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Deterministic inventory model, the economic order quantity (EOQ), reveals that carrying inventory or ordering frequency follows
a relation of tradeoff. For probabilistic demand, the tradeoft surface among annual order, expected inventory and shortage are
useful because they quantify what the firm must pay in terms of ordering workload and inventory investment to meet the customer
service desired. Based on a triobjective inventory model, this paper employs the successive approximation to obtain efficient control
policies outlining tradeoffs among conflicting objectives. The nondominated solutions obtained by successive approximation are
further used to plot a 3D scatterplot for exploring the relationships between objectives. Visualization of the tradeoffs displayed by
the scatterplots justifies the computation effort done in the experiment, although several iterations needed to reach a nondominated
solution make the solution procedure lengthy and tedious. Information elicited from the inverse relationships may help managers
make deliberate inventory decisions. For the future work, developing an efficient and effective solution procedure for tradeoft
analysis in multiobjective inventory management seems imperative.

1. Introduction

Inventory control is an important activity that appears in any
kind of organization. For this reason, it has been studied
extensively in the past several decades. Most inventory
models aggregate different cost concepts, such as ordering
cost, carrying cost, and shortage cost, into a single-objective
formulation. Optimal decisions about when to order and
how much to order are then solved by single-objective
optimization techniques. However the insight gained from
the oldest inventory model, economic order quantity (EOQ),
reveals that inventory management should be considered as a
biobjective optimization problem to strike a balance between
inventory carrying and annual orders. Practically speaking,
inventory decisions involve tradeoffs related to operational
efficiency and customer service.

Brown [1, 2] first examined the tradeoft between invest-
ment in working stock and annual ordering cost. He intro-
duced the concept of exchange curve shown in Figure 1.
The curve demonstrates how capital invested in working
stocks can be traded for operating expenses of ordering.
Points below the curve are infeasible, and decisions located
above the curve are suboptimal. Suboptimal policies can
be improved by moving back to the curve (ie., seeking
possible improvement from point A to B or C). Starr and
Miller [3] determined tradeoffs between two performance
measures: (i) number of orders per year (workload) and (ii)
average investment in inventory in the case of multiple items.
Gardner and Dannenbring [4] introduced customer service
as another measure, along with workload and inventory
investment, and generalized above exchange curve analysis
to the optimal policy surface in case of probabilistic demand.
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FIGURE I: The exchange curve for deterministic inventory model.

The model and solution technique they used is still based
on single-objective optimization. Bookbinder and Chen [5]
proposed a multiobjective formulation for analyzing multi-
echelon inventory and distribution systems. They argued that
points on exchange curve or policy surface are equivalent
to the nondominated solutions concept of multiobjective
optimization. Although it could be the first multiple criteria
generalizations of earlier studies, the model was solved by
classical optimization techniques.

To a certain extent, the aforementioned tradeoff analysis
of inventory management is developed by single-objective
optimization. The motivation of this study aims to develop an
intrinsically multiobjective approach for building the trade-
oft surface of probabilistic inventory systems. Differences
between traditional and multiobjective approach are not only
in their problem formulations, but also the latter simulta-
neously treats several objectives analytically or heuristically
under certain notion of multiobjective optimality [6, 7].

Gutiérrez et al. [8] considered a dynamic single facility
single-item lot size problem. Although the total demand is
assumed to be a fixed value, the distribution of this demand
among different periods is unknown. They determined all the
Pareto-optimal or nondominated production plans that are
robust to any possible occurrence of all scenarios. Gutiérrez
et al. [9] presented the characterization of the nondominated
optimal solution set and use it to correct the solution method
previously proposed by Bookbinder and Chen [5].

For the multiobjective exchange curve, Tsou [7] presented
a two-stage framework consisting of multiobjective particle
swarm optimization (MOPSO) and technique for order
preference by similarity to ideal solution (TOPSIS). At the
first stage, MOPSO 1is used to generate the tradeoff (or
nondominated) front of the triobjective inventory model in
Agrell [10]. Then, a preferred solution is selected by TOP-
SIS according to subjective preferences of decision makers.
Tsou and Kao [11] also developed a metaheuristic based on
electromagnetism-like mechanism (EM) to approximate the
Pareto-optimal front without using any prior or interactive
preference. They showed that the metaheuristic can find
similar Pareto-optimal solutions as the popular interactive
procedure Step method (STEM) did [12]. Tsou [13] further
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showed that evolutionary Pareto optimizers could generate
tradeoft solutions potentially ignored by the well-known
simultaneous method.

Nevertheless, we recently notice that the tradeoft solu-
tions of the above studies actually laid on an exchange curve,
instead of forming a tradeoff surface in the 3D objective
space. It apparently indicates that some of the objectives,
including minimization of expected annual cost, expected
annual number of stockout occasions, and expected annual
number of items stocked out, are not conflicting with each
other. Among which, the last two objectives are redundant
because they relate to the same concept of shortage but
different measures. Consequently, such a kind of triobjective
models was not properly justified in the above studies.

This paper first presents a triobjective model without
redundancy in the next section. Nonredundancy is assured by
dropping all the marginal cost parameters out of the classical
fixed order model. After that, a successive approximation
procedure based on the Lagrange method is utilized to
iteratively search for nondominated solutions and efficient
control policies. Tradeoffs among workload, inventory, and
shortage are visualized by three-dimensional scatterplots.
Although it is a time-consuming job to use the successive
approximation to find the tradeoft surfaces of multiobjective
model, all solutions found are ensured to be Pareto-optimal
in comparison with other search methods, such as genetic
algorithms. Finally, conclusions and directions for future
research are drawn out accordingly.

2. Model Building and Solution Procedures

2.1. A Triobjective Model. The reorder point lot size system,
(r,Q), is a popular control method under probabilistic
demand. An order of size Q will be triggered immediately
whenever the inventory position drops to the reorder point
r or lower. Classical (r,Q) model minimizes a lump-sum
cost including ordering cost, carrying cost, and stockout cost
[14]. The triobjective model below intrinsically restores the
nature of conflicts among objectives that are to minimize the
workload, inventory, and shortage. Also, multiobjective (r, Q)
model does not run into the incommensurate issue while
aggregating objectives of different measures into a single one.
The notations used here are described as follows.

D is the average annual demand,
L is the lead time,

D, is the lead time demand. It is normally distributed
with mean y; and standard deviation o,

SS is the safety stock, which is proportional to the
standard deviation of lead time demand. That is, SS =
ko, where k represents the safety factor,

r is the aforementioned reorder point, which equals
to the average lead time demand plus the safety stock.
Thatis,r = p; +koy, and ¢(z) is the probability density
function of standard normal distribution.
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A multiobjective (r, Q) model is formulated as follows:

D
Min W =—, 1
lin o @
W12
I\;I’(Bn I= 5 + kop, (2)
. _ Doy, «©
l\lngn S = Q J-k (z-k)p(z)dz (3)
subject to the following:
0<Q<D, (4)
0<k< 2. (5)
o

Equation (1) represents the number of annual order
(in cycles per year, also called workload). Equation (2) is
the sum of cycle and safety stocks (in units carrying per
year). Equation (3) denotes the average number of demand
not covered from stock annually (in units short per year).
Inequality (4) ensures that the order size (units per order)
should be nonnegative and not more than the average annual
demand. Inequality (5) guarantees that the safety stock (in
units) will not be greater than the average annual demand and
should be nonnegative.

The notion of optimality in single-objective optimization
is straightforward, because the optimal solution is the one
that realizes the maximum (or the minimum) of the objective
function. However, the optimality for a multiobjective opti-
mization problem is not so easy to understand because not
all feasible solutions can be compared completely. Generally
speaking, multiobjective optimization problems rarely have
solutions that simultaneously optimize all of the objectives; as
aresult we are trying to optimize each objective to the greatest
extent possible. There exists a set of solutions, referred as
nondominated solutions, which are better than others in the
search space when considering all the objectives. For the
minimization problem (in Section 2.1), a control parameter
xl = (ky, Q) is said to strongly dominate XK = (ky, Qy)
(denoted by x! < x%) ifand only if Wi(x') < WD), I(xh) <
I(x?), and S(x') < S(x?). That is, solution x is strictly better
than solution x? in all the cost and service objectives ([15,
pp. 32]). Less stringently, a decision vector x' dominates x”
(denoted by x' < x?) ifand only ifW(x!) < W), I(x!) <
1(x%), S(x!) < S(x?) and at least one of above inequality
is strictly held ([15, pp. 28]). For other multiobjective (or
multicriteria) concepts, please refer to Ehrgott [16].

Undoubtedly, we are not interested in solutions domi-
nated by other solutions. Solutions that are not dominated
by any other solutions are called nondominated in objective
space or efficient in decision space. It means that the improve-
ment of some objective could only be achieved at the expense
of other objectives. This coincides with the exchange curve
concept mentioned earlier. In a multiobjective optimization
problem, there are normally a large number of nondominated
solutions due to the conflicts among objectives. Hence, it is
difficult to find the whole set of nondominated solutions.

And because the nondominated set is usually unknown,
most optimizers try to find a finite number of nondominated
solutions to approximate the set. The successive approxima-
tion approach stated below can be used to search for the
nondominated solutions of the triobjective inventory model.

2.2. Successive Approximation Based on Lagrange Method. A
single objective transformation is first developed as follows.
Equation (3) is kept as the objective function and treats (1)
and (2) as constraints. That is,

Min §
kQ
subjectto W =W’ (6)

!

I=1,

where W' and I' are budgets on workload and inventory.

To solve this equality constrained optimization problem,
the Lagrange method is employed here. After introducing the
Lagrangian multipliers Ay, and A, the Lagrangian function is
as follows:

L Q) = ot [ = Rp () ds
+A; (% + kop - I'>+/\W(g —W').
(7)

Some simplifying notations are introduced before presenting
the successive approximation algorithm. Let

P= J ¢ (2)dz, (8)
k

E-o, LOO (z-K) ¢ (2)dz, )

P is the probability of a stockout per order cycle and
E is the expected number of shortage per order cycle.
Simple algebra provides the following equations used in the
successive approximation:

A= (10
2(I' - ko)
p:AIFQ, (1)
_ L (MQ _DE
= (-7 ) 2
_ [2D(E+Ay) 3
Q—\j—/\l . (13)

To search for the efficient (k;, Q;) policy, the search steps are
proposed as follows.



Setk=0,P=05
Compute A by (10)

|

Set P =0.5
Compute Q by (11)

l

1
SetE= ——o0o
V2n

Compute Ay, by (12)

Update Q by (13)
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FI1GURE 2: Flow chart of the search algorithm.

Step 1. Initialize A;: Compute A; using (10) with k = 0 and
P =0.5.

Step 2. Initialize Q: Compute Q using (11) with P = 0.5.

Step 3. Initialize A,,: Compute Ay, using (12) with E =
(1/V2m)o corresponds to zero safety stock.

Step 4. Update Q: Compute Q using (13).

Step 5. Update P and k: Compute P with (11) and look up k
imputed by P.

Step 6. Check constraints: If both workload and investment
constraints are satisfied, then output the results. Otherwise,
update A}, E (using (9)), and Ay, then go back to Step 4.

The search begins with an initial guess of zero safety stock.
This allows us to use (10) to derive an initial A;, which in

turn, determines the initial Q using (11). However, (12)-(13)
for Ay, and Q are interdependent, preventing their use in
the initialization phase. Rearranging (11), however, we can
derive an equation for Q which does not require an estimate
of Ayy.. The Q based on (11) is then used to provide an initial
estimate of A, from (13). Thereafter the search progresses by
iteratively updating values for Q, P (and correspondingly k),
A;, and Ay, using (13), (11), (10), and (12), respectively, until
both the workload and investment constraints are satisfied.
The flow chart of the above search algorithm is shown in
Figure 2.

3. Numerical Results

Pharmaceutical inventory data with four items (Table 1) were
fed into the triobjective model. The successive approximation
was coded in R [17], and all computation was executed on
a laptop computer. Ten representative solutions for each



Journal of Applied Mathematics

TABLE 1: The pharmaceutical data.

Item D oL

1 3412 53.354
2 490 5.027
3 4736 57911
4 200 2.969

TaBLE 2: Tradeoff solutions of Item 1 generated by successive
approximation.

Efficient solution Nondominated solution

Sol. no Tter
k w 1
1 94.804 0.049 35990 50.000 720.207 817
2 162.532 0.351 20.993  99.992 277.522 20°
3 98.804 0.986 35990 99.999 164.354 34
4 83.238 1.094 40.991 99.999 151.799 41
5 162.51 1.287 20.996 149.931 52407 207
6 94.798 1.923 35.992  149.993  19.999 27
7 131.234 2.517 25.999  199.92 2.635 26
8 213.250 2.686 16.000 249.915 0.948 41
9 110.065 3.653 31.000 249.922 0.052 32
10 110.065 4.590 31.000 299911 0.001 40
Min. 83.238 0.049 16.000  50.000 0.001 20
Max. 213.250 4.590 40.991 299911 720.207 81

T and * represent the minimum and the maximum numbers of iterations,
respectively.

item generated by successive approximation are shown in
Tables 2, 3, 4, and 5. The columns of nondominated solutions
demonstrate that the improvement of some objective(s) could
only be achieved at the expense of other objectives. For
example, solution 3, compared to solution 4, in Table 2 gets
better in workload at the expense of shortage.

Three-dimensional scatterplots for each item are illus-
trated in Figures 3, 4, 5, and 6. Any one can visually
check the tradeoffs displayed in scatterplots by adding planes
parallel to I-S or W-S plane. With a fixed workload, expected
shortage decreases as expected inventory increases. At a fixed
inventory level, increases in workload lead to a reduction
of expected shortage. All these findings are intuitive and
straightforward.

For the computation effort, we notice that only one
solution in Table2 can be obtained after at least twenty
iterations. And the largest iterations to reach a nondominated
solution is eighty-one. Ranges of other items are between
eight to sixty-six iterations. Hence, creating the scatterplot of
workload, inventory, and shortage by successive approxima-
tion is lengthy and tedious.

The quality of a set of tradeoft solutions is evaluated
quantitatively in terms of accuracy and diversity. A metric
called hypervolume (H) is used to demonstrate the accuracy
of the nondominated solutions. It calculates the size of the
area that is dominated by a nondominated set and is defined
as follows. The idea is that the larger the area the solutions can

TaBLE 3: Tradeoft solutions of Item 2 generated by successive
approximation.

Efficient solution Nondominated solution

Sol. no. Iter
k w I S
1 18.8519 0.114 25.9921 9.9989 450181 15"
2 23.3406  0.6575  20.9935 14.9757 16.193 15
3 30.6264  0.9159 159992 199176  7.8443 17
4 13.6139 1.6284 35,9927 14.9929 3.9316 21
5 11.9541 1.794 40.9901 14.9954 2.9865 22
6 18.8469  2.0863 25.999 199113 0.8779 21
7 15.8077  2.3897 30.9976  19.917 0.4372 21
8 11.9532 2.781 40.9934 19.9568 0.1671 22
9 18.8462 3.0794 26 249033 0.0376 30
10 30.625 3.8973 16 349042 0.0009 60°
Min. 11.9532 0.114 159992 9.9989  0.0009 15
Max. 30.6264  3.8973  40.9934 349042 45.0181 60

T and * represent the minimum and the maximum numbers of iterations,
respectively.

TABLE 4: Tradeoft solutions of Item 3 generated by successive
approximation.

Efficient solution Nondominated solution

Sol. no. Tter
k w 1 S
1 296.134 0.032 15.993 149.924 354.824 g
2 430.546 0.598 11 249913  107.77 25
3 789.333 0.954 6 44991 31.58 59*
4 152.82 1.27 30.991 149964 87.038 21
5 225.525 1.505 21 199.918  35.237 25
6 152.781 2.133 30.999 199.911 10.597 24
7 115.534 2.455 40.992  199.945 5.463 24
8 296 2.623 16 299.901 1.26 50
9 131.556 3.18 36 249913 0.416 30
10 152.774 3.86 31 299.91 0.024 41
Min. 115.512 0.032 6 149.924 0.024 8

Max. 789.333 3.86 40.992 49991 354.824 59

Tand * represent the minimum and the maximum numbers of iterations,
respectively.

dominate in the objective space, the better it is [18]:

—

Il
—

(fimax _ fimin) , (14)

where M is the number of objectives. Figure 7 shows the pic-
torial explanation of H in which O’ represents the reference
point and S is the nondominated set.

Keeping the nondominated set as diverse as possible
is very important. Here spacing (S) and maximum spread
(D) are used to evaluate the distribution and spread of



TABLE 5: Tradeoff solutions of Item 4 generated by successive
approximation.

Efficient solution Nondominated solution

Sol. n Iter
k w 1 S
1 18.1965 0.2896 109911 9.9582 8.8351 10°
2 5.5568 0.7482 35.9916 5 14.059 36
3 33.3333 1.0901 6 19.9032 1.2465 28
4 12.5064 1.2415 15.9918 99393 2.4446 15
5 9.527 1.7531 20.993 9.9686 1.0003 18
6 7.6947 2.0674 259918 9.9854 0.546 20
7 5.5571 2.4315 359902 99978 0.2642 24
8 33.3333 2.7747 6 249047 0.0148 66°
9 12.5 2.9139 16 14.9015 0.0245 28
10 7.6925 3.7241 25.9993 14.9032 0.0018 25
Min. 5.5568 0.2896 6 5 0.0018 10
Max. 33.3333 3.7241 359916 24.9047 14.059 66

T and * represent the minimum and the maximum numbers of iterations,
respectively.

the nondominated fronts generated by successive approxima-
tion:

s

(15)

— 2
A R
D=\ S min )

k=1

where d; = min; gz, Zli:l | fi - £l f represents the kth
criterion function value of the nondominated solution 7, and
d is the mean value of the absolute distance measure where
d = Y2 (d,/IA)).

Larger above measures are better except for the spacing.
Table 6 shows the results of the successive approximation
method. If there is a reference solutions set known to
decision makers or generated by other solution procedures,
one can use the figures in Table 6 to compare successive
approximation with the benchmark that he/she is interested
in. After verifying the validity of nondominated (W,I,S)
solutions generated by successive approximation, they can
be used to construct a tradeoff surface for inventory control.
It helps managers choose an appropriate control policy for
probabilistic demand, such as the fund level tied in inventory
versus the service level under fixed workload.

4. Conclusions and Suggestions

Tradeoff analysis in inventory management is useful in
quantifying what the firm must pay in terms of workload
and investment to meet the desired customer service. A
triobjective model is presented first to generate the effi-
cient (k,Q) policies in decision space that correspond to
the nondominated (W,1,S) solutions in objective space.
Nonredundancy is assured by dropping all the marginal cost
parameters out of the classical fixed order model. Such that
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FIGURE 3: Scatterplot of Item 1 nondominated solutions from
successive approximation.

TABLE 6: Performance measures of the successive approximation
approach.

D Accuracy Distribution

H Spacing Spread
1 42,694,515 0.091 1.532
2 7,215,908 0.097 1.232
3 68,798,878 0.121 1.637
4 476,041 0.105 1.362

leads to a triobjective model which intends to minimize the
workload, inventory, and shortage that are all conflicting with
each other.

To solve the triobjective model, successive approxima-
tion approach is employed in this paper. The successive
approximation is in an attempt to build the optimal tradeoft
surface under probabilistic demand. Successive approxima-
tion can be used to obtain the nondominated solutions of
workload, inventory, and shortage. Specifically, lots of trial
and error involve in deriving the edge of each objective with
a Lagrangian model. Several iterations needed to reach a
nondominated solution for all items make the creating of
scatterplot of workload, inventory, and shortage by successive
approximation lengthy and tedious. However, visualization of
the tradeoffs displayed by the scatterplots of Figures 3, 4, 5,
and 6 justifies the computation effort done in the experiment.
The inverse relationship among workload, inventory, and
shortage conforms to our intuition.

The quality of a set of tradeoff solutions has to be
evaluated quantitatively when comparing to other bench-
marks, although developing an efficient and effective solution
procedure for tradeoff analysis of multiobjective inventory
management will be our future work. After verifying the
validity of nondominated (W, I, S) solutions, they can be used
to construct a tradeoff surface that helps managers choose



Journal of Applied Mathematics

50

40

Inventory

0
20
40
60
Sh 80
Ortag, 100
¢ 120 40

FIGURE 4: Scatterplot of Item 2 nondominated solutions from
successive approximation.

500
400
300 &
g
g
>
200 &
100

25
S5 800 30 7
Hortage 100000 3 o

1400 40

FIGURE 5: Scatterplot of Item 3 nondominated solutions from
successive approximation.

an appropriate control policy for probabilistic demand. For
example, a common debate on the fund level tied in inventory
versus the service level under fixed workload usually arises
between warehousing and sales departments. By utilizing
the information coming from the tradeoff surface, deliberate
decisions among conflicting objectives can be easily made.
Moreover, the tradeoft surface under multi-item context
deserves closer attention to bridge the gap between inventory
theory and managerial practice, because too much atten-
tion was focused on the single-item problem in view of
the past literature. Finally, multiechelon inventory and/or
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FIGURE 6: Scatterplot of Item 4 nondominated solutions from
successive approximation.
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FIGURE 7: The hypervolume index in the minimization problem.

distribution systems are very common in business logistics.
It is worthwhile to study the multiobjective inventory policies
of different parties in a supply chain.
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