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This paper investigates the valuation of European option with credit risk in a reduced formmodel when the stock price is driven by
the so-called Markov-modulated jump-diffusion process, in which the arrival rate of rare events and the volatility rate of stock are
controlled by a continuous-time Markov chain. We also assume that the interest rate and the default intensity follow the Vasicek
models whose parameters are governed by the sameMarkov chain.We study the pricing of European option and present numerical
illustrations.

1. Introduction

Pricing options with credit risk is an important topic in
finance from both theoretical and practical perspectives.
Credit risk refers to an investor’s risk that a borrower will
default on making payments as promised.There are basically
two kinds ofmodels to describe the default: structuralmodels
and reduced formmodels.The structural approachwas firstly
introduced by Merton [1] who investigated European option
pricing for modeling single corporate default. The approach
is further extended by recent literature: see Ammann [2] and
Klein and Inglis [3]. Another tractable approach is called
reduced formmodel, which models the intensity of arrival of
default events directly. The reduced formmodels can be seen
in Artzner and Freddy [4], Duffie and Singleton [5], Duffie
andGârleanu [6], and Leung andKwok [7] and are developed
extensively by Su and Wang [8].

Recently, Markovian regime-switching models have
attracted attention among researchers and practitioners
in economics and mathematics. Elliott et al. [9] introduce
a self-calibrating model for short-term interest rate by
assuming that the short rate is governed by a finite state space
Markov process. Elliott et al. [10] and Elliott and Osakwe
[11] use Markov-modulated market parameters to capture
the time inhomogeneity generated by the financial market.

Elliott et al. [12] perform the valuation of option under
a generalized Markov-modulated jump-diffusion model.
Siu et al. [13] consider the pricing currency options under
two-factor Markov-modulated stochastic volatility models.
Bo et al. [14] derive the valuation of currency option when
the spot foreign exchange rates follow Markov-modulated
jump-diffusion model.

In this paper, we investigate the valuation of European
optionwith credit risk in a reduced formmodel inMarkovian
regime-switching markets. We assume that the recovery rate
is constant; that is, when the writer of the option defaults,
a specified constant fraction times the payoff will be paid
at maturity. In order to incorporate both rare events and
time-inhomogeneity in finance market, we model the stock
price by the so-called Markov-modulated jump-diffusion
process, in which rare events are described as a compound
Poisson process and the arrival rate of Poisson process and
the volatility rate of stock are governed by a continuous-time
Markov chain. The states of Markov chain can be interpreted
as the states of the market. The transitions of the states of the
market may describe changes of economy, finance, business
cycles, and other conditions. In addition, we assume that the
interest rate and the default intensity both follow the Vasicek
models and the parameters of models are correlated with the
same Markov chain. By the method of changing measures,
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we obtain the closed form formula for the valuation of the
European option.

The rest of this paper is organized as follows. Section 2
presents the model description. In Section 3, by applying
Girsanov’s measure changing theorem, we derive the formula
of the pricing of European-style call option. We provide
numerical analysis in Section 4. The concluding remarks are
contained in Section 5.

2. The Model Description

Let (Ω,F, 𝑃) be a complete probability space, where 𝑃 is
a neutral-risk probability measure. Define 𝜉 = {𝜉

𝑡
, 𝑡 ≥ 0}

on (Ω,F, 𝑃) as a continuous-time, finite state Markov chain
with 𝑛-state space 𝐸. We interpret the state of 𝜉 as the states
of the economy as follows (Elliott et al. [10] and Elliott and
Osakwe [11]). Without loss of generality, we take the state
space of 𝜉 to be a finite set of unite vectors {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
} with

𝑒
𝑖

= (0, . . . , 1, . . . , 0) ∈ 𝑅𝑛. And 𝜉 has the following
semimartingale representation:

𝑑𝜉
𝑡
= 𝑄𝜉
𝑡
𝑑𝑡 + 𝑑𝑀

𝑡
, (1)

where 𝑄 = (𝑞
𝑖𝑗
)
𝑖,𝑗=1,2,...,𝑛

is 𝑄-matrix of 𝜉 and𝑀 = {𝑀
𝑡
}
0≤𝑡≤𝑇

is an 𝑅𝑛-valued martingale with respect to the filtration
generated by {𝜉

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} under 𝑃. Suppose that the stock

price 𝑆
𝑡
and interest rate 𝑟

𝑡
satisfy the following stochastic

differential equations (SDE):

𝑑𝑆
𝑡

𝑆
𝑡−

= (𝑟
𝑡
− 𝑘]
𝑡
) 𝑑𝑡 + 𝜎

1𝑡
𝑑𝑊
1𝑡
+ (𝑒
𝑌
𝑡− − 1) 𝑑𝑁 (𝑡) ,

𝑑𝑟
𝑡
= (𝑎
𝑡
− 𝑏
𝑡
𝑟
𝑡
) 𝑑𝑡 + 𝜎

2𝑡
𝑑𝑊
2𝑡
,

(2)

where 𝑊
1𝑡
, 𝑊
2𝑡
are standard Brownian motions and 𝜎

1𝑡
, 𝜎
2𝑡

are the stochastic volatility of the stock and the interest rate,
respectively. {𝑁

𝑡
}
0≤𝑡≤𝑇

is Poisson process with the stochastic
jump intensity {]

𝑡
}
0≤𝑡≤𝑇

, and the jump amplitude is controlled
by {𝑌
𝑡
}.𝑌
𝑠
and𝑌
𝑡
for 𝑠 ̸= 𝑡 independently identify distribution,

and write 𝑘 = 𝐸𝑒𝑌𝑖 − 1. Moreover, 𝑌
𝑡
, 𝑁
𝑡
are assumed to be

mutually independent. 𝜎
1𝑡
, 𝜎
2𝑡
, V
𝑡
, 𝑎
𝑡
, 𝑏
𝑡
are controlled by 𝜉

𝑡
,

that is,

𝜎
1𝑡
= ⟨𝜎
1
, 𝜉
𝑡
⟩, 𝜎

1
= (𝜎
11
, 𝜎
12
, . . . , 𝜎

1𝑛
) ∈ (0,∞)

𝑛
,

𝜎
2𝑡
= ⟨𝜎
2
, 𝜉
𝑡
⟩, 𝜎

2
= (𝜎
21
, 𝜎
22
, . . . , 𝜎

2𝑛
) ∈ (0,∞)

𝑛
,

]
𝑡
= ⟨], 𝜉

𝑡
⟩, ] = (]

1
, ]
2
, . . . , ]

𝑛
) ∈ (0,∞)

𝑛
,

𝑎
𝑡
= ⟨𝑎, 𝜉

𝑡
⟩, 𝑎 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) ∈ (0,∞)

𝑛
,

𝑏
𝑡
= ⟨𝑏, 𝜉

𝑡
⟩, 𝑏 = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) ∈ (0,∞)

𝑛
,

(3)

where ⟨⋅, ⋅⟩ denotes the inner product in 𝑅𝑛. Let 𝜏 denote the
default time of the writer of the option with default intensity
process 𝜆

𝑡
, and 𝜆

𝑡
is given by

𝑑𝜆
𝑡
= (𝛼
𝑡
− 𝛽
𝑡
𝜆
𝑡
) 𝑑𝑡 + 𝜎

3𝑡
𝑑𝑊
3𝑡
, (4)

where 𝑊
3𝑡

is standard Brownian motion and 𝜎
3𝑡

is the
stochastic volatility of default intensity.𝜎

3𝑡
, 𝛼
𝑡
, and𝛽

𝑡
are also

controlled by 𝜉
𝑡
and satisfy

𝜎
3𝑡
= ⟨𝜎
3
, 𝜉
𝑡
⟩, 𝜎

3
= (𝜎
31
, 𝜎
32
, . . . , 𝜎

3𝑛
) ∈ (0,∞)

𝑛
,

𝛼
𝑡
= ⟨𝛼, 𝜉

𝑡
⟩, 𝛼 = (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
) ∈ (0,∞)

𝑛
,

𝛽
𝑡
= ⟨𝛽, 𝜉

𝑡
⟩, 𝛽 = (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
) ∈ (0,∞)

𝑛
.

(5)

Moreover, we assume that𝑁
𝑡
, 𝑌
𝑡
are independent of𝑊

1𝑡
,𝑊
2𝑡
,

and 𝑊
3𝑡
and the covariance matrix of the Brownian motion

(𝑊
1𝑡
,𝑊
2𝑡
,𝑊
3𝑡
) is

(

1 𝜌
12

𝜌
13

𝜌
12

1 𝜌
23

𝜌
13

𝜌
23

1

) 𝑡. (6)

The filtrationF
𝑡
is generated byF

𝑡
= F𝑆
𝑡
∨F𝑟
𝑡
∨F𝜆
𝑡
∨F
𝜉

𝑇
∨

H
𝑡
, where F𝑆

𝑡
= 𝜎(𝑆

𝑠
, 0 ≤ 𝑠 ≤ 𝑡), F𝑟

𝑡
= 𝜎(𝑟

𝑠
, 0 ≤ 𝑠 ≤ 𝑡),

F𝜆
𝑡
= 𝜎(𝜆

𝑠
, 0 ≤ 𝑠 ≤ 𝑡), F𝜉

𝑡
= 𝜎(𝜉

𝑠
, 0 ≤ 𝑠 ≤ 𝑡), and H

𝑡
=

𝜎(1
(𝜏≤𝑠)

, 𝑠 ≤ 𝑡).

3. Pricing Options with Credit Risk

We consider the case of a European call option with credit
risk. Assume that the recovery rate is a constant𝑤. When the
seller of option defaults, the payoff is given by 𝑤 times the
payoff of the default-free option at maturity.Therefore, by the
risk neutral pricing theorem, the valuation of the European
call option at time 𝑡, with strike price 𝐾 and maturity 𝑇, is
given by

𝐶 (𝑡, 𝑇)

= 𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
(𝑤(𝑆
𝑇
− 𝐾)
+

1
(𝜏≤𝑇)

+ (𝑆
𝑇
− 𝐾)
+

1
(𝜏>𝑇)

) | F
𝑡
]

= 𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
(𝑤(𝑆
𝑇
−𝐾)
+

+(1−𝑤) (𝑆
𝑇
−𝐾)
+

1
(𝜏>𝑇)

) | F
𝑡
] .

(7)

Following Lando [15],

𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

1
(𝜏>𝑇)

| F
𝑡
]

= 1
(𝜏>𝑡)

𝐸 [𝑒
−∫
𝑇

𝑡
(𝑟
𝑠
+𝜆
𝑠
)𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
] .

(8)

We can obtain the following expression:

𝐶 (𝑡, 𝑇) = 𝑤𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
]

+ (1 − 𝑤) 1
(𝜏>𝑡)

𝐸 [𝑒
−∫
𝑇

𝑡
(𝑟
𝑠
+𝜆
𝑠
)𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
]

= 𝐼
1
+ 𝐼
2
.

(9)

Next, we calculate 𝐼
1
and 𝐼
2
, respectively. For 𝑠 > 𝑡, we have

𝑟
𝑠
= 𝑒
−∫
𝑠

𝑡
𝑏
𝑢
𝑑𝑢
𝑟
𝑡
+ ∫
𝑠

𝑡

𝑒
−∫
𝑠

V
𝑏
𝑢
𝑑𝑢
𝑎V 𝑑V + ∫

𝑠

𝑡

𝑒
−∫
𝑠

V
𝑏
𝑢
𝑑𝑢
𝜎
2V 𝑑𝑊2V.

(10)
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Integrated from 𝑡 to 𝑇 in both sides of (10),

∫
𝑇

𝑡

𝑟
𝑠
𝑑𝑠 = ∫

𝑇

𝑡

𝑒
−∫
𝑠

𝑡
𝑏
𝑢
𝑑𝑢
𝑑𝑠𝑟
𝑡
+ ∫
𝑇

𝑡

𝑎V 𝑑V∫
𝑇

V

𝑒
−∫
𝑠

V
𝑏
𝑢
𝑑𝑢
𝑑𝑠

+ ∫
𝑇

𝑡

𝜎
2V 𝑑𝑊2V ∫

𝑇

V

𝑒
−∫
𝑠

V
𝑏
𝑢
𝑑𝑢
𝑑𝑠.

(11)

Let𝑀(𝑥, 𝑦, 𝑇) = ∫
𝑇

𝑦
𝑒
−∫
𝑠

𝑦
𝑥
𝑢
𝑑𝑢
𝑑𝑠; then

∫
𝑇

𝑡

𝑟
𝑠
𝑑𝑠 = 𝑀 (𝑏, 𝑡, 𝑇) 𝑟

𝑡
+ ∫
𝑇

𝑡

𝑎V𝑀(𝑏, V, 𝑇) 𝑑V

+ ∫
𝑇

𝑡

𝜎
2V𝑀(𝑏, V, 𝑇) 𝑑𝑊

2V.

(12)

Similarly,

∫
𝑇

𝑡

𝜆
𝑠
𝑑𝑠 = 𝑀(𝛽, 𝑡, 𝑇) 𝜆

𝑡
+ ∫
𝑇

𝑡

𝛼V𝑀(𝛽, V, 𝑇) 𝑑V

+ ∫
𝑇

𝑡

𝜎
3V𝑀(𝛽, V, 𝑇) 𝑑𝑊

3V.

(13)

From (12) and (13), we have that

𝑍 (𝑡, 𝑇) := 𝐸 [exp{−∫
𝑇

𝑡

(𝑟
𝑠
+ 𝜆
𝑠
) 𝑑𝑠} | F

𝑡
]

= exp{−𝑀(𝑏, 𝑡, 𝑇) 𝑟
𝑡
−𝑀(𝛽, 𝑡, 𝑇) 𝜆

𝑡

− ∫
𝑇

𝑡

𝑎
𝑢
𝑀(𝑏, 𝑢, 𝑇) 𝑑𝑢

−∫
𝑇

𝑡

𝛼
𝑢
𝑀(𝛽, 𝑢, 𝑇) 𝑑𝑢}

× exp{1
2
∫
𝑇

𝑡

𝜎
2

2𝑢
𝑀
2
(𝑏, 𝑢, 𝑇) 𝑑𝑢

+
1

2
∫
𝑇

𝑡

𝜎
2

3𝑢
𝑀
2
(𝛽, 𝑢, 𝑇) 𝑑𝑢}

× exp{𝜌
23
∫
𝑇

𝑡

𝜎
2𝑢
𝜎
3𝑢
𝑀(𝑏, 𝑢, 𝑇)𝑀 (𝛽, 𝑢, 𝑇) 𝑑𝑢} .

(14)

Thus, we can define the probability measure 𝑄 by

𝑑𝑄

𝑑𝑃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨F
𝑡

=
exp {− ∫

𝑇

𝑡
(𝑟
𝑠
+ 𝜆
𝑠
) 𝑑𝑠}

𝐸 [exp {− ∫
𝑇

𝑡
(𝑟
𝑠
+ 𝜆
𝑠
) 𝑑𝑠} | F

𝑡
]

= exp{−1
2
∫
𝑇

𝑡

𝜎
2

2𝑢
𝑀
2
(𝑏, 𝑢, 𝑇) 𝑑𝑢

−
1

2
∫
𝑇

𝑡

𝜎
2

3𝑢
𝑀
2
(𝛽, 𝑢, 𝑇) 𝑑𝑢}

× exp{−𝜌
23
∫
𝑇

𝑡

𝜎
2𝑢
𝜎
3𝑢
𝑀(𝑏, 𝑢, 𝑇)𝑀 (𝛽, 𝑢, 𝑇) 𝑑𝑢}

× exp{−∫
𝑇

𝑡

𝜎
2V𝑀(𝑏, V, 𝑇) 𝑑𝑊

2V

−∫
𝑇

𝑡

𝜎
3V𝑀(𝛽, V, 𝑇) 𝑑𝑊

3V} .

(15)

By Girsanov’s theorem,

𝑑𝑊
𝑄

2𝑡
= 𝑑𝑊

2𝑡
+ 𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) 𝑑𝑡 + 𝜌

23
𝜎
3𝑡
𝑀(𝛽, 𝑡, 𝑇) 𝑑𝑡,

𝑑𝑊
𝑄

3𝑡
= 𝑑𝑊

3𝑡
+ 𝜎
3𝑡
𝑀(𝛽, 𝑡, 𝑇) 𝑑𝑡 + 𝜌

23
𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) 𝑑𝑡,

𝑑𝑊
𝑄

1𝑡
= 𝑑𝑊

1𝑡
+ 𝜌
12
𝑀
1
(𝑡) 𝑑𝑡 + 𝜌

13
𝑀
2
(𝑡) 𝑑𝑡,

(16)

where

𝑀
1
(𝑡) = 𝜎

2𝑡
𝑀(𝑏, 𝑡, 𝑇) + 𝜌

23
𝜎
3𝑡
𝑀(𝛽, 𝑡, 𝑇) ,

𝑀
2
(𝑡) = 𝜎

3𝑡
𝑀(𝛽, 𝑡, 𝑇) + 𝜌

23
𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) .

(17)

𝑊
𝑄

1𝑡
, 𝑊𝑄
2𝑡
, and 𝑊

𝑄

3𝑡
are standard Brownian motions under

probability measure 𝑄, and (𝑊
𝑄

1𝑡
,𝑊
𝑄

2𝑡
,𝑊
𝑄

3𝑡
) has the same

covariance matrix as (𝑊
1𝑡
,𝑊
2𝑡
,𝑊
3𝑡
). Therefore,

𝐸 [𝑒
−∫
𝑇

𝑡
(𝑟
𝑠
+𝜆
𝑠
)𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
]

= 𝑍 (𝑡, 𝑇) 𝐸
𝑄
((𝑆
𝑇
− 𝐾)
+

| F
𝑡
) .

(18)

In addition,

𝐸
𝑄
((𝑆
𝑇
− 𝐾)
+

| F
𝑡
)

= 𝐸
𝑄
(𝑆
𝑇
1
(𝑆
𝑇
≥𝐾)

| F
𝑡
) − 𝐾𝐸

𝑄
(1
(𝑆
𝑇
≥𝐾)

| F
𝑡
) .

(19)

By the solution of SDE (2),

𝑆
𝑇
= 𝑆
𝑡
exp{∫

𝑇

𝑡

(𝑟
𝑠
− 𝑘]
𝑠
−
1

2
𝜎
2

1𝑠
)𝑑𝑠

+∫
𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
1𝑠
+ ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
} .

(20)
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Under 𝑄,

𝑆
𝑇
= 𝑆
𝑡
exp{Λ (𝑡, 𝑇) + ∫

𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑄

1𝑠

+∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄

2𝑠
+ ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
} ,

(21)

where

Λ (𝑡, 𝑇) = − ∫
𝑇

𝑡

(𝑘]
𝑠
+
1

2
𝜎
2

1𝑠
)𝑑𝑠 +𝑀 (𝑏, 𝑡, 𝑇) 𝑟

𝑡

+ ∫
𝑇

𝑡

𝑎
𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑠 − ∫

𝑇

𝑡

𝜎
2

2𝑠
𝑀
2
(𝑏, 𝑠, 𝑇) 𝑑𝑠

− 𝜌
12
∫
𝑇

𝑡

𝜎
1𝑠
𝑀
1
(𝑠) 𝑑𝑠 − 𝜌

13
∫
𝑇

𝑡

𝜎
1𝑠
𝑀
2
(𝑠) 𝑑𝑠

− 𝜌
23
∫
𝑇

𝑡

𝜎
2𝑠
𝜎
3𝑠
𝑀(𝑏, 𝑠, 𝑇)𝑀 (𝛽, 𝑠, 𝑇) 𝑑𝑠.

(22)

So,

𝑃
𝑄
(𝑆
𝑇
≥ 𝐾 | F

𝑡
)

= 𝑃
𝑄
(∫
𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑄

1𝑠
+ ∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄

2𝑠

≥ ln (𝐾/𝑆
𝑡
) − Λ (𝑡, 𝑇) − ∫

𝑇

𝑡

𝑌
𝑠
𝑑𝑁
𝑠
)

= 𝑃
𝑄
(
∫
𝑇

𝑡
𝜎
1𝑠
𝑑𝑊
𝑄

1𝑠
+ ∫
𝑇

𝑡
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄

2𝑠

√Δ

≤
ln (𝑆
𝑡
/𝐾) + Λ (𝑡, 𝑇) + ∫

𝑇

𝑡
𝑌
𝑠
𝑑𝑁
𝑠

√Δ
)

=

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!
𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
𝐸 (𝑁 (𝑑

1
)) ,

(23)

where

Δ = ∫
𝑇

𝑡

𝜎
2

1𝑠
𝑑𝑠 + ∫

𝑇

𝑡

𝜎
2

2𝑠
𝑀
2
(𝑏, 𝑠, 𝑇) 𝑑𝑠

+ 2𝜌
12
∫
𝑇

𝑡

𝜎
1𝑠
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑠,

𝑑
1
=
ln (𝑆
𝑡
/𝐾) + Λ (𝑡, 𝑇) + ∑

𝑛

𝑗=1
𝑌
𝑗

√Δ
.

(24)

𝐸(⋅) is the expectation of 𝑌
𝑗
under 𝑃, and𝑁(⋅) is distribution

function of standard normal distribution. On the other hand,
let

L (𝑡, 𝑇)

:= 𝐸
𝑄
(𝑆
𝑇
| F
𝑡
)

= 𝑆
𝑡
𝑒
Λ(𝑡,𝑇) exp{1

2
∫
𝑇

𝑡

𝜎
2

1𝑠
𝑑𝑠 +

1

2
∫
𝑇

𝑡

𝜎
2

2𝑠
𝑀
2
(𝑏, 𝑠, 𝑇) 𝑑𝑠}

× exp{𝜌
12
∫
𝑇

𝑡

𝜎
1𝑠
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑠 + 𝑘∫

𝑇

𝑡

]
𝑠
𝑑𝑠} .

(25)

We can define the probability measure 𝑅 as follows:

𝑑𝑅

𝑑𝑄

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨F
𝑡

=
𝑆
𝑇

𝐸𝑄 (𝑆
𝑇
| F
𝑡
)

= exp{∫
𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑄

1𝑠
+ ∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄

2𝑠

−
1

2
∫
𝑇

𝑡

𝜎
2

1𝑠
𝑑𝑠}

× exp{−1
2
∫
𝑇

𝑡

𝜎
2

2𝑠
𝑀
2
(𝑏, 𝑠, 𝑇) 𝑑𝑠

−𝜌
12
∫
𝑇

𝑡

𝜎
1𝑠
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑠}

× exp{∫
𝑇

𝑡

𝑌
𝑠
𝑑𝑁
𝑠
− 𝑘∫
𝑇

𝑡

]
𝑠
𝑑𝑠} .

(26)

By Girsanov’s theorem, we have that

𝑑𝑊
𝑅

1𝑡
= 𝑑𝑊

𝑄

1𝑡
− 𝜎
1𝑡
𝑑𝑡 − 𝜌

12
𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) 𝑑𝑡,

𝑑𝑊
𝑅

2𝑡
= 𝑑𝑊

𝑄

2𝑡
− 𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) 𝑑𝑡 − 𝜌

12
𝜎
1𝑡
𝑑𝑡,

(27)

where, under 𝑅, 𝑊𝑅
1𝑡
, 𝑊𝑅
2𝑡

are standard Brownian motions
and their correlation coefficient is 𝜌

12
, 𝑁
𝑡
is Poisson process

with intensity (𝑘 + 1)]
𝑡
, and the density function of 𝑌

1
is

𝑒𝑦𝑓(𝑦)/(𝑘+1), where 𝑓(⋅) is the density function of 𝑌
1
under

𝑃. Since, under 𝑅,

𝑆
𝑇
= 𝑆
𝑡
exp{Λ (𝑡, 𝑇) + Δ + ∫

𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑅

1𝑠

+∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑅

2𝑠
+ ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
} ,

(28)
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then

𝐸
𝑄
(𝑆
𝑇
1
(𝑆
𝑇
≥𝐾)

| F
𝑡
)

= L (𝑡, 𝑇) 𝑃
𝑅
(𝑆
𝑇
≥ 𝐾 | F

𝑡
)

= L (𝑡, 𝑇) 𝑃
𝑅
(∫
𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑅

1𝑠
+ ∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑅

2𝑠

≥ ln(𝐾
𝑆
𝑡

) − Λ (𝑡, 𝑇) − Δ − ∫
𝑇

𝑡

𝑌
𝑠
𝑑𝑁
𝑠
)

= L (𝑡, 𝑇) 𝑃
𝑅
(
∫
𝑇

𝑡
𝜎
1𝑠
𝑑𝑊𝑅
1𝑠
+ ∫
𝑇

𝑡
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑅

2𝑠

√Δ

≤
ln (𝑆
𝑡
/𝐾) + Λ (𝑡, 𝑇) + Δ + ∫

𝑇

𝑡
𝑌
𝑠
𝑑𝑁
𝑠

√Δ
)

= L (𝑡, 𝑇)

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!
𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
𝐸
𝑅
(𝑁 (𝑑

2
)) ,

(29)

where

𝑑
2
=

ln (𝑆
𝑡
/𝐾) + Λ (𝑡, 𝑇) + Δ + ∑

𝑛

𝑗=1
𝑌
𝑗

√Δ

= 𝑑
1
+ √Δ

(30)

and 𝐸𝑅(⋅) is the expectation of 𝑌
𝑗
under 𝑅. By (23) and (29),

we have the following lemma.

Lemma 1. Consider the Following:

𝐸 [𝑒
−∫
𝑇

𝑡
(𝑟
𝑠
+𝜆
𝑠
)𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
]

= 𝑍 (𝑡, 𝑇)

×

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!

× 𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
[L (𝑡, 𝑇) 𝐸

𝑅
(𝑁 (𝑑

2
)) − 𝐾𝐸 (𝑁 (𝑑

1
))] .

(31)

In the following; in order to calculate 𝐼
1
, we write

𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
]

= 𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
𝑆
𝑇
1
(𝑆
𝑇
≥𝐾)

| F
𝑡
]

− 𝐾𝐸[𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
1
(𝑆
𝑇
≥𝐾)

| F
𝑡
]

= 𝐼
3
− 𝐼
4
.

(32)

Denote by 𝑃(𝑡, 𝑇) the value at time 𝑡 of a 𝑇 maturity zero
coupon bond whose face value is 1. Then

𝑃 (𝑡, 𝑇) = 𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
| F
𝑡
] . (33)

From (12),

𝑃 (𝑡, 𝑇) = exp{−𝑀(𝑏, 𝑡, 𝑇) 𝑟
𝑡
− ∫
𝑇

𝑡

𝑎V𝑀(𝑏, V, 𝑇) 𝑑V

+
1

2
∫
𝑇

𝑡

𝜎
2

2V𝑀
2
(𝑏, V, 𝑇) 𝑑V} ,

(34)

𝑑𝑃 (𝑡, 𝑇)

𝑃 (𝑡, 𝑇)
= 𝑟
𝑡
𝑑𝑡 −𝑀 (𝑏, 𝑡, 𝑇) 𝜎

2𝑡
𝑑𝑊
2𝑡
. (35)

Define the Radon-Nikodym derivative given by

𝑑𝑄𝑇

𝑑𝑃
=

𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠

𝐸 [𝑒−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠 | F

𝑡
]

= exp{−∫
𝑇

𝑡

𝑀(𝑏, V, 𝑇) 𝜎
2V 𝑑𝑊2V

−
1

2
∫
𝑇

𝑡

𝜎
2

2V𝑀
2
(𝑏, V, 𝑇) 𝑑V} ,

(36)

and by Girsanov’s theorem, under 𝑄𝑇,

𝑑𝑊
𝑄
𝑇

2𝑡
= 𝑑𝑊

2𝑡
+ 𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) 𝑑𝑡

𝑑𝑊
𝑄
𝑇

1𝑡
= 𝑑𝑊

1𝑡
+ 𝜌
12
𝜎
2𝑡
𝑀(𝑏, 𝑡, 𝑇) 𝑑𝑡.

(37)

Thus 𝑆
𝑇
can be rewritten as

𝑆
𝑇
= 𝑆
𝑡
exp{A (𝑡, 𝑇) + ∫

𝑇

𝑡

𝑀(𝑏, V, 𝑇) 𝜎
2V 𝑑𝑊

𝑄
𝑇

2V

+∫
𝑇

𝑡

𝜎
1V 𝑑𝑊

𝑄
𝑇

1V + ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
} ,

(38)

where

A (𝑡, 𝑇) = − ∫
𝑇

𝑡

(𝑘]
𝑠
+
1

2
𝜎
2

1𝑠
)𝑑𝑠 +𝑀 (𝑏, 𝑡, 𝑇) 𝑟

𝑡

+ ∫
𝑇

𝑡

𝑎
𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑠 − ∫

𝑇

𝑡

𝜎
2

2𝑠
𝑀
2
(𝑏, 𝑠, 𝑇) 𝑑𝑠

− 𝜌
12
∫
𝑇

𝑡

𝜎
1𝑠
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑠.

(39)
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Then

𝑃
𝑄
𝑇

(𝑆
𝑇
≥ 𝐾 | F

𝑡
)

= 𝑃
𝑄
𝑇

(∫
𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑄
𝑇

1𝑠
+ ∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄
𝑇

2𝑠

≥ ln(𝐾
𝑆
𝑡

) −A (𝑡, 𝑇) − ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
)

= 𝑃
𝑄
𝑇

(
∫
𝑇

𝑡
𝜎
1𝑠
𝑑𝑊
𝑄
𝑇

1𝑠
+ ∫
𝑇

𝑡
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄
𝑇

2𝑠

√Δ

≤
ln (𝑆
𝑡
/𝐾) +A (𝑡, 𝑇) + ∫

𝑇

𝑡
𝑌
𝑠−
𝑑𝑁
𝑠

√Δ
)

=

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!
𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
𝐸 (𝑁 (𝑑

3
)) ,

(40)

where 𝐸(⋅) is the expectation of 𝑌
𝑗
under 𝑃,

𝑑
3
=
ln (𝑆
𝑡
/𝐾) +A (𝑡, 𝑇) + ∑

𝑛

𝑗=1
𝑌
𝑗

√Δ
. (41)

Therefore,

𝐼
4
= 𝐾𝑃 (𝑡, 𝑇) 𝐸

𝑄
𝑇

(1
(𝑆
𝑇
≥𝐾)

| F
𝑡
)

= 𝐾𝑃 (𝑡, 𝑇)

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!
𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
𝐸 (𝑁 (𝑑

3
)) .

(42)

Finally, let

𝐴 (𝑡, 𝑇) := 𝐸 (𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
𝑆
𝑇
| F
𝑡
)

= 𝑆
𝑡
exp{−∫

𝑇

𝑡

(𝑘]
𝑠
+
1

2
𝜎
2

1𝑠
)𝑑𝑠

+
1

2
∫
𝑇

𝑡

𝜎
2

1𝑠
𝑑𝑠 + 𝑘∫

𝑇

𝑡

]
𝑠
𝑑𝑠} .

(43)

We define

𝑑𝑄𝑆

𝑑𝑃
=

𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠𝑆
𝑇

𝐸 [𝑒−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠𝑆
𝑇
| F
𝑡
]

= exp{∫
𝑇

𝑡

𝜎
1V 𝑑𝑊1V −

1

2
∫
𝑇

𝑡

𝜎
2

2V 𝑑V

+∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁 (𝑠) − 𝑘∫

𝑇

𝑡

]
𝑠
𝑑𝑠} ,

(44)

and by Girsanov’s theorem, under 𝑄𝑆,

𝑑𝑊
𝑄
𝑆

1𝑡
= 𝑑𝑊

1𝑡
− 𝜎
1𝑡
𝑑𝑡

𝑑𝑊
𝑄
𝑆

2𝑡
= 𝑑𝑊

2𝑡
− 𝜌
12
𝜎
1𝑡
𝑑𝑡,

(45)

and, under 𝑄𝑆, 𝑁
𝑡
is Poisson process with intensity (𝑘 + 1)]

𝑡
,

and the density function of 𝑌
1
is 𝑒𝑦𝑓(𝑦)/(𝑘 + 1), where 𝑓(⋅) is

the density function of 𝑌
1
under 𝑃. Since, under 𝑄𝑆,

𝑆
𝑇
= 𝑆
𝑡
exp{A (𝑡, 𝑇) + Δ + ∫

𝑇

𝑡

𝑀(𝑏, V, 𝑇) 𝜎
2V 𝑑𝑊

𝑄
𝑆

2V

+∫
𝑇

𝑡

𝜎
1V𝑑𝑊

𝑄
𝑆

1V + ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
} ,

(46)

then

𝑃
𝑄
𝑆

(𝑆
𝑇
≥ 𝐾 | F

𝑡
)

= 𝑃
𝑄
𝑆

(∫
𝑇

𝑡

𝜎
1𝑠
𝑑𝑊
𝑄
𝑆

1𝑠
+ ∫
𝑇

𝑡

𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄
𝑆

2𝑠

≥ ln(𝐾
𝑆
𝑡

) −A (𝑡, 𝑇) − Δ − ∫
𝑇

𝑡

𝑌
𝑠−
𝑑𝑁
𝑠
)

= 𝑃
𝑄
𝑇

(
∫
𝑇

𝑡
𝜎
1𝑠
𝑑𝑊
𝑄
𝑆

1𝑠
+ ∫
𝑇

𝑡
𝜎
2𝑠
𝑀(𝑏, 𝑠, 𝑇) 𝑑𝑊

𝑄
𝑆

2𝑠

√Δ

≤
ln (𝑆
𝑡
/𝐾) +A (𝑡, 𝑇) + Δ + ∫

𝑇

𝑡
𝑌
𝑠−
𝑑𝑁
𝑠

√Δ
)

=

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!
𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
𝐸
𝑆
(𝑁 (𝑑

4
)) ,

(47)

where 𝐸𝑆(⋅) is the expectation of 𝑌
𝑗
under 𝑄𝑆,

𝑑
4
=
ln (𝑆
𝑡
/𝐾) +A (𝑡, 𝑇) + Δ + ∑

𝑛

𝑗=1
𝑌
𝑗

√Δ

= 𝑑
3
+ √Δ.

(48)

From (42) and (33), we can conclude the following lemma.

Lemma 2. Consider the following:

𝐸 [𝑒
−∫
𝑇

𝑡
𝑟
𝑠
𝑑𝑠
(𝑆
𝑇
− 𝐾)
+

| F
𝑡
]

=

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!

× 𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
[𝐴 (𝑡, 𝑇) 𝐸

𝑆
(𝑁 (𝑑

4
))−𝐾𝑃 (𝑡, 𝑇) 𝐸 (𝑁 (𝑑

3
))] .

(49)

Combined with the previous lemmas, the price of European call
option at time 𝑡 is given by the following theorem.
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Table 1: The parameter values.

Parameter name Value in state 𝑒
1

Value in state 𝑒
2

Volatility of 𝑆 𝜎
11
= 0.2 𝜎

12
= 0.4

Jump intensity ]
1
= 15 ]

2
= 30

Speed of reversion of 𝑟 𝑏
1
= 2 𝑏

2
= 1

Long-term average of 𝑟 𝑎
1
/𝑏
1
= 0.04 𝑎

2
/𝑏
2
= 0.02

Volatility of 𝑟 𝜎
21
= 0.15 𝜎

22
= 0.3

Speed of reversion of 𝜆 𝛽
1
= 1.5 𝛽

2
= 2

Long-term average of 𝜆 𝛼
1
/𝛽
1
= 0.01 𝛼

2
𝛽
2
= 0.02

Volatility of 𝜆 𝜎
31
= 0.25 𝜎

32
= 0.45

Initial stock price 𝑆
0
= 100

Initial interest rate 𝑟
0
= 0.04

Initial default intensity 𝜆
0
= 0.5

Mean jump size 𝜇
𝐽
= 0

Standard deviation of jump size 𝜎
𝐽
= 0.1

Theorem 3. The price of European call option with credit risk
at time 𝑡 is

𝐶 (𝑡, 𝑇)

=

∞

∑
𝑛=0

(∫
𝑇

𝑡
]
𝑠
𝑑𝑠)
𝑛

𝑛!

× 𝑒
−∫
𝑇

𝑡
]
𝑠
𝑑𝑠
[𝑤 (𝐴 (𝑡, 𝑇) 𝐸

𝑆
(𝑁 (𝑑

4
))

− 𝐾𝑃 (𝑡, 𝑇) 𝐸 (𝑁 (𝑑
3
)))

+ (1 − 𝑤) 1
(𝜏>𝑡)

𝑍 (𝑡, 𝑇)

× (L (𝑡, 𝑇) 𝐸
𝑅
(𝑁 (𝑑

2
))

− 𝐾𝐸 (𝑁 (𝑑
1
)))] .

(50)

4. Numerical Analysis

In this section, we will employ Monte Carlo simulation and
perform a numerical analysis for European-style call option
with credit risk under theMarkov-modulated jump-diffusion
model. We consider that the Markov chain 𝜉 has two states,
which means that macroeconomic shifts between the two
states: 𝑒

1
(“boom” or “good”) and 𝑒

2
(“recession” or “bad”).

We assume that the current economy is in boom and that the
transition probability matrix of the two-state Markov chain 𝜉

is given by

(
𝑝
11

𝑝
12

𝑝
21

𝑝
22

) = (
0.7 0.3

0.2 0.8
) . (51)

Assume that 𝑌
𝑡
is normally distributed with mean 𝜇

𝐽
and

standard deviation 𝜎
𝐽
. We will adopt the specimen values

for the model parameters as Table 1. We consider a range of
spot-to-strike ratios 𝑆

0
/𝐾 from 0.8 to 1.2 and assume that one

year has 252 trading days. We perform 10 000 simulations for
computing the option price.
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Figure 1: The option price with different recovery rate for 𝑇 = 1,
𝜌
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= 0.7, 𝜌
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= 0.5, and 𝜌
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= 0.6.
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Figure 2: The option price with different maturity 𝑇 for 𝜔 = 0.4,
𝜌
12
= 0.7, 𝜌

13
= 0.5, and 𝜌

23
= 0.6.

For each 𝜔 = 0.4, 0.6, 0.8, 1, we consider the impact of
the spot-to-strike ratio on the option price. From Figure 1, we
observe that the option price increases as the spot-to-strike
ratio increases. We can also see that the greater the 𝜔, the
greater the option price. When 𝜔 = 1, it follows that there
is not default risk. It is a result of the fact that the payoff
at the maturity will increase as the recovery rate increases.
Figure 2 depicts the plot of the option price against the spot-
to-strike ratio for each maturity 𝑇 = 0.5, 1, 1.5. From these
plots, we find that the longer the maturities, the greater the
option price.

In the following, we compare the option price with
different correlation coefficients for fixed maturity 𝑇 = 1
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Figure 3:The option price with different correlation coefficients 𝜌
12

for 𝑇 = 1, 𝜔 = 0.4, 𝜌
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= 0.5, and 𝜌

23
= 0.6.
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Figure 4:The option price with different correlation coefficients 𝜌
13

for 𝑇 = 1, 𝜔 = 0.4, 𝜌
12
= 0.7, and 𝜌

23
= 0.6.

and recovery rate 𝜔 = 0.4. Figure 3 illustrates that option
price increases as correlation coefficient 𝜌

12
increases. From

Figure 4, we can also see that option price decreases as
correlation coefficient 𝜌

13
increases.

In Figure 5, we present how the option prices vary with
the changes of the annual jump intensity ]. Figure 5 displays
a large change in the option price due to the variation of the
jump intensity. The option price increases as jump intensity
increases.
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Figure 6: The option price in Markov-modulated model and non-
Markov-modulated models.

Finally, we investigate the difference of the option price
in Markov-modulated model and non-Markov-modulated
models. From Figure 6, we can observe that the call option
price in good economy is lower than that in bad economy.The
reason is that when economy is bad, the volatility of the risky
asset is great so that the option price is higher. In our model,
we assume that the current economy is good, so Markov-
modulated model is close to the model for a good economy,
while the two plots and the model for a bad economy are
relatively far apart. InMarkov-modulatedmodel, we take into
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consideration the changes of the state of the economy, so
Markov-modulated model is more in accord with the reality
for the pricing of the defaultable options.

5. Conclusion

The pricing of European option with credit risk in a reduced
form model was studied, while the stock price was driven by
Markov-modulated jump-diffusion models. The interest rate
and the default intensity followed theVasicekmodels, and the
parameters were also controlled by the same Markov chain.
Compared with most of the credit risk models, the main
advantage is that we incorporated Markov-modulated rates
into the models. We applied Girsanov’s theorem to obtain the
equivalent martingale measure and derived the closed form
formula for the valuation of the European option. Finally,
from the numerical illustrations, we obtain the effects of the
recovery rate, the maturity, the correlation coefficients, and
the jump intensity of stock on the option price.
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