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We study the existence and uniqueness of coincidence point for nonlinear mappings of any number of arguments under a weak
(𝜓, 𝜑)-contractivity condition in partial metric spaces. The results we obtain generalize, extend, and unify several classical and
very recent related results in the literature in metric spaces (see Aydi et al. (2011), Berinde and Borcut (2011), Gnana Bhaskar and
Lakshmikantham (2006), Berzig and Samet (2012), Borcut andBerinde (2012), Choudhury et al. (2011), Karapınar and Luong (2012),
Lakshmikantham and Ćirić (2009), Luong andThuan (2011), and Roldán et al. (2012)) and in partial metric spaces (see Shatanawi
et al. (2012)).

1. Introduction

The notion of coupled fixed point was introduced by Guo
and Lakshmikantham [1] in 1987. In a recent paper, Gnana
Bhaskar and Lakshmikantham [2] introduced the concept
mixed monotone property for contractive operators of the
form 𝐹 : 𝑋 × 𝑋 → 𝑋, where 𝑋 is a partially ordered
metric space, and then established some coupled fixed-point
theorems. After that,many results appeared on coupled fixed-
point theory in different contexts (see, e.g., [3–6]). Later,
Berinde andBorcut [7] introduced the concept of tripled fixed
point and proved tripled fixed-point theorems using mixed
monotone mappings (see also [8–10]).

Very recently, Roldán et al. [11] proposed the notion of
coincidence point between mappings in any number of vari-
ables and showed some existence and uniqueness theorems
that extended the mentioned previous results for this kind of
nonlinear mappings, not necessarily permuted or ordered, in
the framework of partially ordered complete metric spaces,
using a weaker contraction condition, that also generalized
other works by Berzig and Samet [12], Karapınar and Berinde
[13].

Partial metric spaces were firstly introduced byMatthews
in [14] as an attempt to generalize the metric spaces by
establishing the condition that the distance between a point

to itself (which is not necessarily zero) is less or equal
than the distance between that point and another point
of the space. In the mentioned papers, Matthews studied
topological properties of partial metric spaces and stated a
modified version of a Banach contraction mapping principle
on this kind of spaces. After Matthews’ pioneering work, the
theory of partial metric spaces and particularly the field of
fixed-point theorems have expansively been developed due
to the increasing interest in this area and motivated by its
possible applications (see [15, 16] and references therein).

In this paper, our main aim is to study a weaker con-
tractivity condition for nonlinearmappings of any number of
arguments. This condition can be particularized in a variety
of forms that let us extend the previously mentioned results
and other recent ones in this field (see [2, 5, 7, 9, 11, 12, 16–
20]). We also notice that our results cannot be obtained by
the very recent paper of Haghi et al. [21] (for more details see
Remark 26).

2. Preliminaries

Preliminaries and notation about coincidence points can also
be found in [11]. Let 𝑛 be a positive integer. Henceforth,𝑋will
denote a nonempty set, and𝑋𝑛 will denote the product space
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𝑋
𝑛

= 𝑋 × 𝑋× 𝑛. . . ×𝑋. Throughout this paper, 𝑚 and 𝑘 will
denote nonnegative integers and 𝑖, 𝑗, 𝑠 ∈ {1, 2, . . . , 𝑛}. Unless
otherwise stated, “for all 𝑚” will mean “for all 𝑚 ≥ 0”, and
“for all 𝑖” will mean “for all 𝑖 ∈ {1, 2, . . . , 𝑛}”. LetR+

0
= [0,∞[.

A metric on 𝑋 is a mapping 𝑑 : 𝑋 × 𝑋 → R satisfying,
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(i) 𝑑(𝑥, 𝑦) = 0 if, and only if, 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑧, 𝑥) + 𝑑(𝑧, 𝑦).
From these properties, we can easily deduce that𝑑(𝑥, 𝑦) ≥

0 and 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. The last requirement
is called the triangle inequality. If 𝑑 is a metric on 𝑋, we say
that (𝑋, 𝑑) is ametric space (for short, an MS).

Definition 1 (see [22]). A triple (𝑋, 𝑑, ≤) is called a partially
ordered metric space if (𝑋, 𝑑) is a MS and ≤ is a partial order
on𝑋.

Definition 2 (see [2]). An orderedMS (𝑋, 𝑑, ≤) is said to have
the sequential 𝑔-monotone property if it verifies

(i) if {𝑥
𝑚
} is a nondecreasing sequence and {𝑥

𝑚
}
𝑑

󳨀→ 𝑥,
then 𝑔𝑥

𝑚
≤ 𝑔𝑥 for all𝑚;

(ii) if {𝑦
𝑚
} is a nonincreasing sequence and {𝑦

𝑚
}
𝑑

󳨀→ 𝑦,
then 𝑔𝑦

𝑚
≥ 𝑔𝑦 for all𝑚.

If 𝑔 is the identity mapping, then 𝑋 is said to have the
sequential monotone property.

Henceforth, fix a partition {𝐴, 𝐵} of two non-empty
subsets ofΛ

𝑛
= {1, 2, . . . , 𝑛}; that is,𝐴∪𝐵 = Λ

𝑛
and𝐴∩𝐵 = 0.

We will denote
Ω
𝐴,𝐵

= {𝜎 : Λ
𝑛
→ Λ
𝑛
: 𝜎 (𝐴) ⊆ 𝐴 and𝜎 (𝐵) ⊆ 𝐵} ,

Ω
󸀠

𝐴,𝐵
= {𝜎 : Λ

𝑛
→ Λ
𝑛
: 𝜎 (𝐴) ⊆ 𝐵 and𝜎 (𝐵) ⊆ 𝐴} .

(1)

If (𝑋, ≤) is a partially ordered space, 𝑥, 𝑦 ∈ 𝑋, and 𝑖 ∈ Λ
𝑛
, we

will use the following notation:

𝑥≤
𝑖
𝑦 ⇐⇒ {

𝑥 ≤ 𝑦, if 𝑖 ∈ 𝐴,
𝑥 ≥ 𝑦, if 𝑖 ∈ 𝐵.

(2)

Let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings.

Definition 3 (see [11]). One says that 𝐹 and 𝑔 are commuting
if 𝑔𝐹(𝑥

1
, . . . , 𝑥

𝑛
) = 𝐹(𝑔𝑥

1
, . . . , 𝑔𝑥

𝑛
) for all 𝑥

1
, . . . , 𝑥

𝑛
∈ 𝑋.

Definition 4 (see [11]). Let (𝑋, ≤) be a partially ordered
space. One says that 𝐹 has the mixed 𝑔-monotone property
(with respect to {𝐴, 𝐵}) if 𝐹 is 𝑔-monotone nondecreasing in
arguments of𝐴 and𝑔-monotone nonincreasing in arguments
of 𝐵; that is, for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦, 𝑧 ∈ 𝑋 and all 𝑖,

𝑔𝑦 ≤ 𝑔𝑧

󳨐⇒ 𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑦, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
)

≤
𝑖
𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑧, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
) .

(3)

Henceforth, let 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜏 : Λ

𝑛
→ Λ

𝑛
be 𝑛 + 1

mappings from Λ
𝑛
into itself, and let Φ be the (𝑛 + 1)-tuple

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜏).

Definition 5 (see [11]). A point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 is called
a Φ-coincidence point of the mappings 𝐹and 𝑔 if

𝐹 (𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) = 𝑔𝑥
𝜏(𝑖)

∀𝑖. (4)

If 𝑔 is the identity mapping on 𝑋, then (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛

is called a Φ-fixed point of the mapping 𝐹.

Remark 6. If 𝐹 and 𝑔 are commuting and (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈

𝑋
𝑛 is a Φ-coincidence point of 𝐹 and 𝑔, then (𝑔𝑥

1
,

𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) also is a Φ-coincidence point of 𝐹 and 𝑔.

Definition 7 (see [14]). A partial metric on 𝑋 is a mapping
𝑝 : 𝑋 × 𝑋 → R+

0
verifying, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝑃1) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);

(𝑃2) 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) ⇒ 𝑥 = 𝑦;

(𝑃3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(𝑃4) 𝑝(𝑥, 𝑧) + 𝑝(𝑦, 𝑦) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧).

In this case, (𝑋, 𝑝) is a partial metric space (for short, a PMS).

Example 8 (see, e.g., [14]). Let𝑋 = R+
0
, and define 𝑝 on𝑋 by

𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then, (𝑋, 𝑝) is a partial
metric space.

Example 9 (see [14]). Let 𝑋 = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏}, and
define 𝑝([𝑎, 𝑏], [𝑐, 𝑑]) = max{𝑏, 𝑑} −min{𝑎, 𝑐}. Then, (𝑋, 𝑝) is
a partial metric space.

Example 10 (see [14]). Let 𝑋 = [0, 1] ∪ [2, 3], and define 𝑝 :

𝑋 × 𝑋 → R+
0
by

𝑝 (𝑥, 𝑦) = {
max {𝑥, 𝑦} , if {𝑥, 𝑦} ∩ [2, 3] ̸= 0,
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 , if {𝑥, 𝑦} ⊂ [0, 1] .
(5)

Then, (𝑋, 𝑝) is a partial metric space.

Example 11 (see, e.g., [23, 24]). Let (𝑋, 𝑑) and (𝑋, 𝑝) be
a metric space and a partial metric space, respectively.
Functions 𝜌

𝑖
: 𝑋 × 𝑋 → R+

0
(𝑖 ∈ {1, 2, 3}) given by

𝜌
1
(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑦) ,

𝜌
2
(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) +max {𝑢 (𝑥) , 𝑢 (𝑦)} ,

𝜌
3
(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑎,

(6)

define partial metrics on 𝑋, where 𝑢 : 𝑋 → R+
0
is an

arbitrary function and 𝑎 ≥ 0.
Obviously, if (𝑋, 𝑑) is a MS and we define 𝑝 = 𝑑, then

(𝑋, 𝑝) is a PMS. Indeed, a partial metric 𝑝 on𝑋 verifies

(i) 𝑝(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦;

(ii) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(iii) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧),
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but the condition 𝑝(𝑥, 𝑥) = 0 does not necessarily hold. For a
partial metric 𝑝 on 𝑋, the mappings 𝑑

𝑝
, 𝑑
𝑚
: 𝑋 × 𝑋 → R+

0

given by

𝑑
𝑝
(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) ,

𝑑
𝑚
(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) , 𝑝 (𝑦, 𝑦) − 𝑝 (𝑦, 𝑦)}

= 𝑝 (𝑥, 𝑦) −min {𝑝 (𝑥, 𝑥) , 𝑝 (𝑦, 𝑦)} ,
(7)

for all 𝑥, 𝑦 ∈ 𝑋, are (usual) metrics on 𝑋. On a PMS, the
concepts of convergence, Cauchy sequences, completeness,
and continuity are defined as follows.

Definition 12 (see [14, 25, 26]). Let {𝑥
𝑚
} be a sequence on a

PMS (𝑋, 𝑝).

(i) {𝑥
𝑚
} 𝑝-converges to𝑥 ∈ 𝑋 (and onewill write {𝑥

𝑚
}
𝑝

󳨀→

𝑥) if 𝑝(𝑥, 𝑥) = lim
𝑚→∞

𝑝(𝑥, 𝑥
𝑚
).

(ii) {𝑥
𝑚
} is called 𝑝-Cauchy if lim

𝑚,𝑚
󸀠
→∞

𝑝(𝑥
𝑚
, 𝑥
𝑚
󸀠)

exists (and it is finite).
(iii) (𝑋, 𝑝) is said to be 𝑝-complete if every 𝑝-Cauchy

sequence {𝑥
𝑚
} in 𝑋 𝑝-converges to a point 𝑥 ∈ 𝑋

such that 𝑝(𝑥, 𝑥) = lim
𝑚,𝑚
󸀠
→∞

𝑝(𝑥
𝑚
, 𝑥
𝑚
󸀠).

(iv) A mapping 𝑓 : 𝑋 → 𝑋 is said to be 𝑝-continuous at
𝑥
0
∈ 𝑋 if, for every 𝜀 > 0, there exists 𝛿 > 0 such that

𝑓(𝐵
𝑝
(𝑥
0
, 𝛿)) ⊆ 𝐵

𝑝
(𝑓(𝑥
0
), 𝜀).

We have used the previous notation because we need to
distinguish between 𝑝-convergence and 𝑑

𝑝
-convergence on

𝑋 and usual convergence for real sequences.

Lemma 13 (see [14, 25, 26]). Let {𝑥
𝑚
} be a sequence on a PMS

(𝑋, 𝑝).
(1) {𝑥
𝑚
} is 𝑝-Cauchy if, and only if, it is 𝑑

𝑝
-Cauchy.

(2) {𝑥
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥 if, and only if, {𝑥
𝑚
}
𝑝

󳨀→ 𝑥 and 𝑝(𝑥, 𝑥) =
lim
𝑚,𝑚
󸀠
→∞

𝑝(𝑥
𝑚
, 𝑥
𝑚
󸀠); that is,

{𝑑
𝑝
(𝑥
𝑚
, 𝑥)} 󳨀→ 0 ⇐⇒ 𝑝 (𝑥, 𝑥)

= lim
𝑚→∞

𝑝 (𝑥, 𝑥
𝑚
) = lim
𝑚,𝑚
󸀠
→∞

𝑝 (𝑥
𝑚
, 𝑥
𝑚
󸀠) .

(8)

(3) (𝑋, 𝑝) is complete if, and only if, the MS (𝑋, 𝑑
𝑝
) is

complete.

(4) If {𝑥
𝑚
}
𝑝

󳨀→ 𝑥 and𝑝(𝑥, 𝑥) = 0, then lim
𝑚→∞

𝑝(𝑥
𝑚
, 𝑦) =

𝑝(𝑥, 𝑦) for all 𝑦 ∈ 𝑋.

3. Auxiliary Results

We will use the following results about real sequences in the
proof of our main theorems.

Lemma 14. Let {𝑎1
𝑚
}
𝑚∈N, . . . , {𝑎

𝑛

𝑚
}
𝑚∈N be 𝑛 real lower bounded

sequences such that {max(𝑎1
𝑚
, . . . , 𝑎

𝑛

𝑚
)}
𝑚∈N → 𝛿. Then, there

exists 𝑖
0
∈ {1, 2, . . . , 𝑛} and a subsequence {𝑎𝑖0

𝑚(𝑘)
}
𝑘∈N such that

{𝑎
𝑖0

𝑚(𝑘)
}
𝑘∈N → 𝛿.

Proof. Let 𝑏
𝑚
= max(𝑎1

𝑚
, 𝑎
2

𝑚
, . . . , 𝑎

𝑛

𝑚
) for all𝑚. As {𝑏

𝑚
} is con-

vergent, it is bounded. As 𝑎𝑖
𝑚
≤ 𝑏
𝑚
for all𝑚 and 𝑖, then every

{𝑎
𝑖

𝑚
} is bounded.As {𝑎1

𝑚
}
𝑚∈N is a real bounded sequence, it has

a convergent subsequence {𝑎1
𝜎1(𝑚)

}
𝑚∈N → 𝑎

1
. Consider the

subsequences {𝑎
2

𝜎1(𝑚)
}
𝑚∈N, {𝑎

3

𝜎1(𝑚)
}
𝑚∈N, . . . , {𝑎

𝑛

𝜎1(𝑚)
}
𝑚∈N; that

are 𝑛 − 1 real bounded sequences and the sequence
{𝑏
𝜎1(𝑚)

}
𝑚∈N that also converges to 𝛿. As {𝑎

2

𝜎1(𝑚)
}
𝑚∈N is a

real bounded sequence, it has a convergent subsequence
{𝑎
2

𝜎2𝜎1(𝑚)
}
𝑚∈N → 𝑎

2
. Then, the sequences {𝑎3

𝜎2𝜎1(𝑚)
}
𝑚∈N,

{𝑎
4

𝜎2𝜎1(𝑚)
}
𝑚∈N, . . ., {𝑎

𝑛

𝜎2𝜎1(𝑚)
}
𝑚∈N also are 𝑛 − 2 real bounded

sequences, {𝑎1
𝜎2𝜎1(𝑚)

}
𝑚∈N → 𝑎

1
, and {𝑏

𝜎2𝜎1(𝑚)
}
𝑚∈N → 𝛿.

Repeating this process 𝑛 times, we can find 𝑛 subsequences
{𝑎
1

𝜎(𝑚)
}
𝑚∈N, {𝑎

2

𝜎(𝑚)
}
𝑚∈N, . . ., {𝑎

𝑛

𝜎(𝑚)
}
𝑚∈N (where 𝜎 = 𝜎

𝑛
⋅ ⋅ ⋅ 𝜎
1
)

such that {𝑎𝑖
𝜎(𝑚)

}
𝑚∈N → 𝑎

𝑖
for all 𝑖. And {𝑏

𝜎(𝑚)
}
𝑚∈N → 𝛿.

But

{𝑏
𝜎(𝑚)

}
𝑚∈N

= {max (𝑎𝑛
𝜎(𝑚)

, . . . , 𝑎
𝑛

𝜎(𝑚)
)}
𝑚∈N

󳨀→ max (𝑎
1
, . . . , 𝑎

𝑛
) ,

(9)

so 𝛿 = max(𝑎
1
, . . . , 𝑎

𝑛
), and there exists 𝑖

0
∈ {1, 2, . . . , 𝑛} such

that 𝑎
𝑖0
= 𝛿. Therefore, there exists 𝑖

0
∈ {1, 2, . . . , 𝑛} and a

subsequence {𝑎𝑖0
𝜎(𝑚)

}
𝑚∈N such that {𝑎𝑖0

𝜎(𝑚)
}
𝑚∈N → 𝑎

𝑖0
= 𝛿.

Lemma 15. Let {𝑎
𝑚
}
𝑚∈N be a sequence of nonnegative real

numbers which has not any subsequence converging to zero.
Then, for all 𝜀 > 0, there exist 𝛿 ∈]0, 𝜀[ and 𝑚

0
∈ N such

that 𝑎
𝑚
≥ 𝛿 for all𝑚 ≥ 𝑚

0
.

Proof. Suppose that the conclusion is not true. Then, there
exists 𝜀

0
> 0 such that, for all 𝛿 ∈]0, 𝜀

0
[, there exists 𝑚

0
∈ N

verifying 𝑎
𝑚0

< 𝛿. Let 𝑘
0
∈ N be such that 1/𝑘

0
< 𝜀
0
. For all

𝑘 ∈ N, take 𝛿
𝑘
= 1/(𝑘+𝑘

0
) ∈ ]0, 𝜀

0
[. Then, there exists𝑚(𝑘) ∈

N verifying 0 ≤ 𝑎
𝑚(𝑘)

< 𝛿
𝑘
= 1/(𝑘 + 𝑘

0
). Taking limit when

𝑘 → ∞, we deduce that lim
𝑘→∞

𝑎
𝑚(𝑘)

= 0. Then, {𝑎
𝑚
} has a

subsequence converging to zero (maybe, reordering {𝑎
𝑚(𝑘)

}),
but this is a contradiction.

Lemma 16. If {𝑥
𝑚
}
𝑚∈N is a sequence in a MS (𝑋, 𝑑) that is

not Cauchy, then there exist 𝜀
0
> 0 and two subsequences

{𝑥
𝑚(𝑘)

}
𝑘∈N and {𝑥

𝑛(𝑘)
}
𝑘∈N such that, for all 𝑘 ∈ N,

𝑘 < 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀
0
, 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)−1

) < 𝜀
0
.

(10)

Proof. We know that

{𝑥
𝑚
} is Cauchy

⇐⇒ [∀𝜀 > 0, ∃ 𝑛
0
∈ N : (𝑚, 𝑛 ≥ 𝑛

0
󳨐⇒ 𝑑 (𝑥

𝑚
, 𝑥
𝑛
) < 𝜀)] .

(11)

If this condition is not true, then

∃𝜀
0
> 0 : (∀𝑛

0
∈ N, ∃𝑚, 𝑛 ≥ 𝑛

0
such that 𝑑 (𝑥

𝑚
, 𝑥
𝑛
) ≥ 𝜀
0
) .

(12)



4 Abstract and Applied Analysis

Let 𝑛
0
= 2.Then, there exists𝑚

1
, 𝑛
1
∈ N such that𝑚

1
, 𝑛
1
≥ 𝑛
0

and 𝑑(𝑥
𝑚1
, 𝑥
𝑛1
) ≥ 𝜀
0
. Let 𝑚(1) = min(𝑚

1
, 𝑛
1
) ≥ 𝑛
0
= 2 > 1,

and consider the numbers

𝑑 (𝑥
𝑚(1)

, 𝑥
𝑚(1)+1

) ,

𝑑 (𝑥
𝑚(1)

, 𝑥
𝑚(1)+2

) , . . . , 𝑑 (𝑥
𝑚(1)

, 𝑥max(𝑚1 ,𝑛1)) .
(13)

Since 𝑑(𝑥
𝑚(1)

, 𝑥max(𝑚1 ,𝑛1)) = 𝑑(𝑥
𝑚1
, 𝑥
𝑛1
) ≥ 𝜀

0
, between the

previous numbers there exists a first nonnegative integer
𝑛(1) ∈ {𝑚(1) + 1,𝑚(1) + 2, . . . ,max(𝑚

1
, 𝑛
1
)} such that

𝑑(𝑥
𝑚(1)

, 𝑥
𝑛(1)

) ≥ 𝜀
0
but 𝑑(𝑥

𝑚(1)
, 𝑥
𝑗
) < 𝜀

0
for all 𝑗 ∈

{𝑚(1), 𝑚(1)+1, . . . , 𝑛(1)−1}. In particular, 𝑑(𝑥
𝑚(1)

, 𝑥
𝑛(1)−1

) <

𝜀
0
.
Now, let 𝑛

0
= 𝑛(1) + 1. Then, there exists 𝑚

2
, 𝑛
2
∈ N

such that 𝑚
2
, 𝑛
2
≥ 𝑛(1) + 1 and 𝑑(𝑥

𝑚2
, 𝑥
𝑛2
) ≥ 𝜀
0
. Let 𝑚(2) =

min(𝑚
2
, 𝑛
2
) ≥ 𝑛
0
= 𝑛(1)+1 > 𝑛(1), and consider the numbers

𝑑 (𝑥
𝑚(2)

, 𝑥
𝑚(2)+1

) ,

𝑑 (𝑥
𝑚(2)

, 𝑥
𝑚(2)+2

) , . . . , 𝑑 (𝑥
𝑚(2)

, 𝑥max(𝑚2 ,𝑛2)) .
(14)

Since 𝑑(𝑥
𝑚(2)

, 𝑥max(𝑚2 ,𝑛2)) = 𝑑(𝑥
𝑚2
, 𝑥
𝑛2
) ≥ 𝜀

0
, between the

previous numbers there exists a first nonnegative integer
𝑛(2) ∈ {𝑚(2) + 1,𝑚(2) + 2, . . . ,max(𝑚

2
, 𝑛
2
)} such that

𝑑(𝑥
𝑚(2)

, 𝑥
𝑛(2)

) ≥ 𝜀
0
but 𝑑(𝑥

𝑚(2)
, 𝑥
𝑗
) < 𝜀

0
for all 𝑗 ∈

{𝑚(2), 𝑚(2)+1, . . . , 𝑛(2)−1}. In particular, 𝑑(𝑥
𝑚(2)

, 𝑥
𝑛(2)−1

) <

𝜀
0
.
Repeating this process, we can find two subsequences

{𝑥
𝑚(𝑘)

} and {𝑥
𝑛(𝑘)

} such that, for all 𝑘 ∈ N:

𝑘 < 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀
0
, 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)−1

) < 𝜀
0
.

(15)

Definition 17. Let Ψ be the family of all continuous, nonde-
creasing mappings 𝜓 : R+

0
→ R+
0
such that 𝜓(𝑡) = 0 if, and

only if, 𝑡 = 0.

These mappings are known as altering distance func-
tions (see [27]). Note that every selected 𝜓 ∈ Ψ

commutes with max; that is, 𝜓(max(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
)) =

max(𝜓(𝑠
1
), 𝜓(𝑠
2
), . . . , 𝜓(𝑠

𝑁
)) for all 𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁
∈ [0,∞).

Lemma 18. If 𝜓 ∈ Ψ and lim
𝑚→∞

𝜓(𝑎
𝑚
) = 0, then

lim
𝑚→∞

𝑎
𝑚
= 0.

Proof. As there exists 𝜓(𝑎
𝑚
), then 𝑎

𝑚
∈ dom𝜓 = [0,∞[.

If the conclusion is not true, there exists 𝜀
0
> 0 such that,

for all 𝑛
0
∈ N, there exists 𝑛 ≥ 𝑛

0
verifying 𝑎

𝑛
≥ 𝜀
0
.

This means that {𝑎
𝑚
} has a subsequence {𝑎

𝑚(𝑘)
}
𝑘
such that

𝑎
𝑚(𝑘)

≥ 𝜀
0
. As 𝜓 is nondecreasing, 𝜓(𝜀

0
) ≤ 𝜓(𝑎

𝑚(𝑘)
) for all

𝑘 ∈ N. Therefore, {𝜓(𝑎
𝑚
)}
𝑚
has a subsequence {𝜓(𝑎

𝑚(𝑘)
)}
𝑘

lower bounded by 𝜓(𝜀
0
) > 0, but this is impossible since

lim
𝑚→∞

𝜓(𝑎
𝑚
) = 0.

With regards to coincidence points, it is possible to con-
sider the following simplification. If 𝜏 is a permutation ofΛ

𝑛
,

and we reorder (4), then we deduce that every coincidence

point may be seen as a coincidence point associated to the
identity mapping on Λ

𝑛
(see, for instance, [28]).

Lemma 19. Let 𝜏 be a permutation of Λ
𝑛
, and let Φ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜏) and Φ

󸀠 = (𝜎
𝜏
−1
(1)
, 𝜎
𝜏
−1
(2)
, . . . , 𝜎

𝜏
−1
(𝑛)
, 𝐼
Λ 𝑛
).

Then, a point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 is a Φ-coincidence point
of the mappings 𝐹 and 𝑔 if, and only if, (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is aΦ󸀠-

coincidence point of the mappings 𝐹 and 𝑔.

Therefore, in the sequel, without loss of generality,
we will only consider Υ-coincidence points where Υ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
), that is, that verify 𝐹(𝑥

𝜎𝑖(1)
, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) =

𝑔𝑥
𝑖
for all 𝑖. We also show some preliminary results on PMS.

Lemma 20. Let {𝑥
𝑚
} be a sequence on a PMS (𝑋, 𝑝), and let

𝑥 ∈ 𝑋.

(1) If {𝑥
𝑚
}
𝑝

󳨀→ 𝑥 and 𝑝(𝑥, 𝑥) = 0, then {𝑥
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥,
{𝑑
𝑝
(𝑥
𝑚
, 𝑦)} → 𝑑

𝑝
(𝑥, 𝑦) and {𝑝(𝑥

𝑚
, 𝑦)} → 𝑝(𝑥, 𝑦)

for all 𝑦 ∈ 𝑋.

(2) If {𝑥
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥 and {𝑝(𝑥
𝑚
, 𝑥
𝑚
)} → 0, then 𝑝(𝑥, 𝑥) = 0.

Proof. (1) Since 0 ≤ 𝑝(𝑥
𝑚
, 𝑥
𝑚
) ≤ 𝑝(𝑥, 𝑥

𝑚
) and

lim
𝑚→∞

𝑝(𝑥, 𝑥
𝑚
) = 𝑝(𝑥, 𝑥) = 0, then lim

𝑚→∞
𝑝(𝑥
𝑚
, 𝑥
𝑚
)

= 0. Therefore, lim
𝑚→∞

𝑑
𝑝
(𝑥, 𝑥
𝑚
) = lim

𝑚→∞
(2𝑝(𝑥, 𝑥

𝑚
) −

𝑝(𝑥, 𝑥) − 𝑝(𝑥
𝑚
, 𝑥
𝑚
)) = 0, so {𝑥

𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥. Since 𝑑
𝑝
is

continuous, then {𝑑
𝑝
(𝑥
𝑚
, 𝑦)} → 𝑑

𝑝
(𝑥, 𝑦) for all 𝑦 ∈ 𝑋, and

item 4 of Lemma 13 implies that {𝑝(𝑥
𝑚
, 𝑦)} → 𝑝(𝑥, 𝑦).

(2) Item 2 of Lemma 13 shows that 𝑝(𝑥, 𝑥) =

lim
𝑚,𝑚
󸀠
→∞

𝑝(𝑥
𝑚
, 𝑥
𝑚
󸀠) = lim

𝑚→∞
𝑝(𝑥
𝑚
, 𝑥
𝑚
) = 0.

Remark 21. Although the limit in a MS is unique, the 𝑝-limit
in a PMS is not necessarily unique. For instance, let (𝑋, 𝑝)
as in Example 10. Then, (𝑋, 𝑝) is a complete PMS (see [14]).

Consider 𝑥
𝑚
= 2.5−1/(2𝑚) for all𝑚 ∈ N.Then, {𝑥

𝑚
}
𝑑𝑝

󳨀󳨀→ 2.5

but {𝑥
𝑚
}
𝑝

󳨀→ 𝑥
0
whenever 𝑥

0
∈ [2.5, 3].

Definition 22. Let𝑁 ∈ N, let (𝑋, 𝑝) be a PMS, let 𝐺 : 𝑋
𝑁

→

𝑋 be a mapping, and let 𝑌
0
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) ∈ 𝑋

𝑁. We
will say that 𝐺 is 𝛼

𝑝
-continuous at 𝑌

0
if, for all sequences

{𝑥
1

𝑚
}, {𝑥
2

𝑚
}, . . . , {𝑥

𝑁

𝑚
} on 𝑋 such that {𝑥𝑖

𝑚
}
𝑝

󳨀→ 𝑥
𝑖
for all 𝑖 ∈

{1, 2, . . . , 𝑁}, 𝑝(𝑥
𝑖
, 𝑥
𝑖
) = 0 for all 𝑖 ∈ {1, 2, . . . , 𝑁} and

{𝑝(𝐺(𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
), 𝐺(𝑥

1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
))} → 0, we have

that {𝐺(𝑥1
𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
)}
𝑝

󳨀→ 𝐺(𝑌
0
) and 𝑝(𝐺(𝑌

0
), 𝐺(𝑌

0
)) = 0.

Onewill say that𝐺 is𝛼
𝑝
-continuous if it is continuous at every

point 𝑌
0
∈ 𝑋
𝑁.

Lemma 23. If (𝑋, 𝑝) is a PMS, and 𝐺 : 𝑋
𝑁

→ 𝑋 is 𝑑
𝑝
-

continuous at 𝑌
0
∈ 𝑋
𝑁, then 𝐺 is 𝛼

𝑝
-continuous at 𝑌

0
.

Proof. Let {𝑥
1

𝑚
}, {𝑥
2

𝑚
}, . . . , {𝑥

𝑁

𝑚
} sequences on 𝑋

such that {𝑥
𝑖

𝑚
}
𝑝

󳨀→ 𝑥
𝑖
for all 𝑖 ∈ {1, 2, . . . , 𝑁},

𝑝(𝑥
𝑖
, 𝑥
𝑖
) = 0 for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and

{𝑝(𝐺(𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
), 𝐺(𝑥

1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
))} → 0. Item 1
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of Lemma 20 implies that {𝑥𝑖
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥
𝑖
for all 𝑖 ∈ {1, 2, . . . , 𝑁}.

Since 𝐺 is 𝑑
𝑝
-continuous at 𝑌

0
= (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
), then

{𝐺(𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
)}

𝑑𝑝

󳨀󳨀→ 𝐺(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
). Item 2 of

Lemma 13 assures us that {𝐺(𝑥1
𝑚
, . . . , 𝑥

𝑁

𝑚
)}
𝑝

󳨀→ 𝐺(𝑥
1
, . . . , 𝑥

𝑁
)

and

𝑝 (𝐺 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) , 𝐺 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
))

= lim
𝑚,𝑚
󸀠
→∞

𝑝 (𝐺 (𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
) , 𝐺 (𝑥

1

𝑚
󸀠 , 𝑥
2

𝑚
󸀠 , . . . , 𝑥

𝑁

𝑚
󸀠))

= lim
𝑚→∞

𝑝 (𝐺 (𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
) , 𝐺 (𝑥

1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
)) = 0.

(16)

Then, 𝐺 is 𝛼
𝑝
-continuous at 𝑌

0
.

4. Main Results

In the following result, we show sufficient conditions to
ensure the existence of Υ-coincidence points, where Υ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
).

Theorem24. Let (𝑋, 𝑝) be a complete PMS, and let ≤ a partial
order on𝑋. Let Υ = (𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
) be an 𝑛-tuple of mappings

from {1, 2, . . . , 𝑛} into itself verifying 𝜎
𝑖
∈ Ω
𝐴,𝐵

if 𝑖 ∈ 𝐴 and
𝜎
𝑖
∈ Ω
󸀠

𝐴,𝐵
if 𝑖 ∈ 𝐵. Let 𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two
mappings such that 𝐹 has the mixed 𝑔-monotone property on
𝑋, 𝐹(𝑋𝑛) ⊆ 𝑔(𝑋) and 𝑔 is 𝛼

𝑝
-continuous and commuting with

𝐹. Assume that there exist 𝜓, 𝜑 ∈ Ψ such that

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) − 𝜑 (max

1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) ,

(17)

for which 𝑔𝑥
𝑖
≤
𝑖
𝑔𝑦
𝑖
for all 𝑖. Suppose either 𝐹 is 𝛼

𝑝
-

continuous or (𝑋, 𝑑
𝑝
, ≤) has the sequential 𝑔-monotone

property. If there exist 𝑥
1

0
, 𝑥
2

0
, . . . , 𝑥

𝑛

0
∈ 𝑋 verifying

𝑔𝑥
𝑖

0
≤
𝑖
𝐹(𝑥
𝜎𝑖(1)

0
, 𝑥
𝜎𝑖(2)

0
, . . . , 𝑥

𝜎𝑖(𝑛)

0
) for all 𝑖, then 𝐹 and 𝑔 have,

at least, one Υ-coincidence point.

Proof. The proof is divided into seven steps. The first two
steps are the same as in the proof of Theorem 9 in [11], since
the contractivity condition does not play any role in these
parts of the proof.

Step 1.There exist 𝑛 sequences {𝑥1
𝑚
}
𝑚≥0

, {𝑥
2

𝑚
}
𝑚≥0

, . . . , {𝑥
𝑛

𝑚
}
𝑚≥0

such that 𝑔𝑥𝑖
𝑚+1

= 𝐹(𝑥𝜎𝑖(1)
𝑚

, 𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚
) for all𝑚 and all 𝑖.

Step 2. 𝑔𝑥𝑖
𝑚
≤
𝑖
𝑔𝑥
𝑖

𝑚+1
for all 𝑚 and all 𝑖.

Step 3. We claim that {𝑝(𝑔𝑥𝑖
𝑚
, 𝑔𝑥
𝑖

𝑚+1
)}
𝑚≥0

→ 0 for all 𝑖 (i.e.,
{max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
)}
𝑚≥0

→ 0).

Indeed, define 𝛿
𝑚

= max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
) for all 𝑚. As

𝑔𝑥
𝑖

𝑚
≤
𝑖
𝑔𝑥
𝑖

𝑚+1
for all 𝑚 and all 𝑖, then condition (17) implies

that, for all𝑚 ≥ 1 and all 𝑖:

𝜓 (𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
))

= 𝜓 (𝑝 (𝐹 (𝑥
𝜎𝑖(1)

𝑚−1
, 𝑥
𝜎𝑖(2)

𝑚−1
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚−1
) , 𝐹 (𝑥

𝜎𝑖(1)

𝑚
, 𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚
)))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑗)

𝑚−1
, 𝑔𝑥
𝜎𝑖(𝑗)

𝑚
)) − 𝜑(max

1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑗)

𝑚−1
, 𝑔𝑥
𝜎𝑖(𝑗)

𝑚
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝑗

𝑚−1
, 𝑔𝑥
𝑗

𝑚
)) = 𝜓 (𝛿

𝑚−1
) .

(18)

Therefore, for all 𝑚 ≥ 1, 𝜓(𝛿
𝑚
) = 𝜓(max

1≤𝑖≤𝑛

𝑝(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)) = max

1≤𝑖≤𝑛
𝜓(𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)) ≤ 𝜓(𝛿

𝑚−1
).

This means that the sequence {𝜓(𝛿
𝑚
)}
𝑚≥1

is nonincreasing
and lower bounded. Hence, it is convergent; that is, there
exists Δ ≥ 0 such that {𝜓(𝛿

𝑚
)}
𝑚≥1

→ Δ. We are going to
show that Δ = 0. Since

{max
1≤𝑖≤𝑛

𝜓 (𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
))}
𝑚

= {𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
))}
𝑚

= {𝜓 (𝛿
𝑚
)}
𝑚
󳨀→ Δ,

(19)

Lemma 14 assures that there exist 𝑖
0
∈ {1, 2, . . . , 𝑛} and a sub-

sequence {𝜓(𝑝(𝑔𝑥
𝑖0

𝑚(𝑘)
, 𝑔𝑥
𝑖0

𝑚(𝑘)+1
))}
𝑘
such that {𝜓(𝑝(𝑔𝑥𝑖0

𝑚(𝑘)
,

𝑔𝑥
𝑖0

𝑚(𝑘)+1
))}
𝑘
→ Δ. Repeating (18), for all 𝑘 ≥ 1,

𝜓 (𝑝 (𝑔𝑥
𝑖0

𝑚(𝑘)
, 𝑔𝑥
𝑖0

𝑚(𝑘)+1
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
)) .

(20)

Consider the sequence

{max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
)}

𝑘≥1

. (21)

Suppose that this sequence has no subsequence converging to
zero. Using 𝜀 = 1, Lemma 15 assures us that there exists 𝛿󸀠 ∈
]0, 1[ and 𝑘

0
∈ N such that max

1≤𝑗≤𝑛
𝑝(𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
) ≥ 𝛿
󸀠

for all 𝑘 ≥ 𝑘
0
. It follows that

−𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
)) ≤ −𝜑 (𝛿

󸀠

) ∀𝑘 ≥ 𝑘
0
.

(22)
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Then, (20) says to us

𝜓 (𝑝 (𝑔𝑥
𝑖0

𝑚(𝑘)
, 𝑔𝑥
𝑖0

𝑚(𝑘)+1
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚(𝑘)
)) − 𝜑 (𝛿

󸀠

)

≤ 𝜓 (𝛿
𝑚(𝑘)−1

) − 𝜑 (𝛿
󸀠

) .

(23)

Taking limit in 𝑘, we deduce that Δ ≤ Δ − 𝜑(𝛿
󸀠

) < Δ,
which is impossible.Therefore, the sequence in (21)must have
a subsequence {max

1≤𝑗≤𝑛
𝑝(𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚
󸀠
(𝑘)−1

, 𝑔𝑥
𝜎𝑖0
(𝑗)

𝑚
󸀠
(𝑘)

)}
𝑘≥1

converging
to zero. Since 𝜓 and 𝜑 are continuous, taking limit when
𝑘 → ∞ in (20) using this subsequence, we deduce that
0 ≤ Δ ≤ 𝜓(0) − 𝜑(0) = 0, so Δ = 0. Then, we have
just proved that Δ = 0. Therefore, {𝜓(𝛿

𝑚
)}
𝑚≥1

→ Δ = 0,
and Lemma 18 assures that {𝛿

𝑚
}
𝑚≥1

→ 0, which means that
{𝑝(𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
)} → 0 for all 𝑗 since 0 ≤ 𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
) ≤ 𝛿
𝑚

for all𝑚 and all 𝑗.

Step 4. {𝑝(𝑔𝑥𝑖
𝑚
, 𝑔𝑥
𝑖

𝑚
)}
𝑚≥0

→ 0 for all 𝑖 (i.e., {max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
)}
𝑚≥0

→ 0). It is the same proof of Step 3.
Since𝑑

𝑝
(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
) = 2𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)−𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚
)−

𝑝(𝑔𝑥
𝑖

𝑚+1
, 𝑔𝑥
𝑖

𝑚+1
) for all 𝑚 and 𝑖, joining Steps 3 and 4, it

follows that

{𝑑
𝑝
(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)} 󳨀→ 0 ∀𝑖. (24)

Step 5. Every sequence {𝑔𝑥𝑖
𝑚
}
𝑚≥0

is 𝑑
𝑝
-Cauchy. We reason

by contradiction. Suppose that {𝑔𝑥𝑖1
𝑚
}
𝑚≥0

, . . . , {𝑔𝑥
𝑖𝑠

𝑚
}
𝑚≥0

are
not 𝑑

𝑝
-Cauchy (𝑠 ≥ 1) and {𝑔𝑥

𝑖𝑠+1

𝑚
}
𝑚≥0

, . . . , {𝑔𝑥
𝑖𝑛

𝑚
}
𝑚≥0

are
𝑑
𝑝
-Cauchy, being {𝑖

1
, . . . , 𝑖

𝑛
} = {1, . . . , 𝑛}. By Lemma 16, for

all 𝑟 ∈ {1, 2, . . . , 𝑠}, there exists 𝜀
𝑟
> 0 and subsequences

{𝑔𝑥
𝑖𝑟

𝑚𝑟(𝑘)
}
𝑘∈N and {𝑔𝑥𝑖𝑟

𝑛𝑟(𝑘)
}
𝑘∈N such that

𝑘 < 𝑚
𝑟
(𝑘) < 𝑛

𝑟
(𝑘) ,

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚𝑟(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛𝑟(𝑘)
) ≥ 𝜀
𝑟
,

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚𝑟(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛𝑟(𝑘)−1
) < 𝜀
𝑟
, ∀𝑘 ∈ N.

(25)

Now, let 𝜀
0
= max(𝜀

1
, . . . , 𝜀

𝑠
) > 0 and 𝜀󸀠

0
= min(𝜀

1
, . . . , 𝜀

𝑠
) >

0. Since {𝑔𝑥𝑖𝑠+1
𝑚
}
𝑚≥0

, . . . , {𝑔𝑥
𝑖𝑛

𝑚
}
𝑚≥0

are 𝑑
𝑝
-Cauchy, for all 𝑗 ∈

{𝑖
𝑠+1
, . . . , 𝑖

𝑛
}, there exists 𝑛𝑗

1
∈ N such that if𝑚,𝑚󸀠 ≥ 𝑛

𝑗

1
, then

𝑑
𝑝
(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
󸀠) < 𝜀

󸀠

0
/8. Since {𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
)} → 0 by Step 4,

there exists 𝑛𝑗
2
∈ N such that if 𝑚 ≥ 𝑛

𝑗

2
, then 𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
) <

𝜀
󸀠

0
/8. Define 𝑛

0
= max

𝑗∈{𝑖𝑠+1,...,𝑖𝑛}
(𝑛
𝑗

1
, 𝑛
𝑗

2
). If𝑚,𝑚󸀠 ≥ 𝑛

0
, then

0 ≤ 𝑝 (𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
󸀠)

=
𝑑
𝑝
(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
󸀠) + 𝑝 (𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
) + 𝑝 (𝑔𝑥

𝑗

𝑚
󸀠 , 𝑔𝑥
𝑗

𝑚
󸀠)

2

<
𝜀
󸀠

0
/8 + 𝜀

󸀠

0
/8 + 𝜀

󸀠

0
/8

2
=
3𝜀
󸀠

0

16
<
𝜀
󸀠

0

4
.

(26)

Therefore, we have proved that there exists 𝑛
0
∈ N such that

if𝑚,𝑚󸀠 ≥ 𝑛
0
, then

𝑑
𝑝
(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
󸀠) <

𝜀
󸀠

0

4
, 𝑝 (𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚
󸀠) <

𝜀
󸀠

0

4
,

∀𝑗 ∈ {𝑖
𝑠+1
, . . . , 𝑖

𝑛
} .

(27)

Next, let 𝑞 ∈ {1, 2, . . . , 𝑠} such that 𝜀
𝑞

= 𝜀
0

=

max(𝜀
1
, . . . , 𝜀

𝑠
). Let 𝑘

1
∈ N such that 𝑛

0
< 𝑚
󸀠

𝑞
(𝑘
1
), and define

𝑚(1) = 𝑚
𝑞
(𝑘
1
). Consider the numbers 𝑚(1) + 1,𝑚(1) +

2, . . . , 𝑛
𝑞
(𝑘
1
) until finding the first positive integer 𝑛(1) >

𝑚(1) verifying

max
1≤𝑟≤𝑠

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(1)
, 𝑔𝑥
𝑖𝑟

𝑛(1)
) ≥ 𝜀
0
, 𝑑
𝑝
(𝑔𝑥
𝑖𝑗

𝑚(1)
, 𝑔𝑥
𝑖𝑗

𝑛(1)−1
) < 𝜀
0
,

∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(28)

Now let 𝑘
2
∈ N such that 𝑛(1) < 𝑚

𝑞
(𝑘
2
), and define 𝑚(2) =

𝑚
𝑞
(𝑘
2
). Consider the numbers𝑚(2) + 1,𝑚(2) + 2, . . . , 𝑛

𝑞
(𝑘
2
)

until finding the first positive integer 𝑛(2) > 𝑚(2) verifying

max
1≤𝑟≤𝑠

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(2)
, 𝑔𝑥
𝑖𝑟

𝑛(2)
) ≥ 𝜀
0
, 𝑑
𝑝
(𝑔𝑥
𝑖𝑗

𝑚(2)
, 𝑔𝑥
𝑖𝑗

𝑛(2)−1
) < 𝜀
0
,

∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(29)

Repeating this process, we can find sequences such that, for
all 𝑘 ≥ 1,

𝑛
0
< 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

max
1≤𝑟≤𝑠

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)
) ≥ 𝜀
0
,

𝑑
𝑝
(𝑔𝑥
𝑖𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑗

𝑛(𝑘)−1
) < 𝜀
0
, ∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(30)

Note that by (27), 𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)
), 𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)−1
) <

𝜀
󸀠

0
/4 < 𝜀

0
/2 for all 𝑟 ∈ {𝑠 + 1, 𝑠 + 2, . . . , 𝑛}, so

max
1≤𝑗≤𝑛

𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
) = max
1≤𝑟≤𝑠

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)
) ≥ 𝜀
0
,

𝑑
𝑝
(𝑔𝑥
𝑖

𝑚(𝑘)
, 𝑔𝑥
𝑖

𝑛(𝑘)−1
) < 𝜀
0
,

(31)
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for all 𝑖 ∈ {1, 2, . . . , 𝑛} and all 𝑘 ≥ 1. Furthermore, for all 𝑗,

2𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
) − 𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)−1
)

− 𝑝 (𝑔𝑥
𝑗

𝑛(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

= 𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ 𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ 𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝜀
0
.

(32)

Therefore, for all 𝑗 and all 𝑘,

𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ (𝜀
0
+ 𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)−1
)

+𝑝 (𝑔𝑥
𝑗

𝑛(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) × 2

−1

.

(33)

Next, for all 𝑘, let 𝑖(𝑘) ∈ {1, 2, . . . , 𝑠} be an index such that

𝑑
𝑝
(𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
) = max
1≤𝑟≤𝑠

𝑑
𝑝
(𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)
)

= max
1≤𝑗≤𝑛

𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
) ≥ 𝜀
0
.

(34)

Then, for all 𝑘,

𝑝 (𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
)

= (𝑑
𝑝
(𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
) + 𝑝 (𝑔𝑥

𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
)

+𝑝 (𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
)) × 2

−1

≥
𝜀
0

2
.

(35)

Applying the contractivity condition (17), it follows, for all 𝑘,

0 < 𝜓(
𝜀
0

2
)

≤ 𝜓 (𝑝 (𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
)) .

(36)

Consider the sequence:

{max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
)}

𝑘≥1

. (37)

If this sequence has a subsequence that converges to zero,
then we can take limit when 𝑘 → ∞ in (36) using this
subsequence, so that we would have 0 < 𝜓(𝜀

0
/2) ≤ 𝜓(0) −

𝜑(0) = 0, which is impossible since 𝜀
0
> 0. Therefore,

the sequence (37) has no subsequence converging to zero. In
this case, taking 𝜀

0
> 0 in Lemma 15, there exist 𝛿 ∈]0, 𝜀

0
[

and 𝑘
0

∈ N such that max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
) ≥

𝛿, for all 𝑘 ≥ 𝑘
0
. It follows that, for all 𝑘 ≥ 𝑘

0
,

−𝜑(max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
)) ≤ −𝜑(𝛿). Thus, by (36),

0 < 𝜓(
𝜀
0

2
)

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎𝑖(𝑘)(𝑗)

𝑛(𝑘)−1
)) − 𝜑 (𝛿)

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) − 𝜑 (𝛿) .

(38)

Fix any 𝛾 > 0 and we are going to prove that 𝜓(𝜀
0
/2) +𝜑(𝛿) ≤

𝜓(𝜀
0
/2 + 𝛾). Indeed, by Step 3 and (24), since

{max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)−1
)} ,

{max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑛(𝑘)−1
, 𝑔𝑥
𝑖

𝑛(𝑘)−1
)} ,

{max
1≤𝑖≤𝑛

𝑑
𝑝
(𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)
)}

(39)

are sequences converging to zero, we can find 𝑚
1
∈ N such

that if𝑚(𝑘) ≥ 𝑚
1
, then

max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)−1
) ≤

𝛾

2
,

max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑛(𝑘)−1
, 𝑔𝑥
𝑖

𝑛(𝑘)−1
) ≤

𝛾

2
,

max
1≤𝑖≤𝑛

𝑑
𝑝
(𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)
) ≤

𝛾

2
.

(40)

Therefore, (33) implies that, for all 𝑗 and for all 𝑘 such that
𝑚(𝑘) > 𝑚

1
,

𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ (𝜀
0
+ 𝑑
𝑝
(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)−1
)

+𝑝 (𝑔𝑥
𝑗

𝑛(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) × 2

−1

≤
𝜀
0
+ 𝛾/2 + 𝛾/2 + 𝛾/2

2
=
𝜀
0

2
+
3𝛾

4
<
𝜀
0

2
+ 𝛾.

(41)

Then, (38) guarantees that 0 < 𝜓(𝜀
0
/2) ≤ 𝜓(max

1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) − 𝜑(𝛿) ≤ 𝜓(𝜀

0
/2 + 𝛾) − 𝜑(𝛿). This

means that 𝜓(𝜀
0
/2) + 𝜑(𝛿) ≤ 𝜓(𝜀

0
/2 + 𝛾) for all 𝛾 > 0.

If we take 𝛾 = 1/𝑚 > 0 (where 𝑚 ∈ N), we deduce that
𝜓(𝜀
0
/2) + 𝜑(𝛿) ≤ 𝜓(𝜀

0
/2 + 1/𝑚) for all 𝑚 ∈ N. Since 𝜓 is

continuous, we have that 𝜓(𝜀
0
/2) + 𝜑(𝛿) ≤ 𝜓(𝜀

0
/2), which is
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impossible since 𝜑(𝛿) > 0. This contradiction finally proves
that every sequence {𝑔𝑥𝑖

𝑚
}
𝑚≥0

is 𝑑
𝑝
-Cauchy.

Since 𝑋 is 𝑝-complete, then 𝑋 is 𝑑
𝑝
-complete (item 3

of Lemma 13). Then, there exist 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 such

that {𝑔𝑥
𝑖

𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥
𝑖
for all 𝑖. Furthermore, 𝑝(𝑥

𝑖
, 𝑥
𝑖
) =

lim
𝑚,𝑚
󸀠
→∞

𝑝(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚
󸀠) = lim

𝑚→∞
𝑝(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚
) = 0

for all 𝑖. Since 𝑔 is 𝛼
𝑝
-continuous, then {𝑔𝑔𝑥

𝑖

𝑚
}
𝑝

󳨀→ 𝑔𝑥
𝑖

and 𝑝(𝑔𝑥
𝑖
, 𝑔𝑥
𝑖
) = 0 for all 𝑖. Item 1 of Lemma 20

shows that {𝑔𝑔𝑥
𝑖

𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑔𝑥
𝑖
for all 𝑖. Therefore, for

all 𝑖, lim
𝑚→∞

𝑝(𝑔𝑔𝑥
𝑖

𝑚+1
, 𝑔𝑔𝑥
𝑖

𝑚+1
) = lim

𝑚,𝑚
󸀠
→∞

𝑝(𝑔𝑔𝑥
𝑖

𝑚+1
, 𝑔𝑔𝑥
𝑖

𝑚
󸀠
+1
) = 𝑝(𝑔𝑥

𝑖
, 𝑔𝑥
𝑖
) = 0.

Moreover, for all 𝑚 and all 𝑖, 𝑔𝑔𝑥𝑖
𝑚+1

= 𝑔𝐹(𝑥
𝜎𝑖(1)

𝑚
, 𝑥
𝜎𝑖(2)

𝑚
,

. . . , 𝑥
𝜎𝑛(𝑛)

𝑚
) = 𝐹(𝑔𝑥

𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑖(𝑛)

𝑚
).

Step 6. Suppose that 𝐹 is 𝛼
𝑝
-continuous. In this case, we know

that {𝑔𝑥𝑖
𝑚
}
𝑝

󳨀→ 𝑥
𝑖
and 𝑝(𝑥

𝑖
, 𝑥
𝑖
) = 0 for all 𝑖 and

{𝑝 (𝐹 (𝑔𝑥
𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑖(𝑛)

𝑚
) ,

𝐹 (𝑔𝑥
𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑖(𝑛)

𝑚
))}

= {𝑝 (𝑔𝑔𝑥
𝑖

𝑚+1
, 𝑔𝑔𝑥
𝑖

𝑚+1
)} 󳨀→ 0,

(42)

which implies that {𝐹(𝑔𝑥
𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑖(𝑛)

𝑚
)}

𝑝

󳨀→

𝐹(𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) and 𝑝(𝐹(𝑥
𝜎𝑖(1)

, . . . , 𝑥
𝜎𝑖(𝑛)

),
𝐹(𝑥
𝜎𝑖(1)

, . . . , 𝑥
𝜎𝑖(𝑛)

)) = 0 for all 𝑖. Item 1 of Lemma 20
assures us that, for all 𝑖,

{𝑔𝑔𝑥
𝑖

𝑚+1
} = {𝐹 (𝑔𝑥

𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑖(𝑛)

𝑚
)}

𝑑𝑝

󳨀→ 𝐹(𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) .

(43)

Since the limit in a MS is unique, we deduce that
𝐹(𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) = 𝑔𝑥
𝑖
for all 𝑖, so (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is

a Υ-coincidence point of 𝐹 and 𝑔.

Step 7. Suppose that (𝑋, 𝑑
𝑝
, ≤) has the sequential 𝑔-monotone

property. In this case, by Step 2, we know that 𝑔𝑥𝑖
𝑚
≤
𝑖
𝑔𝑥
𝑖

𝑚+1

for all𝑚 and all 𝑖. This means that the sequence {𝑔𝑥𝑖
𝑚
}
𝑚≥0

is

monotone. As {𝑔𝑥𝑖
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑥
𝑖
, we deduce that 𝑔𝑔𝑥𝑖

𝑚
≤
𝑖
𝑔𝑥
𝑖
for

all𝑚 and all 𝑖. This condition implies that, for all𝑚 and all
𝑗,

either [𝑔𝑔𝑥
𝜎𝑗(𝑖)

𝑚
≤
𝑖
𝑔𝑥
𝜎𝑗(𝑖)

∀𝑖] or [𝑔𝑥
𝜎𝑗(𝑖)

≤
𝑖
𝑔𝑔𝑥
𝜎𝑗(𝑖)

𝑚
∀𝑖]

(44)

(the first case occurs when 𝑗 ∈ 𝐴 and the second one when
𝑗 ∈ 𝐵). Then, by (17), for all 𝑗,

𝜓(𝑝 (𝑔𝑔𝑥
𝑗

𝑚+1
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

)))

= 𝜓 (𝑝 (𝐹 (𝑔𝑥
𝜎𝑗(1)

𝑚
, 𝑔𝑥
𝜎𝑗(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑗(𝑛)

𝑚
) ,

𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

)) )

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑔𝑥
𝜎𝑗(𝑖)

𝑚
, 𝑔𝑥
𝜎𝑗(𝑖)

))

− 𝜑(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑔𝑥
𝜎𝑗(𝑖)

𝑚
, 𝑔𝑥
𝜎𝑗(𝑖)

))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖
)) .

(45)

Since {𝑔𝑔𝑥𝑖
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑔𝑥
𝑖
for all 𝑖, then

lim
𝑚→∞

𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖
) = 𝑝 (𝑔𝑥

𝑖
, 𝑔𝑥
𝑖
) = 0 ∀𝑖. (46)

Therefore, lim
𝑚→∞

(max
1≤𝑖≤𝑛

𝑝(𝑔𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖
)) = 0. Tak-

ing limit when 𝑚 → ∞ in (45), we deduce that
lim
𝑚→∞

𝜓(𝑝(𝑔𝑔𝑥
𝑗

𝑚+1
, 𝐹(𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

))) = 0 for all
𝑗. As 𝜓 ∈ Ψ, Lemma 18 guarantees that

lim
𝑚→∞

𝑝 (𝑔𝑔𝑥
𝑗

𝑚+1
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

)) = 0 ∀𝑗.

(47)

Finally, for all 𝑗,

𝑑
𝑝
(𝑔𝑥
𝑗
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

))

= 2𝑝 (𝑔𝑥
𝑗
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

)) − 𝑝 (𝑔𝑥
𝑗
, 𝑔𝑥
𝑗
)

− 𝑝 (𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

) ,

𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

))

≤ 2𝑝 (𝑔𝑥
𝑗
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

))

≤ 2 [𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

)) 𝑝 (𝑔𝑥
𝑗
, 𝑔𝑔𝑥
𝑖

𝑚
)

+𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

))] .

(48)

Using (46) and (47), we conclude that 𝑑
𝑝
(𝑔𝑥
𝑗
,

𝐹(𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

)) = 0 for all 𝑗.

Remark 25. In the previous theorem, if the image Im 𝑑 of the
metric 𝑑 is not the whole set [0,∞[, then 𝜓 and 𝜑 can only
be defined on Im 𝑑, and we can consider a wider range of
mappings since it is only necessary to impose that they are
continuous and nondecreasing on Im 𝑑.
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Remark 26. We notice also that our paper cannot be deduced
from the recent interesting paper ofHaghi et al. [21] on partial
metric space. In fact, we use a partial order ≤. Then, we only
suppose (17) for which 𝑔𝑥

𝑖
≤
𝑖
𝑔𝑦
𝑖
for all 𝑖 (not necessarily on

points which are not comparable). Further, we use a self-map
𝑔 : 𝑋 → 𝑋 which implies that

𝑃 (𝐴, 𝐵) = max
1≤𝑖≤𝑛

𝑝 (𝑔𝑎
𝑖
, 𝑔𝑏
𝑖
) ,

𝐴 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) , 𝐵 = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) ∈ 𝑋
𝑛

(49)

is not necessarily a partial metric on𝑋𝑛. For instance, let𝑋 =

R+
0
= [0,∞) provided with its usual partial order and the

partial metric 𝑝(𝑥, 𝑦) = max(𝑥, 𝑦). Consider

𝑔𝑥 = {
0, if 0 ≤ 𝑥 ≤ 1,
𝑥 − 1, if 𝑥 > 1.

(50)

Then, 𝑔 is continuous, but

𝑃 ((0, 0, . . . , 0) , (0, 0, . . . , 0))

= 𝑃 ((1, 1, . . . , 1) , (0, 0, . . . , 0))

= 𝑃 ((1, 1, . . . , 1) , (1, 1, . . . , 1)) = 0,

(51)

but (0, 0, . . . , 0) ̸= (1, 1, . . . , 1). Then, 𝑃 does not verify the
axiom 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) ⇒ 𝑥 = 𝑦. Therefore,
we cannot apply Theorem 2.4 on Haghi et al. [21].

As a result, we cannot useTheorem 2.7 in [21] since 𝑇 has
an influence in −𝜑(max{𝑝(𝑥, 𝑦), 𝑝(𝑦, 𝑇𝑦)}), and ourmapping
𝐹 has not a role in the left side of (17).

5. Consequences

Remark 27. Theorem 9 in [11] is an easy consequence of
Theorem 24 if we take 𝑝 = 𝑑, 𝜓(𝑡) = 𝑡, and 𝜑(𝑡) = (1 − 𝑘)𝑡 for
all 𝑡 ∈ R+

0
.

In the next result, let Γ
0
be the family of all nondecreasing

on each argument, continuous mappings 𝜙 : [0,∞[
𝑛

→ R+
0

verifying 𝜙(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 0 if, and only if, 𝑥

1
= 𝑥
2
= ⋅ ⋅ ⋅ =

𝑥
𝑛
= 0. Examples of such mappings are the following, where

𝑘 > 0, 𝛼
𝑖
> 0 and 𝑛

𝑖
∈ N for all 𝑖.

(i) 𝜙(𝑥
1
, . . . , 𝑥

𝑛
) = 𝑘max

1≤𝑖≤𝑛
𝑥
𝑖
.

(ii) 𝜙(𝑥
1
, . . . , 𝑥

𝑛
) = ∑
𝑛

𝑖=1
𝛼
𝑖
𝑥
𝑛𝑖

𝑖
.

(iii) 𝜙(𝑥
1
, . . . , 𝑥

𝑛
) =

𝑚√𝛼
1
𝑥2
1
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
𝑥2
𝑛
.

Lemma 28. Let 𝜙 ∈ Γ
0
, and define 𝜑 : R+

0
→ R+

0
as

𝜑(𝑡) = min(𝜙(𝑡𝑒
1
), 𝜙(𝑡𝑒

2
), . . . , 𝜙(𝑡𝑒

𝑛
)) for all 𝑡 ≥ 0, where

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} is the usual basis of R𝑛. Then, 𝜑 ∈ Ψ and

𝜑(max
1≤𝑖≤𝑛

𝑥
𝑖
) ≤ 𝜙(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ R+
0
.

Proof. First part is clear. If 𝑥
𝑖0

= max
1≤𝑖≤𝑛

𝑥
𝑖
, then

𝜙(𝑥
𝑖0
𝑒
𝑖0
) = 𝜙(0, 0, . . . , 0, 𝑥

𝑖0
, 0, . . . , 0) ≤ 𝜙(𝑥

1
, 𝑥
2
, . . . ,

𝑥
𝑖0−1

, 𝑥
𝑖0
, 𝑥
𝑖0+1

, . . . , 𝑥
𝑛
) = 𝜙(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
). Therefore,

𝜑(max
1≤𝑖≤𝑛

𝑥
𝑖
) = 𝜑(𝑥

𝑖0
) ≤ 𝜙(𝑥

𝑖0
𝑒
𝑖0
) ≤ 𝜙(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
).

Corollary 29. Thesis of Theorem 24 also holds if one replaces
the contractivity condition (17) by any of the following list (for
which 𝑔𝑥

𝑖
≤
𝑖
𝑔𝑦
𝑖
for all 𝑖).

(A) This condition can be found in [11] and [12], there exist
𝜓 ∈ Ψ and 𝜙 ∈ Γ

0
such that

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
))

− 𝜙 (𝑝 (𝑔𝑥
1
, 𝑔𝑦
1
) , . . . , 𝑝 (𝑔𝑥

𝑛
, 𝑔𝑦
𝑛
)) .

(52)

(B) In [17], there exist 𝜓, 𝜑 ∈ Ψ and 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
∈ [0, 1]

such that 𝛽
1
+ 𝛽
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑛
≤ 1 and

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑝 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤ 𝜓(

𝑛

∑

𝑖=1

𝛽
𝑖
𝑝 (𝑔𝑥

𝑖
, 𝑔𝑦
𝑖
)) − 𝜑(max

1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) .

(53)

(C) There exist 𝜓, 𝜑 ∈ Ψ and 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
> 0 such that

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) − 𝜑(

𝑛

∑

𝑖=1

𝛼
𝑖
𝑝 (𝑔𝑥

𝑖
, 𝑔𝑦
𝑖
)) .

(54)

(D) In [2, 7, 9], there exist 𝜓 ∈ Ψ, 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
> 0, and

𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
≥ 0 such that 𝛽

1
+ 𝛽
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑛
≤ 1 and

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤ 𝜓(

𝑛

∑

𝑖=1

𝛽
𝑖
𝑝 (𝑔𝑥

𝑖
, 𝑔𝑦
𝑖
)) −

𝑛

∑

𝑖=1

𝛼
𝑖
𝑝 (𝑔𝑥

𝑖
, 𝑔𝑦
𝑖
) .

(55)

(E) In [5], there exist 𝜓 ∈ Ψ and 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
> 0 such

that

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤ 𝜓(
1

𝑛

𝑛

∑

𝑖=1

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) −

𝑛

∑

𝑖=1

𝛼
𝑖
𝑝 (𝑔𝑥

𝑖
, 𝑔𝑦
𝑖
) .

(56)

(F) In [19, 20], there exist 𝜓, 𝜑 ∈ Ψ such that 𝜓 is
subadditive (𝜓(𝑠+ 𝑡) ≤ 𝜓(𝑠)+𝜓(𝑡) for all 𝑡, 𝑠 ∈ [0,∞))

and

𝜓 (𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)))

≤
1

𝑛
𝜓(

𝑛

∑

𝑖=1

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) − 𝜑(max

1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)) .

(57)

Of course, it is also interesting to particularize all the
previous items to the following cases: 𝜓(𝑡) = 𝜆𝑡 (where 𝜆 >

0), 𝜑(𝑡) = 𝜇𝑡 (where 𝜇 > 0), or 𝑔𝑥 = 𝑥 for all 𝑥 ∈ 𝑋.

Proof. (A) By Lemma 28, there exists 𝜑 ∈ Ψ such
that −𝜙(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ −𝜑(max

1≤𝑖≤𝑛
𝑥
𝑖
) for all

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ [0,∞[, so (52) implies (17). (B) It is obvious

that ∑𝑛
𝑖=1

𝛽
𝑖
𝑝(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) ≤ (∑

𝑛

𝑖=1
𝛽
𝑖
)max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝑗
, 𝑔𝑦
𝑗
) ≤

max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝑗
, 𝑔𝑦
𝑗
), so (53) implies (17). (C) We only
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take 𝜙(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝜑(∑

𝑛

𝑖=1
𝛼
𝑖
𝑥
𝑖
) in item (A). (D) It

is a mixture of (B) and (C). (E) It is a particular case of
(D) where 𝛽

𝑖
= 1/𝑛 for all 𝑖. (F) If 𝜓 is subadditive, then

(1/𝑛)𝜓(𝑡) ≤ 𝜓(𝑡/𝑛) for all 𝑡 ≥ 0, so we may choose 𝛽
𝑖
= 1/𝑛

for all 𝑖 in (B).

6. Uniqueness of Υ-Coincidence Points

Consider on the product space𝑋𝑛 the following partial order:
for (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋
𝑛,

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ⇐⇒ 𝑥

𝑖
≤
𝑖
𝑦
𝑖
, ∀𝑖. (58)

We say that (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) are compara-

ble if (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) or (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
).

Theorem 30. Under the hypothesis of Theorem 24,
assume that for all Υ-coincidence points (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
),

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋

𝑛 of 𝐹 and 𝑔 there exists
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋

𝑛 such that (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) is

comparable, at the same time, to (𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) and to

(𝑔𝑦
1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
).

Then, 𝐹 and 𝑔 have a unique Υ-coincidence point (𝑧
1
, 𝑧
2
,

. . . , 𝑧
𝑛
) ∈ 𝑋
𝑛 such that 𝑔𝑧

𝑖
= 𝑧
𝑖
for all 𝑖.

Proof. From Theorem 24, the set of Υ-coincidence points of
𝐹 and 𝑔 is nonempty. The proof is divided into two steps.

Step 1. We claim that if (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋

𝑛

are two Υ-coincidence points of 𝐹 and 𝑔, then

𝑔𝑥
𝑖
= 𝑔𝑦
𝑖

∀𝑖. (59)

Let (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋

𝑛 be two Υ-
coincidence points of 𝐹 and 𝑔, and let (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋

𝑛

be a point such that (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) is comparable, at the

same time, to (𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) and to (𝑔𝑦

1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
).

Using (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
), define the following sequences. Let

𝑢
𝑖

0
= 𝑢
𝑖
for all 𝑖. Reasoning as in Theorem 24, we can

determine sequences {𝑢
1

𝑚
}
𝑚≥0

, {𝑢2
𝑚
}
𝑚≥0

, . . . , {𝑢
𝑛

𝑚
}
𝑚≥0

such
that 𝑔𝑢𝑖

𝑚+1
= 𝐹(𝑢

𝜎𝑖(1)

𝑚
, 𝑢
𝜎𝑖(2)

𝑚
, . . . , 𝑢

𝜎𝑖(𝑛)

𝑚
) for all 𝑚 and all 𝑖. We

are going to prove that 𝑔𝑥
𝑖
= lim𝑑𝑝

𝑚→0
𝑔𝑢
𝑖

𝑚
= 𝑔𝑦
𝑖
for all 𝑖, so

(59) will be true.
Firstly, we reason with (𝑔𝑢

1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) and

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
), and the same argument holds

for (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) and (𝑔𝑦

1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
). As

(𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) and (𝑔𝑥

1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) are

comparable, we can suppose that (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) ≤

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) (the other case is similar); that is,

𝑔𝑢
𝑖

0
= 𝑔𝑢

𝑖
≤
𝑖
𝑔𝑥
𝑖
for all 𝑖. Using that 𝐹 has the mixed

𝑔-monotone property and reasoning as in Theorem 24, it is
possible to prove that 𝑔𝑢𝑖

𝑚
≤
𝑖
𝑔𝑥
𝑖
for all 𝑚 ≥ 1 and all 𝑖. This

condition implies that, for all 𝑗 and all𝑚 ≥ 1

either [𝑔𝑢
𝜎𝑗(𝑖)

𝑚
≤
𝑖
𝑔𝑥
𝜎𝑗(𝑖)

∀𝑖] or [𝑔𝑥
𝜎𝑗(𝑖)

≤
𝑖
𝑔𝑢
𝜎𝑗(𝑖)

𝑚
∀𝑖] .

(60)

Define 𝛽
𝑚

= max
1≤𝑖≤𝑛

𝑝(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥
𝑖
) for all 𝑚. Reason-

ing as in Theorem 24, it is not difficult to prove that

{𝛽
𝑚
}
𝑚≥1

→ 0 which means that lim
𝑚→∞

𝛽
𝑚

=

lim
𝑚→∞

(max
1≤𝑖≤𝑛

𝑝(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥
𝑖
)) = 0. As 0 ≤ 𝑝(𝑔𝑢

𝑖

𝑚
, 𝑔𝑥
𝑖
) ≤

𝛽
𝑚
for all 𝑚 and all 𝑖, we deduce that {𝑝(𝑔𝑢𝑖

𝑚
, 𝑔𝑥
𝑖
)}
𝑚≥1

→

0 = 𝑝(𝑔𝑥
𝑖
, 𝑔𝑥
𝑖
) for all 𝑖; that is, {𝑔𝑢𝑖

𝑚
}
𝑝

󳨀→ 𝑔𝑥
𝑖
for all 𝑖. Item 1

of Lemma 20 shows that

{𝑔𝑢
𝑖

𝑚
}
𝑑𝑝

󳨀→ 𝑔𝑥
𝑖

∀𝑖. (61)

If we had supposed that (𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) ≤ (𝑔𝑢

1
, 𝑔𝑢
2
,

. . . , 𝑔𝑢
𝑛
), we would have obtained the same property

(61). And as (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) also is comparable to

(𝑔𝑦
1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
), we can reason in the same way to prove

that {𝑔𝑢𝑖
𝑚
}
𝑑𝑝

󳨀󳨀→ 𝑔𝑦
𝑖
for all 𝑖. Since the limit in a MS is unique,

𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for all 𝑖.

Let (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 be a Υ-coincidence point of 𝐹
and 𝑔, and define 𝑧

𝑖
= 𝑔𝑥

𝑖
for all 𝑖. As (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
) =

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
), Remark 6 assures us that (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
)

also is a Υ-coincidence point of 𝐹 and 𝑔.

Step 2. We claim that (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) is the unique Υ-

coincidence point of 𝐹 and 𝑔 such that 𝑔𝑧
𝑖
= 𝑧
𝑖
for all 𝑖. It

is similar to Step 2 inTheorem 11 in [11].

It is natural to say that 𝑔 is injective on the set of all Υ-
coincidence points of 𝐹 and 𝑔when 𝑔𝑥

𝑖
= 𝑔𝑦
𝑖
for all 𝑖 implies

𝑥
𝑖
= 𝑦
𝑖
for all 𝑖when (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋
𝑛 are

twoΥ-coincidence points of𝐹 and 𝑔. For example, this is true
is 𝑔 is injective on𝑋.

Corollary 31. In addition to the hypotheses of Theorem 30,
suppose that 𝑔 is injective on the set of all Υ-coincidence points
of 𝐹 and 𝑔. Then, 𝐹 and 𝑔 have a unique Υ-coincidence point.

Proof. If (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) are two Υ-

coincidence points of 𝐹 and 𝑔, we have proved in (59) that
𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for all 𝑖. As 𝑔 is injective on these points, then,

𝑥
𝑖
= 𝑦
𝑖
for all 𝑖.

Corollary 32. In addition to the hypotheses of Theorem 30,
suppose that (𝑧

𝜎𝑖(1)
, 𝑧
𝜎𝑖(2)

, . . . , 𝑧
𝜎𝑖(𝑛)

) is comparable to
(𝑧
𝜎𝑗(1)

, 𝑧
𝜎𝑗(2)

, . . . , 𝑧
𝜎𝑗(𝑛)

) for all 𝑖, 𝑗. Then, 𝑧
1
= 𝑧
2
= ⋅ ⋅ ⋅ = 𝑧

𝑛
.

In particular, there exists a unique 𝑧 ∈ 𝑋 such that
𝐹(𝑧, 𝑧, . . . , 𝑧) = 𝑧, which verifies 𝑔𝑧 = 𝑧.

Proof. Let 𝑀 = max
1≤𝑖,𝑗≤𝑛

𝑝(𝑧
𝑖
, 𝑧
𝑗
), let 𝑗

0
, 𝑠
0
∈ {1, 2, . . . , 𝑛}

such that 𝑝(𝑧
𝑗0
, 𝑧
𝑠0
) = 𝑀, and let

Λ = max
1≤𝑖≤𝑛

𝑝 (𝑧
𝜎𝑗0
(𝑖)
, 𝑧
𝜎𝑠0
(𝑖)
) ≤ 𝑀. (62)
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Fix 𝑗, 𝑠 ∈ {1, 2, . . . , 𝑛}. As (𝑧
𝜎𝑗(1)

, 𝑧
𝜎𝑗(2)

, . . . , 𝑧
𝜎𝑗(𝑛)

) is compara-
ble to (𝑧

𝜎𝑠(1)
, 𝑧
𝜎𝑠(2)

, . . . , 𝑧
𝜎𝑠(𝑛)

), then either 𝑧
𝜎𝑗(𝑖)

≤
𝑖
𝑧
𝜎𝑠(𝑖)

for all 𝑖
or 𝑧
𝜎𝑠(𝑖)

≤
𝑖
𝑧
𝜎𝑗(𝑖)

for all 𝑖. Since 𝑔𝑧
𝑖
= 𝑧
𝑖
for all 𝑖, we know that

either 𝑔𝑧
𝜎𝑗(𝑖)

≤
𝑖
𝑔𝑧
𝜎𝑠(𝑖)

for all 𝑖 or 𝑔𝑧
𝜎𝑠(𝑖)

≤
𝑖
𝑔𝑧
𝜎𝑗(𝑖)

for all 𝑖. In
any case, applying (17),

𝜓 (𝑀) = 𝜓 (𝑝 (𝑧
𝑗0
, 𝑧
𝑠0
))

= 𝜓 (𝑝 (𝑔𝑧
𝑗0
, 𝑔𝑧
𝑠0
))

= 𝜓 (𝑝 (𝐹 (𝑧
𝜎𝑗0
(1)
, 𝑧
𝜎𝑗0
(2)
, . . . , 𝑧

𝜎𝑗0
(𝑛)
) ,

𝐹 (𝑧
𝜎𝑠0
(1)
, 𝑧
𝜎𝑠0
(2)
, . . . , 𝑧

𝜎𝑠0
(𝑛)
)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑧
𝜎𝑗0
(𝑖)
, 𝑔𝑧
𝜎𝑠0
(𝑖)
))

− 𝜑(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑧
𝜎𝑗0
(𝑖)
, 𝑔𝑧
𝜎𝑠0
(𝑖)
))

= 𝜓 (Λ) − 𝜑 (Λ) ≤ 𝜓 (𝑀) − 𝜑 (Λ) .

(63)

If Λ > 0, then 𝜑(Λ) > 0, so 𝜓(𝑀) ≤ 𝜓(𝑀) − 𝜑(Λ) < 𝜓(𝑀),
which is impossible. Then, Λ = 0, and (63) implies that
𝜓(𝑀) ≤ 𝜓(Λ) − 𝜑(Λ) = 𝜓(0) − 𝜑(0) = 0, so 𝜓(𝑀) = 0.
Therefore, 𝑝(𝑧

𝑖
, 𝑧
𝑗
) = 0 for all 𝑖 and 𝑗.

Example 33. Let 𝑋 = R provided with its usual partial order
≤ and the partial metric 𝑝(𝑥, 𝑦) = max(|𝑥|, |𝑦|). Let 𝑛 ∈ N,
and let 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
∈ R \ {0} real numbers such that there

exist 𝑖
0
, 𝑗
0
∈ {1, 2, . . . , 𝑛} verifying 𝑎

𝑖0
< 0 < 𝑎

𝑗0
. Let𝑁 > |𝑎

1
|+

|𝑎
2
|+⋅ ⋅ ⋅+|𝑎

𝑛
|, and consider 𝐹(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑎

1
𝑥
1
+𝑎
2
𝑥
2
+

⋅ ⋅ ⋅ + 𝑎
𝑛
𝑥
𝑛
)/𝑁 and 𝑔𝑥 = 𝑥, for all 𝑥, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. Then,

𝐹 is monotone nondecreasing in those arguments for which
𝑎
𝑖
> 0 and monotone nonincreasing in those arguments for

which 𝑎
𝑖
< 0. Furthermore, taking 𝑘 = (|𝑎

1
| + |𝑎
2
| + ⋅ ⋅ ⋅ +

|𝑎
𝑛
|)/𝑁 ∈ (0, 1), it follows that
󵄨󵄨󵄨󵄨𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑁

≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑁
max (󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨)

= 𝑘max (󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨) .

(64)

Therefore,

𝑝 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
))

= max (󵄨󵄨󵄨󵄨𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)

󵄨󵄨󵄨󵄨)

≤ max (𝑘max (󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨) ,

𝑘max (󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑦𝑛

󵄨󵄨󵄨󵄨))

= 𝑘max
𝑖

(𝑝 (𝑥
𝑖
, 𝑦
𝑖
)) .

(65)

If 𝜓(𝑡) = 𝑡 and 𝜑(𝑡) = (1 − 𝑘)𝑡, all conditions of Theorems 24
and 30 (and Corollaries 31 and 32) are satisfied. Indeed, it is
clear that (0, 0, . . . , 0) is the unique fixed point of 𝐹.

The following example is based on Examples 1.9 and 2.2
in [29].

Example 34. Let 𝑋 = {0, 1, 2, 3, 4}, and let 𝑝 be the partial
metric on 𝑋 given by 𝑝(𝑥, 𝑦) = max(𝑥, 𝑦) for all 𝑥, 𝑦 ∈

𝑋. Then, (𝑋, 𝑝) is complete, and 𝑝 generates the discrete
topology on 𝑋 (indeed, 𝑑

𝑝
is the Euclidean metric on 𝑋).

Consider on𝑋 the following partial order:

𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦 ⇐⇒ 𝑥 = 𝑦 or (𝑥, 𝑦) = (0, 2) .

(66)

Consider 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 defined by

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = {

0, if 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ {0, 1, 2} ,

1, otherwise,

𝑔𝑥 =

{{

{{

{

0, if 𝑥 = 0,
2, if 𝑥 ∈ {0.5, 1} ,
3, if 𝑥 ∈ {1.5, 2} .

(67)

It is not difficult to prove the following statements.

(1) 𝐹 and 𝑔 are 𝛼
𝑝
-continuousmappings (since 𝑑

𝑝
gener-

ates the discrete topology on𝑋).

(2) 𝐹 and 𝑔 are commuting.

(3) If 𝑦, 𝑧 ∈ 𝑋 verify 𝑔𝑦 ≤ 𝑔𝑧, then either 𝑦, 𝑧 ∈

{0, 1, 2} or 𝑦, 𝑧 ∈ {3, 4}. Then, 𝐹 has the mixed (𝑔, ≤)-
monotone property on𝑋.

(4) If 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋 verify 𝑔𝑥

𝑖
≤
𝑖
𝑔𝑦
𝑖

for all 𝑖, then 𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐹(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
). In

particular, (17) holds (whatever 𝜓 and 𝜑; for instance,
𝜓(𝑡) = 2𝑡 and 𝜑(𝑡) = log(𝑡 + 1) for all 𝑡 ≥ 0).

For simplicity, henceforth, suppose that 𝑛 is even, and
let 𝐴 (resp., 𝐵) be the set of all odd (resp., even)
numbers in {1, 2, . . . , 𝑛}.

(5) For a mapping 𝜎 : Λ
𝑛
→ Λ

𝑛
, we use the notation

𝜎 ≡ (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) and consider

𝜎
𝑖
≡ (𝑖, 𝑖 + 1, . . . , 𝑛 − 1, 𝑛, 1, 2, . . . , 𝑖 − 1) ∀𝑖. (68)

Then, 𝜎
𝑖
∈ Ω
𝐴,𝐵

if 𝑖 is odd, and 𝜎
𝑖
∈ Ω
󸀠

𝐴,𝐵
if 𝑖 is even.

Let Υ = (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
).

(6) Take 𝑥𝑖
0
= 0 if 𝑖 is odd and 𝑥𝑖

0
= 2 if 𝑖 is even. Then,

𝑔𝑥
𝑖

0
≤
𝑖
𝐹(𝑥
𝜎𝑖(1)

0
, 𝑥
𝜎𝑖(2)

0
, . . . , 𝑥

𝜎𝑖(𝑛)

0
) for all 𝑖.

(7) (𝑋, 𝑑
𝑝
, ≤) has the sequential 𝑔-monotone property.

Therefore, we can apply Theorems 24 and 30, and Corol-
laries 31 and 32, to conclude that 𝐹 and 𝑔 have a unique Υ-
coincidence point, which is (0, 0, . . . , 0).
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