𝑞
∗
𝑜𝑤
∗

=

1

𝐴𝐵

[𝑤
∗
(

𝑚

∑

𝑖=1

𝑞
∗
𝑖 𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑟 𝑦𝑟𝑗 − 𝑞

∗
𝑜)

+ 𝑤
∗
(

𝑚

∑

𝑖=1

𝑞
∗
𝑚+1𝛽𝑖

𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑠+1𝑎𝑟𝑦𝑟𝑗)

+ 𝐴𝑤
∗
𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 −𝐵

𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗] .

(32)

So that by (14), we have

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 − V𝑜

≥

1

𝐴𝐵

[𝑤
∗
(

𝑠

∑

𝑟=1

(𝑝
∗
𝑠+1𝑎𝑟 + 𝑞

∗
𝑚+1𝛼𝑟

) 𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

(𝑞
∗
𝑚+1𝛽𝑖

+ 𝑝
∗
𝑠+1𝑏𝑖) 𝑥𝑖𝑗)

+ 𝑤
∗
(

𝑚

∑

𝑖=1

𝑞
∗
𝑚+1𝛽𝑖

𝑥𝑖𝑗 −

𝑠

∑

𝑟=1

𝑝
∗
𝑠+1𝑎𝑟𝑦𝑟𝑗 )

+ 𝐴𝑤
∗
𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 − 𝐵

𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗]

=

1

𝐴𝐵

[𝑤
∗
𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑗 − 𝑤
∗
𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

+ 𝐴𝑤
∗
𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗 − 𝐵

𝑠

∑

𝑟=1

(𝑞
∗
𝑚+1𝛼𝑟

) 𝑦𝑟𝑗]

=

1

𝐴𝐵

[𝑤
∗
(𝐴 − 1)

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

+ (𝑤
∗
− 𝐵)

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑗] .

(33)

Therefore,

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 − V𝑜

≥

1

𝐴𝐵

[𝑤
∗
(𝐴 − 1)

𝑚

∑

𝑖=1

𝑝
∗
𝑠+1𝑏𝑖𝑥𝑖𝑗

+ (𝑤
∗
− 𝐵)

𝑠

∑

𝑟=1

𝑞
∗
𝑚+1𝛼𝑟

𝑦𝑟𝑗] ≥ 0.

(34)

Consequently, (u, v, V𝑜), where u = (𝑢1, . . . , 𝑢𝑠) and v =

(V1, . . . , V𝑚), is a feasible solution for model (4), which for

𝑧
∗
≤

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑜 − V𝑜

=

𝑤
∗

𝐴𝐵

𝑚

∑

𝑖=1

(𝑞
∗
𝑖 + 𝑞
∗
𝑚+1𝛽𝑟) 𝑥𝑖𝑜

+

𝑤
∗

𝐵

𝑠

∑

𝑟=1

(𝑝
∗
𝑠+1𝑏𝑖

) 𝑥𝑖𝑜 −
𝑞
∗
𝑜𝑤
∗

𝐴𝐵

=

𝑤
∗

𝐴𝐵

(𝐴) +

𝑤
∗
(𝐵 − 1)

𝐵

= 𝑤
∗
.

(35)

Now let (u∗, v∗, V∗𝑜 ) be an optimal solution for model (4),
and then (p, q, 𝑝𝑜), where p = (𝑝1, . . . , 𝑝𝑠+1) and q =

(𝑞1, . . . , 𝑞𝑚+1), with 𝑝𝑟 = 𝑢𝑟, 𝑟 = 1, . . . , 𝑠; 𝑝𝑠+1 = 0; 𝑞𝑖 =

V𝑖, 𝑖 = 1, . . . , 𝑚; 𝑞𝑚+1 = 0; 𝑝𝑜 = V∗𝑜 , is a feasible solution for
model (22), which for 𝜔∗ ≥ ∑𝑠+1𝑟=1 𝑝𝑟𝑦𝑟𝑜 − 𝑝𝑜 = ∑

𝑠
𝑟=1 𝑢
∗
𝑟 𝑦𝑟𝑜

−

𝑢
∗
𝑜 = 𝑧
∗. Thus 𝑧∗ = 𝑤∗.

Theorem 3. Let each DMUhave𝑚+1 inputs and 𝑠+1 outputs
with conditions (5) and (6).
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Then, the optimal objective function value of the following
model:

𝜌 = max
𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑜,

𝑚+1

∑

𝑖=1

𝑞𝑖𝑥𝑖𝑜 = 1

s.t
𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑗 −

𝑚+1

∑

𝑖=1

𝑞𝑖𝑥𝑖𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛

𝑝𝑟 ≥ 0, 𝑞𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(36)

is equal to the optimal objective function value of the following
model (1).

Proof. This proof is similar to the proof of Theorem 1.

Theorem4. Let each DMUhave𝑚+1 inputs and 𝑠+1 outputs
with conditions (5) and (6).

Then, the optimal objective function value of the following
model:

𝑤 = min
𝑠+1

∑

𝑟=1

𝑞𝑖𝑥𝑖𝑜,

𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑜 = 1

s.t
𝑚+1

∑

𝑖=1

𝑞𝑖𝑥𝑖𝑗 −

𝑠+1

∑

𝑟=1

𝑝𝑟𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑝𝑟 ≥ 0, 𝑞𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(37)

is equal to the optimal objective function value of the following
model (2).

Proof. This proof is similar to the proof of Theorem 2.

4. Illustrative Example

In this section, we use the data recorded in Table 1 to illustrate
that the addition or deletion of a cross-redundant output vari-
able and input variable does not affect the efficiency estimates
yielded by the CCR or BCC models. These correspond to 20
DMUs,whose efficiency is assessed using four inputs and four
outputs where

𝑥4𝑗 = (𝑥1𝑗 + 𝑥2𝑗 + 2𝑥3𝑗)

− (0.5𝑦1𝑗 + 0.5𝑦2𝑗 + 0.5𝑦3𝑗) ;

𝑗 = 1, . . . , 𝑛,

𝑦4𝑗 = (0.5𝑦1𝑗 + 0.5𝑦2𝑗 + 0.5𝑦3𝑗) − 0.5𝑥3𝑗;

𝑗 = 1, . . . , 𝑛.

(38)

Table 1: Dataset.

Inp 1 Inp 2 Inp 3 Inp 4 Out 1 Out 1 Out 3 Out 4
Unit 1 7 1 4 12.75 1 2.5 3 1.25

Unit 2 3 7 4 14.75 2.5 1 3 1.25

Unit 3 6 6 3 14.25 2.5 2 3 2.25

Unit 4 3 1 3 1.75 4 5.5 7 6.75

Unit 5 6 0.5 3 5.25 5 3.5 6 5.75

Unit 6 4 0.5 3 3.5 2 6 6 5.5

Unit 7 1.5 2.5 3 1.5 6 4 7 7

Unit 8 0.5 4 4 6.25 1.5 5 6 4.25

Unit 9 2.75 1.75 4 4 8 3 6 6.5

Unit 10 1 3 3 1 8 3 7 7.5

Unit 11 2 2 3 1.25 5.5 5 7 7.25

Unit 12 2.5 1.5 3 2 7 3 6 6.5

Unit 13 4.5 1.5 6 13 4 2 4 2

Unit 14 2 4 7 16.25 1.5 2 4 0.25

Unit 15 4 3 6 12.25 6.5 3.5 3.5 3.75

Unit 16 2 5 4 8.75 5 3.5 4 4.25

Unit 17 1.5 6 4 8.5 4.5 4.5 5 5

Unit 18 0.5 4 3 3 3.5 5.5 6 6

Unit 19 3.5 0.75 3 2.5 7.5 2.5 6 6.5

Unit 20 6 3.5 4 11 3.5 3.5 6 4.5

Table 2: Example results.

𝜃
∗

𝜌 𝑧
∗

𝜌
∗

Unit 1 0.3461538 0.3461538 0.7500000 0.7500000

Unit 2 0.3214286 0.3214286 0.7500000 0.7500000

Unit 3 0.4285714 0.4285714 1.0000000 1.0000000

Unit 4 1.0000000 1.0000000 1.0000000 1.0000000

Unit 5 1.0000000 1.0000000 1.0000000 1.0000000

Unit 6 1.0000000 1.0000000 1.0000000 1.0000000

Unit 7 1.0000000 1.0000000 1.0000000 1.0000000

Unit 8 1.0000000 1.0000000 1.0000000 1.0000000

Unit 9 0.9973190 0.9973190 1.0000000 1.0000000

Unit 10 1.0000000 1.0000000 1.0000000 1.0000000

Unit 11 1.0000000 1.0000000 1.0000000 1.0000000

Unit 12 1.0000000 1.0000000 1.0000000 1.0000000

Unit 13 0.4444444 0.4444444 0.6666667 0.6666667

Unit 14 0.3809524 0.3809524 0.6666667 0.6666667

Unit 15 0.5607702 0.5607702 0.5714286 0.5594240

Unit 16 0.6052279 0.6052279 0.7500000 0.7500000

Unit 17 0.6847156 0.6847156 0.7500000 0.7500000

Unit 18 1.0000000 1.0000000 1.0000000 1.0000000

Unit 19 1.0000000 1.0000000 1.0000000 1.0000000

Unit 20 0.6428571 0.6428571 0.7500000 0.7500000

In other words, the forth input and the forth output are cross-
redundant variables. In Table 2, 𝜃∗, 𝑧̃, 𝜌∗, and 𝜌, respectively,
record the efficiency measure provided by model (1), model
(3), model (7), and model (36). It is evident from Table 2 that
the addition or deletion of cross-redundant output variable
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and/or input variable does not affect the efficiency estimates
yielded by the input-orientedCCRor BCCmultipliermodels.

5. Conclusions

In this paper, we have studied the effect of the cross redun-
dancy between interval scale input and output variables
on the efficiency estimates yielded by the CCR multiplier
model in input- and output-oriented versions and the BCC
multiplier model in input- and output-oriented versions. We
proved that the addition or deletion of a cross-redundant
output variable and input variable does not affect the effi-
ciency estimates yielded by the input-oriented BCC multi-
plier model and the output-oriented BCC multiplier model.
Similarly, it can be proved that the addition or deletion of
cross-redundant variable does not affect efficiency estimates
yielded by the CCR multiplier model in input- and output-
oriented versions.
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