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This paper alternatively derives the exact element stiffness equation for a beam on Kerr-type foundation. The shear coupling
between the individual Winkler-spring components and the peripheral discontinuity at the boundaries between the loaded and
the unloaded soil surfaces are taken into account in this proposed model. The element flexibility matrix is derived based on the
virtual force principle and forms the core of the exact element stiffness matrix.The sixth-order governing differential compatibility
of the problem is revealed using the virtual force principle and solved analytically to obtain the exact force interpolation functions.
The matrix virtual force equation is employed to obtain the exact element flexibility matrix based on the exact force interpolation
functions. The so-called “natural” element stiffness matrix is obtained by inverting the exact element flexibility matrix. One
numerical example is utilized to confirm the accuracy and the efficiency of the proposed beam element on Kerr-type foundation
and to show a more realistic distribution of interactive foundation force.

1. Introduction

As a numerical counterpart of the continuous medium
model, the continuum finite element model has been
widely used by geotechnical researchers in studying several
complex soil-structure interaction (SSI) problems due to
drastic advances in computer technology. The problem of
beams on deformable foundation is the most commonly
encountered SSI problem and has many applications in
engineering and science [1–3]. Even though the continuum
finite element model yields the most comprehensive data
on the stress and deformation variations within the beam-
foundation system, there is still a substantial need in routine
engineering practice to use the mechanical subgrade model
to analyze and design the beam-foundation system. This lies
in the fact that considerable experience and skill of practicing
geotechnical engineers are required in constructing a suitable
continuum element mesh, interpreting the analysis results,

and implementing the numerical model. These could limit
the model access by practicing geotechnical engineers.
Furthermore, only small beam-foundation systems can
be realistically investigated using the continuum finite
element model due to high computational costs, and the
beam response along the beam-foundation interface, not
the stresses or strains inside the foundation medium, is of
high interest by the designing engineers. Therefore, most
structural-analysis platforms available in the industry still
employ the mechanical subgrade model to represent the
supporting foundation with a reasonable degree of accuracy.

The Winkler foundation model [4] is the most rudi-
mentary mechanical subgrade model and has been widely
adopted in studying the problem of beams on elastic founda-
tion. In the Winkler foundation model, a set of 1D indepen-
dent springs is attached along the beam to form the beam-
foundation system. This type of foundation model is often
referred to as the “one-parameter” foundation model since it
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is characterized only by the vertical stiffness of the Winkler-
foundation springs. Though simple, the Winkler foundation
model can lead to some peculiar responses of many practical
beam-foundation systems due to omission of the shear stress
inside the foundation medium [5, 6].This omission results in
the uncoupling of the individual Winkler foundation springs
and the neglect of the existence of the foundation medium
beyond either end of the loaded beam and leads to an unre-
alistic abrupt change in the foundation surface displacement
between the loaded and the unloaded regions. To bridge the
gap between the continuum finite element model and the
rather crude Winkler foundation model, several researchers
[7–9] had improved the Winkler foundation model by
introducing the second foundation parameter to account for
the existence of shear stress inside the foundation medium,
resulting in the so-called “two-parameter” foundationmodel.
Even though each researcher group has its ownparticularway
to visualize the second foundation parameter, its proposed
expressions for the interactive foundation forces can simply
be written in the same mathematical form. For example,
Filonenko-Borodich [7] regarded the second foundation
parameter as the magnitude of the pretensioned force in the
elastic membrane inserted between the beam and Winkler-
foundation springs. A detailed discussion of several two-
parameter foundation models can be found in Kerr [6].

To further improve the two-parameter foundationmodel,
Hetényi [10] and Kerr [11] had added the third founda-
tion parameter, leading to the so-called “three-parameter”
foundation model. The major role of the third foundation
parameter is to provide more flexibility in controlling the
degree of foundation-surface continuity between the loaded
and the unloaded regions of the beam-foundation system.
This is in compliance with the observation made by Foppl
[12] that the foundation-surface displacement outside the
loaded region predicted by the continuous medium model
decreased too gradually as opposed to what happened in
reality, and hence a certain degree of discontinuity at the
loaded-unloaded boundary existed. Furthermore, Kerr [6]
concluded that for several types of foundationmaterials (e.g.,
soil, softfilament, foam, etc.), neither theWinkler-foundation
model nor the continuous medium model can realistically
represent the interaction mechanisms between the beams
and the contacting media. Among several three-parameter
foundation models, the Kerr-type foundation model [11] is of
particular interest since it stems from the famous Winkler-
Pasternak two-parameter foundation model [9] for which
several applications and solutions have been available. In
the Kerr-type foundation model, the foundation medium
is visualized as consisted of lower and upper spring beds
sandwiching an incompressible shear layer. Three parame-
ters characterizing the Kerr-type foundation model are the
lower and upper spring moduli and the shear-layer section
modulus. It is noted that the interactive foundation force
of the Kerr-type foundation model can be written in the
same mathematical form as obtained with the simplified
continuum models of Reissner [13], Horvath [14, 15], and
Worku [16]. Synthetic and hierarchical correlations between
several mechanical subgrade models and simplified contin-
uum models are comprehensively presented in Horvath [17]

and Horvath and Colasanti [18]. The pros and cons of each
model are summarized in Horvath and Colasanti [18].

Even though the Kerr-type foundation model was devel-
oped since the mid-sixties, there have been only a limited
number of researchers studying the problem of beams resting
on Kerr-type foundation. Avramidis and Morfidis [19] used
the principle of stationary potential energy to derive the
governing differential equilibrium equations of the beam-
foundation system and its essential boundary conditions.
Subsequently, Morfidis [20, 21] derived the exact beam-
foundation stiffness matrix based on the exact solution of
the governing differential equilibriumequations for static and
dynamic analyses, respectively, and calibrated the foundation
parameters with the analysis results obtained with high
fidelity 2D finite element models.The problem of beams rest-
ing on tensionless Kerr-type foundation was also investigated
by Zhang [22] and Sapountzakis and Kampitsis [23]. Wang
and Zeng [24] used the Kerr-type foundation model to study
the interface stress between piezoelectric patches and host
structures.

It is worth mentioning that a series of research papers
on the so-called “modified Kerr-Reissner hybrid” foundation
model have been presented by Horvath and Colasanti [18]
and Colasanti and Horvath [25]. This foundation model is
also regarded as the three-parameter foundationmodel and is
formulated based on the combination of the modified Kerr-
type foundation model with the Reissner simplified contin-
uum subgrade model. In the modified Kerr-type foundation
model, a shear layer is replaced by a tensioned membrane
for the sake of modeling ease. The modified Kerr-Reissner
hybrid foundation model is attractive particularly to prac-
ticing geotechnical engineers since it combines the advan-
tages of both mechanical subgrade model and simplified
continuummodel as comprehensively discussed in Colasanti
and Horvath [25]. Horvath and Colasanti [18] discuss the
detailed derivation of this foundation model; Colasanti and
Horvath [25] illustrate themodeling approach of this founda-
tion model using commercially available structural analysis
software. Subsequently, the modified Kerr-Reissner hybrid
foundation model is applied to the planar geosynthetics used
for tensile earth reinforcement under vertical loads [26].

In this paper, the virtual force principle is employed
to reveal the governing differential compatibility equations
of the beam-Kerr foundation system, as well as its natural
boundary conditions. Thus, this paper can naturally be
considered as a companion paper to the earlier work on the
beam-Kerr foundation system by Avramidis and Morfidis
[19] and Morfidis [20]. Unlike the structural component-
based approach used by Horvath and Colasanti [18] and
Colasanti and Horvath [25], all system components can be
combined effectively into a single element, thus rendering
the proposed model more attractive and unique from the
theoretical and modeling point of view. The exact beam-
Kerr foundation stiffness matrix is alternatively derived
based on the exact beam-Kerr foundation flexibility matrix.
The exact force interpolation functions of the beam-Kerr
foundation system are at the core of the derivation of the
exact element flexibility matrix. The governing differential
equilibrium equations and constitutive relations of the beam
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Figure 1: (a) A beam on Kerr-type foundation; (b) a differential segment cut from the beam; (c) a differential segment cut from the shear
layer.

on Kerr-type foundation are first presented. Next, the sixth-
order governing differential compatibility equations, as well
as the associated end-boundary compatibility conditions, are
derived based on the virtual force principle. The exact force
interpolation functions of the beam-foundation system are
derived from the analytical solution of the governing dif-
ferential compatibility equations of the problem. The matrix
virtual force equation is employed to obtain the exact ele-
ment flexibility matrix using the exact force interpolation
functions. It is worth mentioning that the element flexibility
matrix presented in this paper is different from that presented
in Limkatanyu and Spacone [27] in that the foundation
force distribution in Limkatanyu and Spacone [27] has to be
assumed, thus resulting in the approximate moment inter-
polation functions and the approximate element flexibility
matrix. The exact element stiffness matrix can be obtained
directly from the exact element flexibility matrix following
the natural approach [28]. It is noted that the natural
approach had been used with successes in deriving the exact
element stiffness matrices for beams on Winkler foundation
[29] as well as beams onWinkler-Pasternak foundation [30].
It is also imperative to emphasize that, in the proposedmodel,
the applied distributed load does not influence the exact
force interpolation functions as long as it varies uniformly
along the whole length of the beam. This finding renders
the proposed flexibility-based model attractive since the
analytical solution to the governing differential compatibility
equation requires only the homogeneous part. Unfortunately,

this beneficial effect is not available in the exact stiffness-
based model presented by Avramidis and Morfidis [19] and
Morfidis [20] since the analytical solution to the governing
differential equilibrium equation requires both homogeneous
and particular part with the presence of the applied dis-
tributed load. Therefore, the derivation of the exact dis-
placement interpolation functions becomes more involved.
A brief discussion on the efficient way to account for the
extended-foundation effect is also introduced. All symbolic
calculations throughout this paper are performed using the
computer softwareMathematica [31], and the resulting beam-
foundation model is implemented in the general-purpose
finite element platform FEAP [32]. A numerical example is
used to verify the accuracy and the efficiency of the natural
beam element on Kerr-type foundation and to show a more
realistic distribution of interactive foundation force. A 2D
finite element package VisualFEA [33] is also used to analyze
this numerical example for comparison purpose.

2. Governing Equations of Beams on
Kerr-Type Foundation

2.1. Differential Equilibrium Equations: Direct Approach. A
beam-Kerr foundation system is shown in Figure 1(a) and
comprises a beam, the upper and lower springs, and an inter-
mediate shear layer. The governing differential equilibrium
equations of the system are derived in a direct manner as
follows.
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A differential segment 𝑑𝑥 taken from the beam on
Kerr-type foundation is shown in Figure 1(b). The vertical
equilibrium of the infinitesimal beam segment 𝑑𝑥 is written
as

𝑑𝑉
𝐵 (𝑥)

𝑑𝑥
+ 𝑝
𝑦 (𝑥) − 𝐷

2 (𝑥) = 0, (1)

where 𝑉
𝐵
(𝑥) is the beam-section shear force; 𝑝

𝑦
(𝑥) is the

transverse distributed load; and𝐷
2
(𝑥) is the interactive force

in the upper spring and acts at the bottom face of the beam.
Considering the moment equilibrium, this yields

𝑑𝑀(𝑥)

𝑑𝑥
+ 𝑉
𝐵 (𝑥) = 0, (2)

where𝑀(𝑥) is the beam-section bendingmoment. Following
the Euler-Bernoulli beam theory, only flexural contributions
are considered in the paper. Enforcing the beam shear
equilibrium of (2), (1) and (2) can be combined into a single
relation; thus,

𝑑
2
𝑀(𝑥)

𝑑𝑥2
− 𝑝
𝑦 (𝑥) + 𝐷

2 (𝑥) = 0. (3)

A differential segment 𝑑𝑥 taken from the shear layer
resting on the lower foundation springs is shown in Fig-
ure 1(c). The vertical equilibrium of the infinitesimal shear-
layer segment 𝑑𝑥 can be written as

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
+ 𝐷
2 (𝑥) − 𝐷

1 (𝑥) = 0, (4)

where 𝑉
𝑠
(𝑥) is the shear-layer section shear force and 𝐷

1
(𝑥)

is the interactive force in a lower spring. Equations (3) and
(4) form a set of governing differential equilibrium equations
of the system and are coupled through the upper-spring
interactive force𝐷

2
(𝑥).

It is noteworthy to remark that this system is internally
statically indeterminate and the internal forces cannot be
determined simply by equilibrium conditions since there are
4 internal force unknown fields, 𝑀(𝑥), 𝑉

𝑠
(𝑥), 𝐷

1
(𝑥), and

𝐷
2
(𝑥), at any system section while only two equilibrium

equations are available.

2.2. Deformation-Force Relations. The system sectional
deformations can be related to their conjugate-work forces
as follows:

𝜅 (𝑥) =
𝑀 (𝑥)

IE
, 𝛾

𝑠 (𝑥) =
𝑉
𝑠 (𝑥)

GA
,

Δ
1 (𝑥) =

𝐷
1 (𝑥)

𝑘
1

, Δ
2 (𝑥) =

𝐷
2 (𝑥)

𝑘
2

,

(5)

where 𝜅(𝑥) is the beam-section curvature; 𝛾
𝑠
(𝑥) is the

shear-layer section shear strain; Δ
1
(𝑥) is the lower-spring

deformation; Δ
2
(𝑥) is the upper-spring deformation; IE is

the flexural rigidity; GA is the shear-layer section modulus;
𝑘
1
is the lower-spring modulus; and 𝑘

2
is the upper-spring

modulus. Following the comprehensive work by Worku [16],
the three foundation parameters (𝑘

1
, 𝑘
2
, and GA) can be

related to the elastic modulus, Poisson ratio, and depth of the
soil continuum underneath the beam.

2.3. Differential Compatibility Equations and End Compatibil-
ity Conditions: The Virtual Force Principle. The virtual force
equation is an integral expression of the system compatibility
equations and can be expressed in the general form as

𝛿𝑊
∗
= 𝛿𝑊

∗

int + 𝛿𝑊
∗

ext = 0, (6)

where 𝛿𝑊
∗ is the system total complementary virtual work;

𝛿𝑊
∗

int is the system internal complementary virtual work; and
𝛿𝑊
∗

ext is the system external complementary virtual work.
In the case of the beam-Kerr foundation system, 𝛿𝑊∗int

and 𝛿𝑊
∗

ext can be expressed as

𝛿𝑊
∗

int = ∫
𝐿

𝛿𝑀 (𝑥) 𝜅 (𝑥) 𝑑𝑥 + ∫
𝐿

𝛿𝑉
𝑠 (𝑥) 𝛾𝑠 (𝑥) 𝑑𝑥

+ ∫
𝐿

𝛿𝐷
1 (𝑥) Δ 1 (𝑥) 𝑑𝑥 + ∫

𝐿

𝛿𝐷
2 (𝑥) Δ 2 (𝑥) 𝑑𝑥

𝛿𝑊
∗

ext = − ∫
𝐿

𝛿𝑝
𝑦 (𝑥) V𝐵 (𝑥) 𝑑𝑥 − 𝛿P𝑇U,

(7)

where V
𝐵
(𝑥) is the beam vertical displacement; the vector P =

{𝑃1 𝑃
2

𝑃
3

𝑃
4

𝑃
5

𝑃
6}
𝑇 contains shear forces and moments

acting at beam ends and shear forces acting at the shear-
layer ends; and the vector U = {𝑈1 𝑈

2
𝑈
3

𝑈
4

𝑈
5

𝑈
6}
𝑇

contains their conjugate-work displacements and rotations
at the beam ends and displacements at the shear-layer ends.
At the moment, external force quantity, 𝛿𝑝

𝑦
(𝑥), is arbitrarily

chosen to be zero. Thus, (6) becomes

𝛿𝑊
∗
= ∫
𝐿

𝛿𝑀 (𝑥) 𝜅 (𝑥) 𝑑𝑥 + ∫
𝐿

𝛿𝑉
𝑠 (𝑥) 𝛾𝑠 (𝑥) 𝑑𝑥

+ ∫
𝐿

𝛿𝐷
1 (𝑥) Δ 1 (𝑥) 𝑑𝑥 + ∫

𝐿

𝛿𝐷
2 (𝑥) Δ 2 (𝑥) 𝑑𝑥

− 𝛿P𝑇U = 0.

(8)

Eliminating the internal deformation fields through the
deformation-force relations, (8) can be written as

𝛿𝑊
∗
= ∫
𝐿

𝛿𝑀 (𝑥)
𝑀 (𝑥)

IE
𝑑𝑥 + ∫

𝐿

𝛿𝑉
𝑠 (𝑥)

𝑉
𝑠 (𝑥)

GA
𝑑𝑥

+ ∫
𝐿

𝛿𝐷
1 (𝑥)

𝐷
1 (𝑥)

𝑘
1

𝑑𝑥 + ∫
𝐿

𝛿𝐷
2 (𝑥)

𝐷
2 (𝑥)

𝑘
2

𝑑𝑥

− 𝛿P𝑇U = 0.

(9)

The lower and upper spring forces (𝐷
1
(𝑥) and 𝐷

2
(𝑥))

and their virtual counterparts (𝛿𝐷
1
(𝑥) and 𝛿𝐷

2
(𝑥)) can be
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eliminated in (9) through the governing differential equilib-
rium equations of (3) and (4). Therefore, the system virtual
force equation can be written as

− 𝛿P𝑇U + ∫
𝐿

𝛿𝑀 (𝑥)
𝑀 (𝑥)

IE
𝑑𝑥 + ∫

𝐿

𝛿𝑉
𝑠 (𝑥)

𝑉
𝑠 (𝑥)

GA
𝑑𝑥

+ ∫
𝐿

𝑑𝛿𝑉
𝑠 (𝑥)

𝑑𝑥
(

1

𝑘
1

)(−
𝑑
2
𝑀(𝑥)

𝑑𝑥2
+ 𝑝
𝑦 (𝑥)+

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)𝑑𝑥

+ ∫
𝐿

𝑑
2
𝛿𝑀 (𝑥)

𝑑𝑥2
(

1

𝑘
1

)(
𝑑
2
𝑀(𝑥)

𝑑𝑥2
− 𝑝
𝑦 (𝑥)−

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)𝑑𝑥

+ ∫
𝐿

𝑑
2
𝛿𝑀 (𝑥)

𝑑𝑥2
(

1

𝑘
2

)(
𝑑
2
𝑀(𝑥)

𝑑𝑥2
− 𝑝
𝑦 (𝑥)) 𝑑𝑥 = 0.

(10)

In order to move all differential operators to the bending
moment 𝑀(𝑥) and the shear-layer section shear force 𝑉

𝑠
(𝑥),

integration by parts is applied once to the forth term and
twice to the fifth and sixth terms of (10), respectively, hence
resulting in the following expression:

∫
𝐿

𝛿𝑀 (𝑥)(
𝑀(𝑥)

IE
+ (

1

𝑘
1

+
1

𝑘
2

)(
𝑑
4
𝑀(𝑥)

𝑑𝑥4
−

𝑑
2
𝑝
𝑦 (𝑥)

𝑑𝑥2
)

−
1

𝑘
1

𝑑
3
𝑉
𝑠 (𝑥)

𝑑𝑥3
)𝑑𝑥

+ ∫
𝐿

𝛿𝑉
𝑠 (𝑥) (

𝑉
𝑠 (𝑥)

GA
+

1

𝑘
1

(
𝑑
3
𝑀(𝑥)

𝑑𝑥3
−

𝑑𝑝
𝑦 (𝑥)

𝑑𝑥

−
𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
))𝑑𝑥

+ [((
1

𝑘
1

+
1

𝑘
2

)(
𝑑
2
𝑀(𝑥)

𝑑𝑥2
− 𝑝
𝑦 (𝑥)) −

1

𝑘
1

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)

×
𝑑𝛿𝑀 (𝑥)

𝑑𝑥
]

𝐿

0

+ [((
1

𝑘
1

+
1

𝑘
2

)(
𝑑𝑝
𝑦 (𝑥)

𝑑𝑥
−
𝑑
3
𝑀(𝑥)

𝑑𝑥3
) +

1

𝑘
1

𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
)

× 𝛿𝑀(𝑥)]

𝐿

0

+ [
1

𝑘
1

(𝑝
𝑦 (𝑥) +

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
−

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)𝛿𝑉
𝑠 (𝑥)]

𝐿

0

− 𝛿P𝑇U = 0.

(11)

Considering the shear-force definition of (2) and follow-
ing the Cartesian sign convention, (11) can be written as

∫
𝐿

𝛿𝑀 (𝑥)(
𝑀(𝑥)

IE
+ (

1

𝑘
1

+
1

𝑘
2

)(
𝑑
4
𝑀(𝑥)

𝑑𝑥4
−

𝑑
2
𝑝
𝑦 (𝑥)

𝑑𝑥2
)

−
1

𝑘
1

𝑑
3
𝑉
𝑠 (𝑥)

𝑑𝑥3
)𝑑𝑥

+ ∫
𝐿

𝛿𝑉
𝑠 (𝑥) (

𝑉
𝑠 (𝑥)

GA
+

1

𝑘
1

(
𝑑
3
𝑀(𝑥)

𝑑𝑥3
−

𝑑𝑝
𝑦 (𝑥)

𝑑𝑥

−
𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
))𝑑𝑥

− 𝛿𝑃
1
(𝑈
1
− ((

1

𝑘
1

+
1

𝑘
2

)(𝑝
𝑦 (𝑥) −

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

+
1

𝑘
1

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)

𝑥=0

)

− 𝛿𝑃
2
(𝑈
2
− (

1

𝑘
1

𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
+ (

1

𝑘
1

+
1

𝑘
2

)
𝑑𝑝
𝑦 (𝑥)

𝑑𝑥

−(
1

𝑘
1

+
1

𝑘
2

)
𝑑
3
𝑀(𝑥)

𝑑𝑥3
)

𝑥=0

)

− 𝛿𝑃
3
(𝑈
3
− ((

1

𝑘
1

+
1

𝑘
2

)(𝑝
𝑦 (𝑥) −

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

+
1

𝑘
1

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)

𝑥=𝐿

)

− 𝛿𝑃
4
(𝑈
4
− (

1

𝑘
1

𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
+ (

1

𝑘
1

+
1

𝑘
2

)
𝑑𝑝
𝑦 (𝑥)

𝑑𝑥

−(
1

𝑘
1

+
1

𝑘
2

)
𝑑
3
𝑀(𝑥)

𝑑𝑥3
)

𝑥=𝐿

)

− 𝛿𝑃
5
(𝑈
5
−

1

𝑘
1

(𝑝
𝑦 (𝑥) +

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
−

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

𝑥=0

)

− 𝛿𝑃
6
(𝑈
6
−

1

𝑘
1

(𝑝
𝑦 (𝑥) +

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
−

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

𝑥=𝐿

)

= 0.

(12)

Due to the arbitrariness of 𝛿𝑀(𝑥) and 𝛿𝑉
𝑠
(𝑥), the gov-

erning differential compatibility equations of the beam and
shear-layer components are obtained; thus

𝑀(𝑥)

IE
+ (

1

𝑘
1

+
1

𝑘
2

)(
𝑑
4
𝑀(𝑥)

𝑑𝑥4
−

𝑑
2
𝑝
𝑦 (𝑥)

𝑑𝑥2
)

−
1

𝑘
1

𝑑
3
𝑉
𝑠 (𝑥)

𝑑𝑥3
= 0 : for 𝑥 ∈ (0, 𝐿) ,

(13)
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𝑉
𝑠 (𝑥)

GA
+

1

𝑘
1

(
𝑑
3
𝑀(𝑥)

𝑑𝑥3
−

𝑑𝑝
𝑦 (𝑥)

𝑑𝑥
−

𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
)

= 0 : for 𝑥 ∈ (0, 𝐿) .

(14)

Equations (13) and (14) form a set of governing differ-
ential compatibility equations of the system. It is noted that
the compatibility equations of the lower and upper spring
deformations are not involved in the virtual force equation
since their conjugate-work forces (𝐷

1
(𝑥) and 𝐷

2
(𝑥)) are

eliminated in (10). However, they can be obtained simply by
considering the geometrical deformations of the lower and
the upper springs in Figure 1(a) as

Δ
1 (𝑥) − V

𝑠 (𝑥) = 0,

Δ
2 (𝑥) − (V

𝐵 (𝑥) − V
𝑠 (𝑥)) = 0,

(15)

where V
𝑠
(𝑥) is the shear-layer vertical displacement. Consid-

ering the deformation-force relations of (5) and enforcing
the equilibrium equations of (3) and (4) and compatibility
equations of (15), (13), and (14) are reduced to

𝜅 (𝑥) −
𝑑
2V
𝐵 (𝑥)

𝑑𝑥2
= 0, (16)

𝛾 (𝑥) −
𝑑V
𝑠 (𝑥)

𝑑𝑥
= 0. (17)

It now becomes clear that (13) and (14) simply state the
definitions of the beam section curvature and shear-layer
section shear strain, respectively.

To make use of (13) and (14), there is a need to establish
the relation between 𝑉

𝑠
(𝑥) and 𝑀(𝑥). This could be accom-

plished by recalling the governing differential equation of the
foundation surface subjected to a continuously distributed
load as given by Kerr [11]:

(1 +
𝑘
1

𝑘
2

)𝐷
2 (𝑥) −

GA
𝑘
2

𝑑
2
𝐷
2 (𝑥)

𝑑𝑥2

= 𝑘
1
V
𝐵 (𝑥) − GA𝑑

2V
𝐵 (𝑥)

𝑑𝑥2
.

(18)

Enforcing the equilibrium equations of (3) and (4) as
well as compatibility equations of (15), recalling the curvature
definition of (16), and considering the deformation-force
relations of (5), (18) relates the first derivative of the shear-
layer section shear force to the bending moment and its
fourth-order derivative as

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
=
GA
IE

𝑀(𝑥) +
GA
𝑘
2

𝑑
4
𝑀(𝑥)

𝑑𝑥4
−
GA
𝑘
2

𝑑
2
𝑝
𝑦 (𝑥)

𝑑𝑥2
. (19)

Differentiating (19) twice and substituting into (13) yield
the following sixth-order differential equation:

𝑑
6
𝑀(𝑥)

𝑑𝑥6
+ 𝜆
1

𝑑
4
𝑀(𝑥)

𝑑𝑥4
+ 𝜆
2

𝑑
2
𝑀(𝑥)

𝑑𝑥2
+ 𝜆
3
𝑀(𝑥)

=
𝑑
4
𝑝
𝑦 (𝑥)

𝑑𝑥4
+ 𝜆
1

𝑑
2
𝑝
𝑦 (𝑥)

𝑑𝑥2
: for 𝑥 ∈ (0, 𝐿) ,

(20)

where 𝜆
1

= −((𝑘
1
+ 𝑘
2
)/GA); 𝜆

2
= 𝑘
2
/IE and 𝜆

3
=

−𝑘
1
𝑘
2
/IEGA.

It is noted that when the upper-spring modulus 𝑘
2

approaches infinite, (20) is reduced to a fourth-order gov-
erning differential compatibility equation of the beam on
Winkler-Pasternak foundation as given by Limkatanyu et al.
[30] and when the shear-layer section modulus GA is equal
to zero, (20) becomes a fourth-order governing differential
compatibility equation of the beam on Winkler foundation
as given by Limkatanyu et al. [29]. Furthermore, when
compared to the governing differential equation derived by
Avramidis and Morfidis [19] using the principle of stationary
potential energy (equivalent to the virtual displacement
principle), it becomes clear that (20) and the one derived
by Avramidis and Morfidis [19] are dual. This illustrates
the dualism of the virtual displacement and virtual force
principles.

The end-boundary compatibility conditions are obtained
by accounting for the arbitrariness of 𝛿P in (12) as

𝑈
1
=

1

𝑘
1

(
𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)

𝑥=0

− (
1

𝑘
1

+
1

𝑘
2

)(
𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

𝑥=0

+ (
1

𝑘
1

+
1

𝑘
2

) (𝑝
𝑦 (𝑥))

𝑥=0
,

𝑈
2
=

1

𝑘
1

(
𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
)

𝑥=0

− (
1

𝑘
1

+
1

𝑘
2

)(
𝑑
3
𝑀(𝑥)

𝑑𝑥3
)

𝑥=0

+ (
1

𝑘
1

+
1

𝑘
2

)(
𝑑𝑝
𝑦 (𝑥)

𝑑𝑥
)

𝑥=0

,

𝑈
3
=

1

𝑘
1

(
𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
)

𝑥=𝐿

− (
1

𝑘
1

+
1

𝑘
2

)(
𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

𝑥=𝐿

+ (
1

𝑘
1

+
1

𝑘
2

) (𝑝
𝑦 (𝑥))

𝑥=𝐿
,

𝑈
4
=

1

𝑘
1

(
𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
)

𝑥=𝐿

− (
1

𝑘
1

+
1

𝑘
2

)(
𝑑
3
𝑀(𝑥)

𝑑𝑥3
)

𝑥=𝐿

+ (
1

𝑘
1

+
1

𝑘
2

)(
𝑑𝑝
𝑦 (𝑥)

𝑑𝑥
)

𝑥=𝐿

,

𝑈
5
=

1

𝑘
1

(
𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
−

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

𝑥=0

+
1

𝑘
1

(𝑝
𝑦 (𝑥))

𝑥=0
,

𝑈
6
=

1

𝑘
1

(
𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
−

𝑑
2
𝑀(𝑥)

𝑑𝑥2
)

𝑥=𝐿

+
1

𝑘
1

(𝑝
𝑦 (𝑥))

𝑥=𝐿
.

(21)

It is observed that the homogeneous and particular con-
tributions to the end displacements are clearly separated in
(21). This observation is unique to the proposed formulation
and very useful in determining the equivalent fixed-end force
vector due to the element load 𝑝

𝑦
(𝑥).
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3. ‘‘Exact’’ Element Stiffness Matrix:
Natural Approach

In this paper, the “exact” element stiffness matrix is derived
simply by inverting the “exact” element flexibility equation.
This is feasible since the system does not experience any
rigid-body motion (neither rigid-body translation nor rigid-
body rotation) due to the presence of supporting foundation.
Thus, the exact element flexibility matrix is at the core of
the element formulation and requires the “exact” moment
interpolation functions. The analytical solution to the sixth-
order governing differential compatibility equation of (20) is
central to obtain the exact moment interpolation functions.
For the sake of simplicity, the applied distributed load 𝑝

𝑦
(𝑥)

is assumed to be uniform along the whole length of the
beam.Thus, only homogeneous solution is required to derive
the exact moment interpolation functions. This merit comes
from the fact that the force terms on the right-hand side
of (20) disappear as long as 𝑝

𝑦
(𝑥) varies uniformly along

the whole length of the beam, thus rendering the proposed
flexibility-based model attractive and unique.

Thanks to the comprehensive investigation performed by
Morfidis [34] and Avramidis andMorfidis [19] on all possible
solutions to the similar sixth-order differential equation, the
general solution of (20) can be written as

𝑀(𝑥) = 𝜑
1 (𝑥) 𝑐1 + 𝜑

2 (𝑥) 𝑐2 + 𝜑
3 (𝑥) 𝑐3 + 𝜑

4 (𝑥) 𝑐4

+ 𝜑
5 (𝑥) 𝑐5 + 𝜑

6 (𝑥) 𝑐6,

(22)

where 𝜑
1
(𝑥), 𝜑

2
(𝑥), 𝜑

3
(𝑥), 𝜑

4
(𝑥), 𝜑

5
(𝑥), and 𝜑

6
(𝑥) are real

functions and their forms depend on the values of the system
parameters (𝜆

1
, 𝜆
2
, and 𝜆

3
) as given in Appendix A; and

𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
, and 𝑐

6
are constants of integration to be

determined by imposing force boundary conditions. These
six force boundary conditions are

−[
𝑑𝑀

𝑑𝑥
]

𝑥=0

= 𝑃
1
, −𝑀 (0) = 𝑃

2
,

[
𝑑𝑀

𝑑𝑥
]

𝑥=𝐿

= 𝑃
3
, 𝑀 (𝐿) = 𝑃

4
,

−[𝑉
𝑠
]
𝑥=0

= 𝑃
5
, [𝑉

𝑠
]
𝑥=𝐿

= 𝑃
6
.

(23)

The first four boundary conditions on the beam ends
can be imposed directly while the last two on the shear-
layer ends cannot be enforced at the first stage since the
beam-section bendingmoment𝑀(𝑥) is the only variable field
in the governing differential compatibility equation of (20).
This difficulty can be overcome by establishing the relation
between 𝑉

𝑠
(𝑥) and𝑀(𝑥).

Recalling the shear-layer compatibility condition of (14)
and the 𝑉

𝑠
(𝑥) − 𝑀(𝑥) relation of (19), the shear-layer shear

force 𝑉
𝑠
(𝑥) can be expressed in terms of the beam-section

bending moment𝑀(𝑥) and its derivatives as

𝑉
𝑠 (𝑥) = 𝜗

1
(
𝑑
5
𝑀(𝑥)

𝑑𝑥5
−

𝑑
3
𝑝
𝑦 (𝑥)

𝑑𝑥3
)

+ 𝜗
2
(
𝑑
3
𝑀(𝑥)

𝑑𝑥3
−

𝑑𝑝
𝑦 (𝑥)

𝑑𝑥
) + 𝜗
3

𝑑𝑀(𝑥)

𝑑𝑥
,

(24)

where 𝜗
1
= GA2

/𝑘
1
𝑘
2
, 𝜗
2
= −GA/𝑘

1
, and 𝜗

3
= GA2

/IE𝑘
1
.

By imposing force boundary conditions of (23), the
moment interpolation relation can be expressed as

𝑀(𝑥) = N
𝐵𝐵 (𝑥)P, (25)

where N
𝐵𝐵
(𝑥) = ⌊𝑁

𝐵𝐵1
(𝑥) 𝑁

𝐵𝐵2
(𝑥) 𝑁

𝐵𝐵3
(𝑥) 𝑁

𝐵𝐵4
(𝑥)

𝑁
𝐵𝐵5

(𝑥) 𝑁
𝐵𝐵6

(𝑥)⌋ is an array containing the moment
interpolation functions. Imposing the relation of (24) and
differential equilibrium equations of (3) and (4), the shear-
layer shear force 𝑉

𝑠
(𝑥), the lower-spring force𝐷

1
(𝑥), and the

upper-spring force𝐷
2
(𝑥) can be expressed in terms of P as

𝑉
𝑠 (𝑥) = N

𝑉
𝑠
𝐵 (𝑥)P,

𝐷
1 (𝑥) = N

𝐷
1
𝐵 (𝑥)P,

𝐷
2 (𝑥) = N

𝐷
2
𝐵 (𝑥)P,

(26)

where N
𝑉
𝑠
𝐵
(𝑥) = ⌊𝑁

𝑉
𝑠
𝐵1
(𝑥) 𝑁

𝑉
𝑠
𝐵2
(𝑥) 𝑁

𝑉
𝑠
𝐵3
(𝑥) 𝑁

𝑉
𝑠
𝐵4
(𝑥)

𝑁
𝑉
𝑠
𝐵5
(𝑥) 𝑁

𝑉
𝑠
𝐵6
(𝑥)⌋ is an array containing the shear-layer

shear-force interpolation functions; N
𝐷
1
𝐵
(𝑥) = ⌊𝑁

𝐷
1
𝐵1
(𝑥)

𝑁
𝐷
1
𝐵2
(𝑥) 𝑁

𝐷
1
𝐵3
(𝑥) 𝑁

𝐷
1
𝐵4
(𝑥) 𝑁

𝐷
1
𝐵5
(𝑥) 𝑁

𝐷
1
𝐵6
(𝑥)⌋ is an

array containing the lower-spring force interpolation func-
tions; and N

𝐷
2
𝐵
(𝑥) = ⌊𝑁

𝐷
2
𝐵1
(𝑥) 𝑁

𝐷
2
𝐵2
(𝑥) 𝑁

𝐷
2
𝐵3
(𝑥)

𝑁
𝐷
2
𝐵4
(𝑥) 𝑁

𝐷
2
𝐵5
(𝑥) 𝑁

𝐷
2
𝐵6
(𝑥)⌋ is an array containing the

upper-spring force interpolation functions.
Applying the virtual force expression of (9), substituting

(25)-(26), and accounting for the arbitrariness of 𝛿P yield the
following element flexibility equation:

FP = U + U
𝑝
𝑦

, (27)

where F is the element flexibility matrix, defined as

F = F
𝐵𝐵

+ F
𝑉
𝑠
𝑉
𝑠

+ F
𝐷
1
𝐷
1

+ F
𝐷
2
𝐷
2

, (28)

where F
𝐵𝐵
, F
𝑉
𝑠
𝑉
𝑠

, F
𝐷
1
𝐷
1

, and F
𝐷
2
𝐷
2

are the beam, the shear-
layer, the lower-spring, and the upper-spring contributions
to the element flexibility matrix, respectively:

F
𝐵𝐵

= ∫
𝐿

N
𝐵𝐵

𝑇
(

1

IE
)N
𝐵𝐵
𝑑𝑥,

F
𝑉
𝑠
𝑉
𝑠

= ∫
𝐿

N
𝑉
𝑠
𝐵

𝑇
(

1

GA
)N
𝑉
𝑠
𝐵
𝑑𝑥,

F
𝐷
1
𝐷
1

= ∫
𝐿

N
𝐷
1
𝐵

𝑇
(

1

𝑘
1

)N
𝐷
1
𝐵
𝑑𝑥,

F
𝐷
2
𝐷
2

= ∫
𝐿

N
𝐷
2
𝐵

𝑇
(

1

𝑘
2

)N
𝐷
2
𝐵
𝑑𝑥.

(29)
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Figure 2: Natural beam element on Kerr-type foundation.

It is noted that element end displacements U
𝑝
𝑦

due to
the applied load 𝑝

𝑦
(𝑥) is supplemented into (27). In the case

of linear variation of 𝑝
𝑦
(𝑥), U

𝑝
𝑦

can be written in a simple
expression as given in Appendix B.

Based on the element flexibility expression of (27), the
element stiffness equation can be written as

P = K
𝑁
U + P𝐹𝐸

𝑝
𝑦

, (30)

where the complete element stiffness matrix K
𝑁
is F−1 and

the fixed-end force vector due to 𝑝
𝑦
(𝑥) is simply computed

as K
𝑁
U
𝑝
𝑦

. It is worthwhile to note that the subscript 𝑁

stands for “natural.” This is due to the fact that the approach
employed herein to obtain the element stiffness matrix is
known as the natural approach [28].The configuration of the
natural beam element on Kerr-type foundation is shown in
Figure 2.

Unlike the stiffness-based formulation, the displacement
fields cannot be computed directly since no displacement
interpolation function is available in the element formulation.
However, the following compatibilities can be used to retrieve
the vertical displacement and rotational fields of the beam
component and the vertical displacement field of the shear-
layer component once the internal force distributions are
obtained:

V
𝐵 (𝑥) = (

1

𝑘
1

+
1

𝑘
2

)(𝑝
𝑦 (𝑥) −

𝑑
2
𝑀(𝑥)

𝑑𝑥2
) +

1

𝑘
1

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
,

𝜃
𝐵 (𝑥) =

𝑑V
𝐵 (𝑥)

𝑑𝑥

= (
1

𝑘
1

+
1

𝑘
2

)(
𝑑𝑝
𝑦 (𝑥)

𝑑𝑥
−

𝑑
3
𝑀(𝑥)

𝑑𝑥3
)

+
1

𝑘
1

𝑑
2
𝑉
𝑠 (𝑥)

𝑑𝑥2
,

V
𝑠 (𝑥) =

1

𝑘
1

(𝑝
𝑦 (𝑥) −

𝑑
2
𝑀(𝑥)

𝑑𝑥2
+

𝑑𝑉
𝑠 (𝑥)

𝑑𝑥
) .

(31)

4. Restrained Effects of Extended Kerr-Type
Foundation on the Beam End

When the foundation on either end of the beam is infinitely
extended, appropriate modeling of the beam-end condition
is deemed essential to account for the foundation continuity
[35]. One efficient way to consider this end effect is to place

a vertical spring with a stiffness of √𝑘
1
GA at the associated

beam end as suggested by Eisenberger and Bielak [36]. A
detailed derivation of this stiffness value can be found in
Alemdar and Gülkan [35] and Colasanti and Horvath [25].
For the case of finitely extended foundation, a virtual beam-
foundation element with a small value of the flexural rigidity
and large value of the upper-spring modulus can be assumed
beyond its physical end to account for the existence of the
extended foundation.

5. Numerical Example

A free-free beam on an infinitely long Kerr-type foundation
subjected to various loads along its length is shown in
Figure 3. This beam-foundation system was also studied by
Morfidis [20] and is used in this study to verify the accuracy
and to show the efficiency of the natural beam element on
Kerr-type foundation. The flexural stiffness IE and width 𝑏

of the beam are 248.7 × 10
3 kN-m2 and 1m, respectively. The

elastic soil mass underneath the beam is 10m depth and is
assumed to be loose sand with elastic modulus 𝐸

𝑠
= 17.5 ×

10
3 kN/m2 and Poisson ratio V = 0.3. Following the modified

Kerr-Reissner model [18, 19], the lower-spring 𝑘
1
and shear-

layer section GA moduli are found to be 2.33 × 10
3 kN/m2

and 29.91 × 10
3 kN, respectively. As suggested by Avramidis

and Morfidis [19], the upper-spring modulus 𝑘
2
is related to

the lower-spring modulus 𝑘
1
as

𝑛
𝑘
2
𝑘
1

=
𝑘
2

𝑘
1

, (32)

where 𝑛
𝑘
2
𝑘
1

is a factor expressing the relative stiffness of
the upper and the lower springs. Following comprehensive
correlation studies between the three-parameter foundation
and the high fidelity 2D finite element models by Avramidis
and Morfidis [19], the optimal values of 𝑛

𝑘
2
𝑘
1

are suggested
depending on the system parameters. In this example, the
value of 𝑛

𝑘
2
𝑘
1

is equal to 7 which is the optimal value for soft
soils [19].Thus, the value of 𝑘

2
is equal to 16.3 × 10

3 kN/m2.
To account for the effect of infinitely extended foundation
beyond both beam ends, a vertical springwith stiffness 𝑘end =

√𝑘
1
GA = 8.35 × 10

3 kN/m is placed at each end as shown in
Figure 3. Seven natural beam-foundation elements (elements
AB, BC, CD, DE, EF, FG, and GH) are used to discretize the
system, thus resulting in twenty-four nodal unknowns.

The beam-foundation system of Figure 3 is also analyzed
by the 2D finite element model [33]. Figure 4 shows the
2D finite element mesh of the beam-foundation system of
Figure 3. The virtual soil mass of the length 2𝐿 = 15m is
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Figure 3: Numerical example: free-free beam on Kerr-type foundation subjected to various loads along its length.

Figure 4: 2D finite element mesh of the beam-foundation system in Figure 3.

assumed beyond each beam end to account for the existence
of the infinitely long foundation. The soil mass is discretized
into 950 rectangular plane-strain elements while the beam
is modeled with 35 conventional beam elements. In order
to ensure the sufficiency of the model discretization, a finer
finite element mesh was used but yielded the same analysis
results.

Figure 5 shows the obtained beam vertical displacement,
beam rotation and shear-layer vertical displacement dia-
grams while Figure 6 shows the obtained beam shear force,
beam moment, and shear-layer force diagrams. The exact
displacement-based responses given by Avramidis and Mor-
fidis [19] and Morfidis [20] as well as the responses obtained
with 2D finite element analysis (2D FEM model) are also
superimposed for comparison on the respective diagrams.
Clearly, the natural beam-foundationmodel is capable of rep-
resenting the exact displacement and force responses using
only one element for the beam span. Winkler-foundation
responses obtained with the model by Limkatanyu et al.
[29] are also presented in the same respective diagrams.
The results presented in Figure 5 indicate that the Kerr-
type foundation model plays a role in reducing the vertical
displacement and rotation of the beam, thanks to the coupling
between theWinkler-foundation springs.This coupling effect
renders the Kerr-type foundation model with the ability to
resemble the displacement and rotation diagrams obtained
with the 2D FEM model. When compared to the Winkler-
foundation model, Figure 6 shows that the Kerr-type foun-
dation model affects the bending moment response more

than the shear-force response along the beam. Furthermore,
the bending moment response obtained with the Kerr-type
foundation model is closer to that obtained with the 2D FEM
model when compared to the Winkler-foundation model. It
should be kept in mind that a complete comparison between
the proposedmodel and themore sophisticated finite element
model is not to be expected. This is due to the fact that a
full compatibility at the beam-soil interface is assumed in
the finite element model while only the vertical displacement
compatibility is enforced in the proposed model [37]. In this
example, introducing the more refined foundation model
generally results in reducing the negative moment (concave)
but slightly increasing the positive moment (convex).

Figure 7 shows the upper and the lower spring force
diagrams.Obviously, the proposed beam-foundation element
is capable of representing the exact foundation-spring force
distributions along the beam length. Figure 7(a) compares the
interactive foundation force acting at the bottom face of the
beam obtained with the Winkler and Kerr-type foundation
models. Evidently, the distribution characteristics of these
two foundation interactive forces are distinctively different.
The interactive foundation force distribution obtained with
the Kerr-type foundation model corresponds well to the
observation made by Foppl [12] that there exists a cer-
tain degree of discontinuities in system responses between
the loaded and the unloaded regions of the actual beam-
foundation system. This feature is unique to the Kerr-type
foundation model and clearly indicated by incompatibilities
between the upper and the lower foundation spring forces at
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Figure 5: Diagrams for beam displacement, beam rotation, and shear-layer displacement.

both beam ends (𝑥 = 0 and 𝑥 = 7.5m), thus resulting in
accurately representing the peripheral reactions of the beam
ends [6].

6. Summary and Conclusions

The“natural” element stiffnessmatrix and the fixed-end force
vector for a beam on elastic foundation subjected to a uni-
formly distributed load are derived in this paper. The Kerr-
type foundation model is employed to model the underlying
foundation continua, thus taking into account the shear
coupling between the individualWinkler-spring components
through the shear-layer component and determining the
level of vertical-displacement continuity at the boundaries
between the loaded and the unloaded soil surfaces. This
feature is unique to the Kerr-type foundation model.The ele-
ment flexibility matrix forms the core of the natural element
stiffness matrix and is derived based on the virtual force
principle using the “exact” force interpolation functions.The
exact force interpolation functions are obtained by solving

analytically the sixth-order governing differential compat-
ibility equation. Compared to the stiffness-based models
published in the literatures, the effect of the applied element
load can readily be included in the proposed formulation.
One numerical example is employed to verify the accuracy
and efficiency of the natural beam-foundation model. This
numerical example shows that the natural beam-foundation
element is capable of giving exact system responses. There-
fore, the exactness of the proposed element obviates the
requirement for discretizing the beam into several elements
between loading points. The number of elements needed in
the analysis of a beam-foundation system is largely dictated
by the convenient way of representing loadings (concentrated
or distributed loads). Furthermore, the Kerr-type foundation
model results in more realistic interactive foundation forces
as compared to the Winkler foundation model. A 2D finite
element model is also used to confirm the superiority of
the proposed model. The next step forward in this research
direction is to account for system nonlinearities and to apply
the resulting model to practical soil-structure interaction
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Figure 6: Diagrams for beam shear force, bending moment, and shear-layer force.
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Figure 7: Diagrams for upper and lower spring foundation forces.
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problems. This could be accomplished by first following the
evolution of beam and foundation mechanical parameters
and then updating the force interpolation functions accord-
ingly. Another interesting topic worth investigating in future
works is the derivation of consistent mass and geometric
stiffness matrices based on the force interpolation functions.

Appendices

A. Homogenous Solution to the
Sixth-Order Governing Differential
Compatibility Equation (20)

The homogeneous form of (20) can be written as

𝑑
6
𝑀(𝑥)

𝑑𝑥6
+ 𝜆
1

𝑑
4
𝑀(𝑥)

𝑑𝑥4
+ 𝜆
2

𝑑
2
𝑀(𝑥)

𝑑𝑥2
+ 𝜆
3
𝑀(𝑥)

= 0 : for 𝑥 ∈ (0, 𝐿) .

(A.1)

For simplicity, the following auxiliary variables are intro-
duced instead of terms of system parameters 𝜆

1
, 𝜆
2
, and 𝜆

3
:

𝛼 =
(− (𝜆
2

1
/3) + 𝜆

2
)

3
,

𝛽 =
((2𝜆
3

1
/27) − (𝜆

1
𝜆
2
/3) + 𝜆

3
)

2
,

Δ = 𝛼
3
+ 𝛽
2
,

(A.2)

Φ
1
= −

(
3

√−𝛽 + √Δ +
3

√−𝛽 − √Δ + (2𝜆
1
/3))

2
,

Φ
2
=

√3(
3√−𝛽 + √Δ −

3√−𝛽 − √Δ)

2
.

(A.3)

There are many solution types to (A.1) depending on the
sign of the auxiliary parameter Δ. Thanks to the thorough
investigations of all possible solution cases, Avramidis and
Morfidis [19] and Morfidis [20] suggest the most common
solution case corresponding to the positive sign of the
auxiliary parameter Δ as follows.

Solution Case (when Δ = 𝛼
3
+ 𝛽
2
> 0). The homogeneous

solution of (20) can be written as

𝑀(𝑥) = 𝜑
1 (𝑥) 𝑐1 + 𝜑

2 (𝑥) 𝑐2 + 𝜑
3 (𝑥) 𝑐3 + 𝜑

4 (𝑥) 𝑐4

+ 𝜑
5 (𝑥) 𝑐5 + 𝜑

6 (𝑥) 𝑐6,

(A.4)

where
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B. Nodal Displacements due to 𝑝
𝑦
(𝑥)

The nodal displacements due to the uniformly distributed
load 𝑝

𝑦
(𝑥) = 𝑝

0
may be written as
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[10] M. Hetényi, “A general solution for the bending of beams on
an elastic foundation of arbitrary continuity,” Journal of Applied
Physics, vol. 21, no. 1, pp. 55–58, 1950.

[11] A. D. Kerr, “A study of a new foundation model,” Acta Mechan-
ica, vol. 1, no. 2, pp. 135–147, 1965.

[12] A. Foppl,Vorlesungen Uber TechnischeMechanik, B. B. Teubner,
Leipzig, Germany, 1909.

[13] E. Reissner, “A note on deflection of plates on a viscoelastic
foundation,” Journal Applied Mechanics, vol. 25, pp. 144–155,
1958.

[14] J. S. Horvath, A study of analytical methods for determining
the response of mat foundations to static loads [Ph.D. thesis],
Polytechnic Institute of New York, Brooklyn, NY, USA, 1979.

[15] J. J. Horvath, “New subgrademodel applied tomat foundations,”
Journal of Geotechnical Engineering, vol. 109, no. 12, pp. 1567–
1587, 1983.

[16] A. Worku, “Calibrated analytical formulas for foundation
model parameters,” International Journal of Geomechanics, vol.
13, no. 4, pp. 340–347, 2013.

[17] J. S. Horvath, “Discussion of modified Vlasov model for beams
on elastic foundations,” Journal of Geotechnical Engineering, vol.
118, no. 9, pp. 1482–1484, 1992.

[18] J. S. Horvath and R. J. Colasanti, “Practical subgrade model
for improved soil-structure interaction analysis: model devel-
opment,” International Journal of Geomechanics, vol. 11, no. 1,
pp. 59–64, 2010.

[19] I. E. Avramidis and K. Morfidis, “Bending of beams on three-
parameter elastic foundation,” International Journal of Solids
and Structures, vol. 43, no. 2, pp. 357–375, 2006.

[20] K. Morfidis, “Exact matrices for beams on three-parameter
elastic foundation,” Computers and Structures, vol. 85, no. 15-16,
pp. 1243–1256, 2007.

[21] K. Morfidis, “Vibration of Timoshenko beams on three-
parameter elastic foundation,” Computers and Structures, vol.
88, no. 5-6, pp. 294–308, 2010.

[22] Y. Zhang, “Tensionless contact of a finite beam resting on Reiss-
ner foundation,” International Journal of Mechanical Sciences,
vol. 50, no. 6, pp. 1035–1041, 2008.

[23] E. J. Sapountzakis and A. E. Kampitsis, “Nonlinear analysis
of shear deformable beam-columns partially supported on
tensionless three-parameter foundation,” Archive of Applied
Mechanics, vol. 81, no. 12, pp. 1833–1851, 2011.

[24] J. Wang and S. Zeng, “Dynamics of piezoelectric smart beams
using a three-parameter elastic foundation model,” Journal of
Intelligent Material Systems and Structures, vol. 22, no. 1, pp. 3–
16, 2011.

[25] R. J. Colasanti and J. S. Horvath, “Practical subgrade model
for improved soil-structure interaction analysis: software imple-
mentation,” Practice Periodical on Structural Design and Con-
struction, vol. 15, no. 4, pp. 278–286, 2010.

[26] J. S. Horvath and R. J. Colasanti, “New hybrid subgrade
model for soil-structure interaction analysis: foundation and
geosynthetics applications,” in Proceedings of the Geo-Frontiers:
Advances in Geotechnical Engineering, pp. 4359–4368, Dallas,
Tex, USA, March 2011.

[27] S. Limkatanyu and E. Spacone, “Frame element with lateral
deformable supports: formulations and numerical validation,”
Computers and Structures, vol. 84, no. 13-14, pp. 942–954, 2006.

[28] J. H. Argyris, Energy Theorems and Structural Analysis, Butter-
worths & Co., London, UK, 1960.

[29] S. Limkatanyu, K. Kuntiyawichai, E. Spacone, and M. Kwon,
“Natural stiffness matrix for beams on Winkler founda-
tion: exact force-based derivation,” Structural Engineering and
Mechanics, vol. 42, no. 1, pp. 39–53, 2012.

[30] S. Limkatanyu, N. Damrongwiriyanupap, M. Kwon, and P.
Ponbunyanon, “Force-based derivation of exact stiffness matrix
for beams on Winkler-Pasternak Foundation,” Zeitschrift für
Angewandte Mathematik und Mechanik, 2013.

[31] S. Wolfram, Mathematica Reference Guide, Addison-Wesley,
Redwood City, Calif, USA, 1992.

[32] R. L. Taylor, “FEAP: a finite element analysis program. User
manual: version 7.3,” Department of Civil and Environmental
Engineering, University of California-Berkeley, 2000.

[33] R. D. Cook, VisualFEA and General User Manual, John Wiley
and Son, New York, NY, USA, 2001.

[34] K. Morfidis, Research and development of methods for the
modeling of foundation structural elements and soil [Ph.D.
thesis], Department of Civil Engineering, Aristotle University
of Thessaloniki, Greece, 2003.

[35] B. N. Alemdar and P. Gülkan, “Beams on generalized founda-
tions: supplementary element matrices,” Engineering Structures,
vol. 19, no. 11, pp. 910–920, 1997.

[36] M. Eisenberger and J. Bielak, “Remarks on two papers dealing
with the response of beams on two-parameter elastic founda-
tions,” Earthquake Engineering and Structural Dynamics, vol. 18,
no. 7, pp. 1077–1078, 1989.

[37] C. V. G. Vallabhan and Y. C. Das, “Modified vlasov model for
beams on elastic foundations,” Journal of geotechnical engineer-
ing, vol. 117, no. 6, pp. 956–966, 1991.


