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We first introduce the concept of Bregman asymptotically quasinonexpansive mappings and prove that the fixed point set of this
kind of mappings is closed and convex. Then we construct an iterative scheme to find a common element of the set of solutions of
an equilibrium problem and the set of common fixed points of a countable family of Bregman asymptotically quasinonexpansive
mappings in reflexive Banach spaces and prove strong convergence theorems. Our results extend the recent ones of some others.

1. Introduction

Let 𝐸 be a real reflexive Banach space with norm ‖ ⋅ ‖ and 𝐸
∗

the dual space of 𝐸 equipped with the inducted norm ‖ ⋅ ‖
∗
.

Throughout this paper, 𝑓 : 𝐸 → (−∞, +∞] is a proper,
lower semicontinuous, and convex function and the Fenchel
conjugate of 𝑓 is the function𝑓∗ : 𝐸∗ → (−∞, +∞] defined
by

𝑓
∗

(𝜉) = sup {⟨𝜉, 𝑥⟩ − 𝑓 (𝑥) : 𝑥 ∈ 𝐸} . (1)

We denote by dom𝑓 the domain of 𝑓, that is, the set {𝑥 ∈

𝐸 : 𝑓(𝑥) < +∞}.
Let 𝐶 be a nonempty, closed, and convex subset of 𝐸 and

𝑇 : 𝐶 → 𝐶 a nonlinear mapping. The fixed points set of 𝑇 is
denoted by

𝐹 (𝑇) = {𝑥 ∈ 𝐶 : 𝑥 = 𝑇𝑥} . (2)

Recall that a mapping 𝑇 : 𝐶 → 𝐶 is said to be
nonexpansive if, for each 𝑥, 𝑦 ∈ 𝐶,

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 . (3)

Nakajo-Takahashi [1] introduced the following hybrid
method which is the so-called CQ-method for a nonexpan-
sive mapping 𝑇 in a Hilbert space𝐻:

𝑥
0
∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 − 𝑧
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
, ∀𝑛 ≥ 0,

(4)

where {𝛼
𝑛
} ⊂ [0, 1] and 𝑃

𝐾
is the metric projection from 𝐻

onto a closed and convex subset𝐾 of𝐻.They proved that the
sequence {𝑥

𝑛
} generated by (4) converges strongly to a fixed

point of 𝑇 under suitable conditions.
Takahashi et al. [2] introduced a new hybrid iterative

scheme called the shrinking projection method for a nonex-
pansive mapping 𝑇 in a Hilbert space𝐻 as follows:

𝑥
0
∈ 𝐻,

𝐶
1
= 𝐶,

𝑥
1
= 𝑃
𝐶
1

𝑥
0
,
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𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
𝑦𝑛 − 𝑧

 ≤
𝑥𝑛 − 𝑧

} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥, ∀𝑛 ≥ 1,

(5)

where {𝛼
𝑛
} ⊂ [0, 1], and they proved that the sequence {𝑥

𝑛
}

generated by (5) converges strongly to a fixed point of𝑇under
suitable conditions.

In 2010, Reich and Sabach [3] introduced the following
two hybrid iterative schemes for Bregman strongly nonex-
pansive mappings 𝑇

𝑖
: 𝐸 → 𝐸 (𝑖 = 1, 2, . . . , 𝑁) in a reflexive

Banach space 𝐸:

𝑥
0
∈ 𝐸,

𝑦
𝑖

𝑛
= 𝑇
𝑖
(𝑥
𝑛
+ 𝑒
𝑖

𝑛
) ,

𝐶
𝑖

𝑛
= {𝑧 ∈ 𝐸 : 𝐷

𝑓
(𝑧, 𝑦
𝑖

𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
+ 𝑒
𝑖

𝑛
)} ,

𝐶
𝑛
:=

𝑁

⋂

𝑖=1

𝐶
𝑖

𝑛
,

𝑄
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝑧 − 𝑥

𝑛
, ∇𝑓 (𝑥

0
) − ∇𝑓 (𝑥

𝑛
)⟩ ≤ 0} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛
∩𝑄
𝑛

(𝑥
0
) , ∀𝑛 ≥ 0,

(6)

𝑥
0
∈ 𝐸,

𝐶
𝑖

0
= 𝐸, 𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖

𝑛
= 𝑇
𝑖
(𝑥
𝑛
+ 𝑒
𝑖

𝑛
) ,

𝐶
𝑖

𝑛+1
= {𝑧 ∈ 𝐶

𝑖

𝑛
: 𝐷
𝑓
(𝑧, 𝑦
𝑖

𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
+ 𝑒
𝑖

𝑛
)} ,

𝐶
𝑛+1

:=

𝑁

⋂

𝑖=1

𝐶
𝑖

𝑛+1
,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛
∩𝑄
𝑛

(𝑥
0
) , ∀𝑛 ≥ 0,

(7)

where 𝑃𝑓
𝐾
is the Bregman projection with respect to 𝑓 from

𝐸 onto a closed and convex subset 𝐾 of 𝐸. They proved that
the sequence {𝑥

𝑛
} generated by both (6) and (7) converges

strongly to a common fixed point of {𝑇
𝑖
}
𝑁

𝑖=1
.

The construction of fixed points for Bregman-type map-
pings via iterative processes has been investigated in, for
example, [4–8].

In this paper, we design a new hybrid iterative scheme
for finding a common element of the set of solutions of an
equilibrium problem and the set of common fixed points of
a countable family of Bregman asymptotically quasinonex-
pansive mappings in reflexive Banach spaces and prove some
strong convergence theorems. Our results extend the recent
one of Reich and Sabach [3].

2. Preliminaries

Let𝐸 be a real Banach space. For any𝑥 ∈ int dom𝑓 and𝑦 ∈ 𝐸,
we define the right-hand derivative of 𝑓 at 𝑥 in the direction
𝑦 by

𝑓
𝑜

(𝑥, 𝑦) := lim
𝑡→0
+

𝑓 (𝑥 + 𝑡𝑦) − 𝑓 (𝑥)

𝑡
. (8)

The function 𝑓 is said to be Gâteaux differentiable at 𝑥 if
lim
𝑡→0
+((𝑓(𝑥 + 𝑡𝑦) − 𝑓(𝑥))/𝑡) exists for any 𝑦. In this case,

𝑓
𝑜

(𝑥, 𝑦) coincides with ∇𝑓(𝑥), the value of the gradient ∇𝑓
of 𝑓 at 𝑥. The function 𝑓 is said to be Gâteaux differentiable
if it is Gâteaux differentiable for any 𝑥 ∈ int dom 𝑓. The
function 𝑓 is said to be Fréchet differentiable at 𝑥 if this limit
is attained uniformly in ‖𝑦‖ = 1. Finally, 𝑓 is said to be
uniformly Fréchet differentiable on a subset 𝐶 of 𝐸 if the limit
is attained uniformly for 𝑥 ∈ 𝐶 and ‖𝑦‖ = 1.

Let 𝐸 be a reflexive Banach space. The Legendre function
is defined from a general Banach space 𝐸 into (−∞, +∞] (see
[9]). According to [9], the function 𝑓 is Legendre if and only
if it satisfies the following conditions

(L1) The interior of the domain of 𝑓 (denoted by
int dom𝑓) is nonempty; 𝑓∗ is Gâteaux differentiable
on int dom𝑓 and dom ∇𝑓 = int dom𝑓.

(L2) The interior of the domain 𝑓
∗ (denoted by int

dom𝑓
∗) is nonempty; 𝑓∗ is Gâteaux differentiable on

int dom𝑓
∗ and dom ∇𝑓

∗

= int dom𝑓
∗.

Since 𝐸 is reflexive, we always have (𝜕𝑓)
−1

= 𝜕𝑓
∗ (see

[10]).This fact, when combinedwith conditions (L1) and (L2),
implies the following equalities:

∇𝑓 = (∇𝑓
∗

)
−1

,

ran∇𝑓 = dom∇𝑓
∗

= int dom𝑓
∗

,

ran∇𝑓∗ = dom∇𝑓 = int dom𝑓.

(9)

Also, conditions (L1) and (L2), in conjunction with [9],
imply that the functions 𝑓 and 𝑓

∗ are strictly convex on
the interior of their respective domains. Several interesting
examples of the Legendre functions are presented in [9, 11].
Especially, the functions (1/𝑠)‖ ⋅ ‖

𝑠 with 𝑠 ∈ (1,∞) are
Legendre, where the Banach space 𝐸 is smooth and strictly
convex and, in particular, a Hilbert space.

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux differ-
entiable function. The function 𝐷

𝑓
: dom𝑓 × int dom𝑓 →

[0, +∞) defined as

𝐷
𝑓
(𝑦, 𝑥) := 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑦 − 𝑥, ∇𝑓 (𝑥)⟩ (10)

is called the Bregman distance with respect to 𝑓 [12].
By the definition, we know the following property (the

three point identity): for any 𝑥 ∈ dom𝑓 and 𝑦, 𝑧 ∈

int dom𝑓,

𝐷
𝑓
(𝑥, 𝑦) + 𝐷

𝑓
(𝑦, 𝑧) − 𝐷

𝑓
(𝑥, 𝑧)

= ⟨∇𝑓 (𝑧) − ∇𝑓 (𝑦) , 𝑥 − 𝑦⟩.

(11)
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Recall that the Bregman projection [13] of 𝑥 ∈ int dom𝑓

onto the nonempty, closed, and convex subset 𝐶 of dom𝑓 is
the necessarily unique vector proj𝑓

𝐶
(𝑥) ∈ 𝐶 satisfying

𝐷
𝑓
(proj𝑓
𝐶
(𝑥) , 𝑥) = inf{𝐷

𝑓
(𝑦, 𝑥) : 𝑦 ∈ 𝐶} . (12)

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux
differentiable function. The function 𝑓 is said to be totally
convex at 𝑥 ∈ int dom𝑓 if its modulus of total convexity at
𝑥, that is, the function ]

𝑓
: int dom𝑓 × [0, +∞) → [0, +∞]

defined by

]
𝑓
(𝑥, 𝑡) := inf{𝐷

𝑓
(𝑦, 𝑥) : 𝑦 ∈ dom𝑓,

𝑦 − 𝑥
 = 𝑡} , (13)

is positive whenever 𝑡 > 0. The function 𝑓 is said to be
totally convex when it is totally convex at every point 𝑥 ∈

int dom𝑓. In addition, the function 𝑓 is said to be totally
convex on bounded sets if ]

𝑓
(𝐵, 𝑡) is positive for any nonempty

bounded subset 𝐵 of 𝐸 and 𝑡 > 0, where the modulus of
total convexity of the function 𝑓 on the set 𝐵 is the function
]
𝑓
: int dom𝑓 × [0, +∞) → [0, +∞] defined by

]
𝑓
(𝐵, 𝑡) := inf {]

𝑓
(𝑥, 𝑡) : 𝑥 ∈ 𝐵 ∩ dom𝑓} . (14)

Some examples of the totally convex functions can be
found in [14, 15].

Recall that the function 𝑓 is said to be sequentially
consistent [15] if, for any two sequences {𝑥

𝑛
} and {𝑦

𝑛
} in 𝐸

such that the first is bounded,

lim
𝑛→∞

𝐷
𝑓
(𝑦
𝑛
, 𝑥
𝑛
) = 0 ⇒ lim

𝑛→∞

𝑦𝑛 − 𝑥
𝑛

 = 0. (15)

Let 𝐶 be a nonempty, closed, and convex subset of 𝐸 and
𝑔 : 𝐶 × 𝐶 → R a bifunction that satisfies the following
conditions:

(C1) 𝑔(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(C2) 𝑔 is monotone, that is, 𝑔(𝑥, 𝑦) + 𝑔(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐶;
(C3) lim sup

𝑡↓0
𝑔(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝑔(𝑥, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈

𝐶;
(C4) for all 𝑥 ∈ 𝐶, 𝑔(𝑥, ⋅) is convex and lower semicontin-

uous.

The equilibrium problem with respect to 𝑔 is as follows:
find 𝑥 ∈ 𝐶 such that

𝑔 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (16)

The set of all solutions of (16) is denoted by EP(𝑔). The
resolvent of a bifunction 𝑔 : 𝐶 × 𝐶 → R [16] is the operator
Res𝑓
𝑔
: 𝐸 → 2

𝐶 denoted by

Res𝑓
𝑔
(𝑥) = {𝑧 ∈ 𝐶 : 𝑔 (𝑧, 𝑦) + ⟨∇𝑓 (𝑧) − ∇𝑓 (𝑥) , 𝑦 − 𝑧⟩

≥ 0, ∀𝑦 ∈ 𝐶} .

(17)

For any 𝑥 ∈ 𝐸, there exists 𝑧 ∈ 𝐶 such that 𝑧 = Res𝑓
𝑔
(𝑥); see

[3].
Let 𝐾 be a convex subset of int dom𝑓 and 𝑇 : 𝐾 →

𝐾 a mapping. A point 𝑝 in the closure of 𝐾 is said to
be an asymptotic fixed point of 𝑇 [17, 18] if 𝐾 contains a
sequence {𝑥

𝑛
} which converges weakly to 𝑝 such that the

strong lim
𝑛→∞

(𝑥
𝑛
− 𝑇𝑥
𝑛
) = 0. The set of asymptotic fixed

points of 𝑇 will be denoted by 𝐹(𝑇). The mapping 𝑇 is called
Bregman quasi-nonexpansive if 𝐹(𝑇) ̸= 0 and

𝐷
𝑓
(V, 𝑥) ≤ 𝐷

𝑓
(V, 𝑥) , ∀V ∈ 𝐹 (𝑇) , 𝑥 ∈ 𝐾. (18)

𝑇 is said to be Bregman (quasi)-strongly nonexpansive [6]with
respcet to a nonempty 𝐹(𝑇) if

𝐷
𝑓
(𝑝, 𝑇𝑥) ≤ 𝐷

𝑓
(𝑝, 𝑥) , (19)

for all 𝑝 ∈ 𝐹(𝑇) and 𝑥 ∈ 𝐾, and if whenever {𝑥
𝑛
} ⊂ 𝐾 is

bounded, 𝑝 ∈ 𝐹(𝑇), and

lim
𝑛→∞

(𝐷
𝑓
(𝑝, 𝑥
𝑛
) − 𝐷
𝑓
(𝑝, 𝑇𝑥

𝑛
)) = 0, (20)

it follows that

lim
𝑛→∞

𝐷
𝑓
(𝑇𝑥
𝑛
, 𝑥
𝑛
) = 0. (21)

The mapping 𝑇 is called Bregman firmly nonexpansive if

⟨∇𝑓 (𝑇𝑥) − ∇𝑓 (𝑇𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

≤ ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

(22)

for all 𝑥, 𝑦 ∈ 𝐾.
Next, we introduce a new mapping that is called Breg-

man asymptotically quasinonexpansive mapping which is a
natural extension of Bregman quasinonexpansive mapping
introduced by Reich and Sabach [3]. The mapping 𝑇 : 𝐾 →

𝐾 is said to be Bregman asymptotically quasi-nonexpansive if
there exists a sequence {𝑘

𝑛
} ⊂ [1,∞) satisfying lim

𝑛→∞
𝑘
𝑛
=

1 such that, for every 𝑛 ≥ 1,

𝐷
𝑓
(V, 𝑇
𝑛

𝑥) ≤ 𝑘
𝑛
𝐷
𝑓
(V, 𝑥) , ∀V ∈ 𝐹 (𝑇) , 𝑥 ∈ 𝐾. (23)

Obviously, every Bregman quasinonexpansive mapping is a
Bregman asymptotically quasi-nonexpansive one with 𝑘

𝑛
=

1.
Let 𝐸 be a Banach space and 𝐶 a nonempty subset of

𝐸. The mapping 𝑇 : 𝐶 → 𝐶 is said to be uniformly
asymptotically regular on 𝐶 if

lim
𝑛→∞

(sup
𝑥∈𝐶


𝑇
𝑛+1

𝑥 − 𝑇
𝑛

𝑥

) = 0. (24)

Themapping 𝑇 is said to be closed if, for any sequence {𝑥
𝑛
} in

𝐶 such that lim
𝑛→∞

𝑥
𝑛
= 𝑥
0
and lim

𝑛→∞
𝑇𝑥
𝑛
= 𝑦
0
,𝑇𝑥
0
= 𝑦
0
.

The following is an important result which will be used in
the next section.

Lemma 1. Let 𝐸 be a reflexive Banach space and 𝑓 : 𝐸 →

(−∞, +∞) a Gâteaux differentiable and Legendre function
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which is totally convex on bounded sets. Let 𝐾 be a nonempty,
closed and convex subset of int dom𝑓 and 𝑇 : 𝐾 → 𝐾 a
closed Bergman asymptotically quasi-nonexpansive mapping
with the sequence {𝑘

𝑛
} ⊂ [1, +∞) such that 𝑘

𝑛
→ 1 as

𝑛 → ∞. Then 𝐹(𝑇) is closed and convex.

Proof. The closedness of 𝐹(𝑇) comes directly from the
closedness of 𝑇. Now, for arbitrary 𝑝

1
, 𝑝
2
∈ 𝐹(𝑇), 𝑡 ∈ (0, 1),

put 𝑝
3
= 𝑡𝑝
1
+(1−𝑡)𝑝

2
. We prove that𝑇𝑝

3
= 𝑝
3
. Indeed, from

the definition of𝐷
𝑓
, we see that

𝐷
𝑓
(𝑝
3
, 𝑇
𝑛

𝑝
3
) = 𝑓 (𝑝

3
) − 𝑓 (𝑇

𝑛

𝑝
3
)

− ⟨∇𝑓 (𝑇
𝑛

𝑝
3
) , 𝑝
3
− 𝑇
𝑛

𝑝
3
⟩

= 𝑓 (𝑝
3
) − 𝑓 (𝑇

𝑛

𝑝
3
)

− ⟨∇𝑓 (𝑇
𝑛

𝑝
3
) , 𝑡𝑝
1
+ (1 − 𝑡) 𝑝

2
− 𝑇
𝑛

𝑝
3
⟩

= 𝑓 (𝑝
3
) − 𝑓 (𝑇

𝑛

𝑝
3
)

− 𝑡 ⟨∇𝑓 (𝑇
𝑛

𝑝
3
) , 𝑝
1
− 𝑇
𝑛

𝑝
3
⟩

− (1 − 𝑡) ⟨∇𝑓 (𝑇
𝑛

𝑝
3
) , 𝑝
2
− 𝑇
𝑛

𝑝
3
⟩

= 𝑓 (𝑝
3
) + 𝑡𝐷

𝑓
(𝑝
1
, 𝑇
𝑛

𝑝
3
)

+ (1 − 𝑡)𝐷
𝑓
(𝑝
2
, 𝑇
𝑛

𝑝
3
) − 𝑡𝑓 (𝑝

1
)

− (1 − 𝑡) 𝑓 (𝑝
2
)

≤ 𝑓 (𝑝
3
) + 𝑡𝑘

𝑛
𝐷
𝑓
(𝑝
1
, 𝑝
3
)

+ (1 − 𝑡) 𝑘
𝑛
𝐷
𝑓
(𝑝
2
, 𝑝
3
)

− 𝑡𝑓 (𝑝
1
) − (1 − 𝑡) 𝑓 (𝑝

2
)

= 𝑓 (𝑝
3
) + 𝑘
𝑛
[𝑡 (𝑓 (𝑝

1
) − 𝑓 (𝑝

3
)

−⟨∇𝑓 (𝑝
3
) , 𝑝
1
− 𝑝
3
⟩)

+ (1 − 𝑡)

× (𝑓 (𝑝
2
) − 𝑓 (𝑝

3
)

− ⟨∇𝑓 (𝑝
3
) , 𝑝
2
− 𝑝
3
⟩)]

− 𝑡𝑓 (𝑝
1
) − (1 − 𝑡) 𝑓 (𝑝

2
)

= (1 − 𝑘
𝑛
) 𝑓 (𝑝

3
)

+ 𝑘
𝑛
(𝑡𝑓 (𝑝

1
) + (1 − 𝑡) 𝑓 (𝑝

2
))

− 𝑡𝑓 (𝑝
1
) − (1 − 𝑡) 𝑓 (𝑝

2
)

= (𝑘
𝑛
− 1) (𝑡𝑓 (𝑝

1
) + (1 − 𝑡) 𝑓 (𝑝

2
) − 𝑓 (𝑝

3
)) .

(25)

This implies that lim
𝑛→∞

𝐷
𝑓
(𝑝
3
, 𝑇
𝑛

𝑝
3
) = 0. It follows from

Lemma 3 below that

lim
𝑛→∞

𝑝3 − 𝑇
𝑛

𝑝
3

 = 0, (26)

that is,𝑇𝑇𝑛𝑝
3
−𝑝
3
→ 0 as 𝑛 → ∞. In view the closedness of

𝑇, we can obtain the desired conclusion. This completes the
proof.

Finally, we state some lemmas that will used in the proof
of main results in next section.

Lemma 2 (see [7]). If 𝑓 : 𝐸 → R is uniformly Fréchet
differentiable and bounded on bounded subsets of 𝐸, then ∇𝑓 is
uniformly continuous on bounded subsets of 𝐸 from the strong
topology of 𝐸 to the strong topology of 𝐸∗.

Lemma 3 (see [14]). The function 𝑓 is totally convex on
bounded sets if and only if it is sequentially consistent.

Lemma 4 (see [15]). Suppose that 𝑓 is Gâteaux differentiable
and totally convex on int dom𝑓. Let 𝑥 ∈ int dom𝑓 and 𝐶 a
nonempty, closed, and convex subset of int dom𝑓. If 𝑥 ∈ 𝐶,
then the following conditions are equivalent.

(i) The vector 𝑥 is the Bregman projection of 𝑥 onto𝐶with
respect to 𝑓.

(ii) The vector 𝑥 is the unique solution of the variational
inequality.

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑧) , 𝑧 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (27)

(iii) The vector 𝑥 is the unique solution of the inequality

𝐷
𝑓
(𝑦, 𝑧) + 𝐷

𝑓
(𝑧, 𝑥) ≤ 𝐷

𝑓
(𝑦, 𝑥) , ∀𝑦 ∈ 𝐶. (28)

Lemma 5 (see [6]). Let 𝑓 : 𝐸 → R be a Gâteaux
differentiable and totally convex function. If 𝑥

0
∈ 𝐸 and the

sequence {𝐷
𝑓
(𝑥
𝑛
, 𝑥
0
)}
∞

𝑛=1
is bounded, then the sequence {𝑥

𝑛
}
∞

𝑛=1

is also bounded.

Lemma 6 (see [3]). Let 𝑓 : 𝐸 → (−∞, +∞) be a coercive
(i.e., lim

‖𝑥 ‖→∞
(𝑓(𝑥)/‖𝑥‖) = +∞) and Gâteaux differentiable

function. Let 𝐶 be a closed and convex subset of 𝐸. If the
bifunction 𝑔 : 𝐶 × 𝐶 → R satisfies conditions (𝐶1)–(𝐶4),
then

(1) Res𝑓
𝑔
is single-valued;

(2) Res𝑓
𝑔
is a Bregman firmly nonexpansive mapping;

(3) the set of fixed points of Res𝑓
𝑔
is the solution set of the

equilibrium problem, that is, 𝐹(Res𝑓
𝑔
) = EP(𝑔);

(4) EP(𝑔) is a closed and convex subset of 𝐶;

(5) for all 𝑥 ∈ 𝐸 and 𝑢 ∈ 𝐹(Res𝑓
𝑔
), one has

𝐷
𝑓
(𝑢,Res𝑓

𝑔
(𝑥)) + 𝐷

𝑓
(Res𝑓
𝑔
(𝑥) , 𝑥)

≤ 𝐷
𝑓
(𝑢, 𝑥) .

(29)

3. Main Results

Now, we give our main theorems.
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Theorem 7. Let 𝐸 be a reflexive Banach space and 𝑓 : 𝐸 →

R a coercive Legendre function which is bounded, uniformly
Fréchet differentiable, and totally convex on bounded subsets
of 𝐸. Let 𝐾 be a nonempty, closed, and convex subset of
int dom𝑓 and {𝑇

𝑖
}
∞

𝑖=1
: 𝐾 → 𝐾 a countable family of

closed Bregman asymptotically quasi-nonexpansive mappings
with the sequences {𝑘

𝑖,𝑛
} ⊂ [1,∞) such that lim

𝑛→∞
𝑘
𝑖,𝑛

= 1

for every 𝑖 ≥ 1. Let 𝑘
𝑛

= sup{𝑘
𝑖,𝑛

: 𝑖 ≥ 1} and suppose
that lim

𝑛→∞
𝑘
𝑛
= 1. Let 𝑔 : 𝐾 × 𝐾 → R be a bifunction

satisfying conditions (C1)–(C4). Assume that each 𝑇
𝑖
(𝑖 ≥ 1) is

uniformly asymptotically regular andΩ = [⋂
∞

𝑖=1
𝐹(𝑇
𝑖
)]∩EP(𝑔)

is nonempty and bounded. Let {𝛼
𝑖,𝑛
} be a real sequence in (0, 1)

with ∑𝑛
𝑖=1

𝛼
𝑖,𝑛

= 1 for every 𝑛 ≥ 1 and lim inf
𝑛→∞

𝛼
𝑖,𝑛

> 0 for
every 𝑖 ≥ 1. Let {𝑥

𝑛
} be a sequence generated by the following

manner:
𝑥
1
= 𝑥 ∈ 𝐾 chosen arbitrarily,

𝑢
𝑖,𝑛

∈ 𝐾 such that

𝑔 (𝑢
𝑖,𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑖,𝑛
) − ∇𝑓 (𝑇

𝑛

𝑖
𝑥
𝑛
) , 𝑦 − 𝑢

𝑖,𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐾, 𝑖 = 1, . . . , 𝑛,

𝐶
𝑛
= {𝑧 ∈ 𝐾 :

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝐷
𝑓
(𝑧, 𝑢
𝑖,𝑛
)

≤ 𝐷
𝑓
(𝑧, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
} ,

𝐷
𝑛
=

𝑛

⋂

𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= proj𝑓
𝐷
𝑛

𝑥, 𝑛 = 1, 2, . . . ,

(30)

where𝑀
𝑛
= sup{𝐷

𝑓
(V, 𝑥
𝑛
) : V ∈ Ω} for each 𝑛 ≥ 1. Then, {𝑥

𝑛
}

defined by (30) converges strongly to proj𝑓
Ω
𝑥 as 𝑛 → ∞.

Proof. First, we prove that the sequence {𝑥
𝑛
} is well defined.

Note that
𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝐷
𝑓
(𝑧, 𝑢
𝑖,𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
(31)

is
𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
(𝑓 (𝑧) − 𝑓 (𝑢

𝑖,𝑛
) − ⟨∇𝑓 (𝑢

𝑖,𝑛
) , 𝑧 − 𝑢

𝑖,𝑛
⟩)

≤ 𝑓 (𝑧) − 𝑓 (𝑥
𝑛
) − ⟨∇𝑓 (𝑥

𝑛
) , 𝑧 − 𝑥

𝑛
⟩ + (𝑘

𝑛
− 1)𝑀

𝑛
,

(32)

that is,

𝑓 (𝑥
𝑛
) −

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝑓 (𝑢
𝑖,𝑛
) + ⟨∇𝑓 (𝑥

𝑛
) , 𝑧 − 𝑥

𝑛
⟩

≤

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
⟨∇𝑓 (𝑢

𝑖,𝑛
) , 𝑧 − 𝑢

𝑖,𝑛
⟩ + (𝑘

𝑛
− 1)𝑀

𝑛
.

(33)

This shows that𝐶
𝑛
is closed and convex for every 𝑛 ≥ 1. From

the definition of 𝐷
𝑛
, it is easy to see that 𝐷

𝑛
is closed and

convex for every 𝑛 ≥ 1. For every 𝑖 ≥ 1 and 𝑛 ≥ 1, Lemma 6
shows that 𝑢

𝑖,𝑛
= Res𝑓

𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
and 𝐷

𝑓
(V,Res𝑓

𝑔
𝑦) ≤ 𝐷

𝑓
(V, 𝑦) for

any V ∈ Ω and 𝑦 ∈ 𝐸. Hence,

𝐷
𝑓
(V, 𝑢
𝑖,𝑛
) = 𝐷

𝑓
(V,Res𝑓

𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
)

≤ 𝐷
𝑓
(V, 𝑇
𝑛

𝑖
𝑥
𝑛
)

≤ 𝑘
𝑖,𝑛
𝐷
𝑓
(V, 𝑥
𝑛
)

≤ 𝑘
𝑛
𝐷
𝑓
(V, 𝑥
𝑛
)

= 𝐷
𝑓
(V, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝐷

𝑓
(V, 𝑥
𝑛
)

≤ 𝐷
𝑓
(V, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
.

(34)

Since ∑𝑛
𝑖=1

𝛼
𝑖,𝑛

= 1 for every 𝑛 ≥ 1, we have
𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝐷
𝑓
(V, 𝑢
𝑖,𝑛
)

≤

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
(𝐷
𝑓
(V, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
)

= 𝐷
𝑓
(V, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
.

(35)

This shows that V ∈ 𝐶
𝑛
for every 𝑛 ≥ 1. Thus Ω ⊂ 𝐶

𝑛
for

every 𝑛 ≥ 1. Further, we have Ω ⊂ 𝐷
𝑛
for every 𝑛 ≥ 1. Thus

the sequence {𝑥
𝑛
} is well defined.

From proj𝑓
𝐷
𝑛

𝑥 = 𝑥
𝑛+1

, by Lemma 4(iii) we have

𝐷
𝑓
(𝑥
𝑛+1

, 𝑥) = 𝐷
𝑓
(proj𝑓
𝐷
𝑛

𝑥, 𝑥)

≤ 𝐷
𝑓
(V, 𝑥) − 𝐷

𝑓
(V, proj𝑓

𝐷
𝑛

𝑥)

≤ 𝐷
𝑓
(V, 𝑥)

(36)

for any V ∈ Ω. Hence the sequence 𝐷
𝑓
(𝑥
𝑛
, 𝑥) is bounded.

Therefore by Lemma 5 the sequence {𝑥
𝑛
} is bounded.

On the other hand, in view of 𝑥
𝑛+1

= proj𝑓
𝐷
𝑛

𝑥 and 𝑥
𝑛+2

=

proj𝑓
𝐷
𝑛+1

𝑥 ∈ 𝐷
𝑛+1

⊂ 𝐷
𝑛
, from Lemma 4(iii) we have

𝐷
𝑓
(𝑥
𝑛+2

, proj𝑓
𝐷
𝑛

𝑥) + 𝐷
𝑓
(proj𝑓
𝐷
𝑛

𝑥, 𝑥) ≤ 𝐷
𝑓
(𝑥
𝑛+2

, 𝑥) ,

(37)

that is,
𝐷
𝑓
(𝑥
𝑛+2

, 𝑥
𝑛+1

) + 𝐷
𝑓
(𝑥
𝑛+1

, 𝑥) ≤ 𝐷
𝑓
(𝑥
𝑛+2

, 𝑥) . (38)

Therefore the sequence {𝐷
𝑓
(𝑥
𝑛
, 𝑥)} is increasing, and since

it is also bounded, lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛
, 𝑥) exists. By the construc-

tion of 𝐷
𝑛
, we have that 𝐷

𝑚
⊂ 𝐷
𝑛
and 𝑥

𝑚
= proj𝑓

𝐷
𝑚−1

𝑥 ∈

𝐷
𝑚−1

⊂ 𝐷
𝑛−1

for any positive integer𝑚 ≥ 𝑛. It follows that

𝐷
𝑓
(𝑥
𝑚
, 𝑥
𝑛
) = 𝐷

𝑓
(𝑥
𝑚
, proj𝑓
𝐷
𝑛−1

𝑥)

≤ 𝐷
𝑓
(𝑥
𝑚
, 𝑥) − 𝐷

𝑓
(proj𝑓
𝐷
𝑛−1

𝑥, 𝑥)

= 𝐷
𝑓
(𝑥
𝑚
, 𝑥) − 𝐷

𝑓
(𝑥
𝑛
, 𝑥) .

(39)
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Letting 𝑚, 𝑛 → ∞ in (39), we see that 𝐷
𝑓
(𝑥
𝑚
, 𝑥
𝑛
) → 0. It

follows from Lemma 3 that 𝑥
𝑚
− 𝑥
𝑛

→ 0 as 𝑚, 𝑛 → ∞.
Hence, {𝑥

𝑛
} is a Cauchy sequence. Since 𝐸 is a Banach space

and𝐾 is closed and convex, we can assume that

lim
𝑛→∞

𝑥
𝑛
= 𝑥
∗

∈ 𝐾. (40)

By taking𝑚 = 𝑛 + 1 in (39), we see that

lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (41)

Lemma 3 implies that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (42)

Since 𝑥
𝑛+1

= proj𝑓
𝐷
𝑛

𝑥 ∈ 𝐷
𝑛
⊂ 𝐶
𝑛
, we have

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑖,𝑛
) ≤ 𝐷

𝑓
(𝑥
𝑛+1

, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
. (43)

Then (41) implies that

lim
𝑛→∞

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑖,𝑛
) = 0. (44)

Note that 𝛼
𝑖,𝑛
𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑖,𝑛
) ≤ ∑

𝑛

𝑖=1
𝛼
𝑖,𝑛
𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑖,𝑛
) and

lim inf
𝑛→∞

𝛼
𝑖,𝑛

> 0, we have

lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑖,𝑛
) = 0 (45)

for every 𝑖 ≥ 1. It follows from Lemma 3 that

lim
𝑛→∞

𝑥𝑛+1 − 𝑢
𝑖,𝑛

 = 0 (46)

for every 𝑖 ≥ 1. Note that

𝑢𝑖,𝑛 − 𝑥
𝑛

 ≤
𝑢𝑖,𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑥

𝑛

 . (47)

Combining (42) with (46), we see that

lim
𝑛→∞

𝑢𝑖,𝑛 − 𝑥
𝑛

 = 0 (48)

for every 𝑖 ≥ 1. This means that the sequence {𝑢
𝑖,𝑛
}

is bounded. Since 𝑓 is uniformly Fréchet differentiable, it
follows from Lemma 2 that

lim
𝑛→∞

∇𝑓(𝑢𝑖,𝑛) − ∇𝑓(𝑥
𝑛
)
∗

= 0. (49)

Since𝑓 is uniformly Fréchet differentiable, it is also uniformly
continuous (see [19, Theorem 1.8, p.13]) and therefore

lim
𝑛→∞

𝑓 (𝑢
𝑖,𝑛
) − 𝑓 (𝑥

𝑛
)
 = 0. (50)

From the definition of the Bregman distance, we obtain that
for every

𝐷
𝑓
(V, 𝑥
𝑛
) − 𝐷
𝑓
(V, 𝑢
𝑖,𝑛
)

= [𝑓 (V) − 𝑓 (𝑥
𝑛
) − ⟨∇𝑓 (𝑥

𝑛
) , V − 𝑥

𝑛
⟩]

− [𝑓 (V) − 𝑓 (𝑢
𝑖,𝑛
) − ⟨∇𝑓 (𝑢

𝑛
) , V − 𝑢

𝑖,𝑛
⟩]

= 𝑓 (𝑢
𝑖,𝑛
) − 𝑓 (𝑥

𝑛
) + ⟨∇𝑓 (𝑢

𝑖,𝑛
) , V − 𝑢

𝑖,𝑛
⟩

− ⟨∇𝑓 (𝑥
𝑛
) , V − 𝑥

𝑛
⟩

= 𝑓 (𝑢
𝑖,𝑛
) − 𝑓 (𝑥

𝑛
)

+ ⟨∇𝑓 (𝑢
𝑖,𝑛
) , 𝑥
𝑛
− 𝑢
𝑖,𝑛
⟩

+ ⟨∇𝑓 (𝑢
𝑖,𝑛
) − ∇𝑓 (𝑥

𝑛
) , V − 𝑥

𝑛
⟩

(51)

for any V ∈ Ω. Since every sequence {𝑢
𝑖,𝑛
} is bounded,

{∇𝑓(𝑢
𝑖,𝑛
)} is also bounded for every 𝑖 ≥ 1. Now from (48)–

(50), we have

lim
𝑛→∞

𝐷
𝑓
(V, 𝑥
𝑛
) − 𝐷
𝑓
(V, 𝑢
𝑖,𝑛
) = 0 (52)

for any V ∈ Ω and for every 𝑖 ≥ 1.
In view of 𝑢

𝑖,𝑛
= Res𝑓

𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
, by Lemma 6 (5) we have

𝐷
𝑓
(𝑢
𝑖,𝑛
, 𝑇
𝑛

𝑖
𝑥
𝑛
) = 𝐷

𝑓
(Res𝑓
𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
, 𝑇
𝑛

𝑖
𝑥
𝑛
)

≤ 𝐷
𝑓
(V, 𝑇
𝑛

𝑥
𝑛
) − 𝐷
𝑓
(V,Res𝑓

𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
)

≤ 𝑘
𝑛
𝐷
𝑓
(V, 𝑥
𝑛
) − 𝐷
𝑓
(V,Res𝑓

𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
)

≤ 𝐷
𝑓
(V, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
− 𝐷
𝑓
(V, 𝑢
𝑖,𝑛
) .

(53)

Note that𝑀
𝑛
is bounded and 𝑘

𝑛
→ 1 as 𝑛 → ∞. It follows

from (52) that

lim
𝑛→∞

𝐷
𝑓
(𝑢
𝑖,𝑛
, 𝑇
𝑛

𝑖
𝑥
𝑛
) = 0 (54)

for every 𝑖 ≥ 1. Lemma 3 shows that

lim
𝑛→∞

𝑢𝑖,𝑛 − 𝑇
𝑛

𝑖
𝑥
𝑛

 = 0. (55)

Note that ‖𝑇𝑛
𝑖
𝑥
𝑛
−𝑥
𝑛
‖ ≤ ‖𝑇

𝑛

𝑖
𝑥
𝑛
−𝑢
𝑖,𝑛
‖+‖𝑢
𝑖,𝑛
−𝑥
𝑛
‖. From (48)

and (55) we get

lim
𝑛→∞

𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
𝑛

 = 0 (56)

for every 𝑖 ≥ 1. Note that
𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
∗ ≤

𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
𝑛

 +
𝑥𝑛 − 𝑥

∗ . (57)

It follows from (40) and (56) that

lim
𝑛→∞

𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
∗ = 0 (58)

for every 𝑖 ≥ 1. On the other hand, we have

𝑇
𝑛+1

𝑖
𝑥
𝑛
− 𝑥
∗

≤

𝑇
𝑛+1

𝑖
𝑥
𝑛
− 𝑇
𝑛

𝑖
𝑥
𝑛


+
𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
∗ . (59)
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Since every 𝑇
𝑖
is uniformly asymptotically regular and (58),

we obtain that, for every 𝑖 ≥ 1,

lim
𝑛→∞


𝑇
𝑛+1

𝑖
𝑥
𝑛
− 𝑥
∗

= 0, (60)

that is, 𝑇
𝑖
𝑇
𝑛

𝑖
𝑥
𝑛
→ 𝑥
∗ as 𝑛 → ∞. From the closedness of 𝑇

𝑖
,

we see that 𝑥∗ ∈ 𝐹(𝑇
𝑖
) for every 𝑖 ≥ 1. Thus 𝑥∗ ∈ ⋂

∞

𝑖=1
𝐹(𝑇
𝑖
).

Next we prove that 𝑥∗ ∈ EP(𝑔) for every 𝑖 ≥ 1. Since 𝑓 is
uniformly Fréchet differentiable,∇𝑓 is uniformly continuous.
Thus, by (55) we have

lim
𝑛→∞

(∇𝑓 (𝑢
𝑖,𝑛
) − ∇𝑓 (𝑇

𝑛

𝑖
𝑥
𝑛
)) = 0. (61)

Since 𝑢
𝑖,𝑛

= Res𝑓
𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
, we have

𝑔 (𝑢
𝑖,𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑖,𝑛
) − ∇𝑓 (𝑇

𝑛

𝑖
𝑥
𝑛
) , 𝑦 − 𝑢

𝑖,𝑛
⟩

≥ 0, ∀𝑦 ∈ 𝐾.

(62)

We have from (C2) that

⟨∇𝑓 (𝑢
𝑖,𝑛
) − ∇𝑓 (𝑇

𝑛

𝑖
𝑥
𝑛
) , 𝑦 − 𝑢

𝑖,𝑛
⟩

≥ −𝑔 (𝑢
𝑖,𝑛
, 𝑦)

≥ 𝑔 (𝑦, 𝑢
𝑖,𝑛
) , ∀𝑦 ∈ 𝐾.

(63)

Letting 𝑛 → ∞, we have from (61) and (C4) that

𝑔 (𝑦, 𝑥
∗

) ≤ 0, ∀𝑦 ∈ 𝐾. (64)

For 𝑡 with 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐾, let 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑥

∗. Since
𝑦 ∈ 𝐾 and 𝑥

∗

∈ 𝐾, we have 𝑦
𝑡
∈ 𝐾 and hence 𝑔(𝑦

𝑡
, 𝑥
∗

) ≤ 0.
So, from (C1) we have

0 = 𝑔 (𝑦
𝑡
, 𝑦
𝑡
)

≤ 𝑡𝑔 (𝑦
𝑡
, 𝑦) + (1 − 𝑡) 𝑔 (𝑦

𝑡
, 𝑥
∗

)

≤ 𝑡𝑔 (𝑦
𝑡
, 𝑦) .

(65)

Dividing by 𝑡, we have

𝑔 (𝑦
𝑡
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾. (66)

Letting 𝑡 ↓ 0, from (C3) we have

𝑔 (𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾. (67)

Therefore, 𝑥∗ ∈ EP(𝑔). Thus 𝑥∗ ∈ ∩
∞

𝑖=1
EP(𝑔).

Finally, we show that𝑥∗ = proj
Ω
𝑥. SinceΩ ⊂ 𝐷

𝑛
for every

𝑛 ≥ 1, by Lemma 4(ii) we arrive at

⟨𝑥
𝑛
− V, ∇𝑓 (𝑥) − ∇𝑓 (𝑥

𝑛
)⟩ ≥ 0, ∀V ∈ Ω. (68)

Taking the limit as 𝑛 → ∞ in (68), we obtain that

⟨𝑥
∗

− V, ∇𝑓 (𝑥) − ∇𝑓 (𝑥
∗

)⟩ ≥ 0, ∀V ∈ Ω (69)

and hence 𝑥∗ = proj
Ω
𝑥 by Lemma 4(ii). This completes the

proof.

Corollary 8. Let 𝐸 be a reflexive Banach space and 𝑓 : 𝐸 →

R a coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of
𝐸. Let𝐾 be a nonempty, closed, and convex subset of int dom𝑓

and 𝑇 : 𝐾 → 𝐾 a closed Bregman asymptotically quasi-
nonexpansive mapping with the sequence {𝑘

𝑛
} ⊂ [1,∞) such

that lim
𝑛→∞

𝑘
𝑛
= 1. Let 𝑔 : 𝐾 × 𝐾 → R be a bifunction

satisfying conditions (C1)–(C4). Assume that 𝑇 is uniformly
asymptotically regular and Ω = 𝐹(𝑇) ∩ EP(𝑔) is nonempty
and bounded. Let {𝑥

𝑛
} be a sequence generated by the following

manner:

𝑥 ∈ 𝐾 chosen arbitrarily,

𝑢
𝑛
∈ 𝐾 such that

𝑔 (𝑢
𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑛
) − ∇𝑓 (𝑇

𝑛

𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩

≥ 0, ∀𝑦 ∈ 𝐾,

𝐶
𝑛
= {𝑧 ∈ 𝐾 : 𝐷

𝑓
(𝑧, 𝑢
𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
) + (𝑘

𝑛
− 1)𝑀

𝑛
} ,

𝐷
𝑛
=

𝑛

⋂

𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= proj𝑓
𝐷
𝑛

𝑥, 𝑛 = 1, 2, . . . ,

(70)

where𝑀
𝑛
= sup{𝐷

𝑓
(V, 𝑥
𝑛
) : V ∈ Ω} for each 𝑛 ≥ 1. Then, {𝑥

𝑛
}

defined by (70) converges strongly to proj𝑓
Ω
𝑥 as 𝑛 → ∞.

Since every Bregman quasi-nonexpansive mapping is
Bregman quasi-asymptotically nonexpansive, we have the
following results.

Corollary 9. Let 𝐸 be a reflexive Banach space and let 𝑓 :

𝐸 → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable, and totally convex on bounded
subsets of 𝐸. Let𝐾 be a nonempty, closed, and convex subset of
int dom𝑓. Let {𝑇

𝑖
}
∞

𝑖=1
: 𝐾 → 𝐾 be a countable family of closed

Bregman quasi-nonexpansive mappings and 𝑔 : 𝐾 × 𝐾 → R

a bifunction satisfying conditions (C1)–(C4). Assume thatΩ =

[∩
∞

𝑖=1
𝐹(𝑇
𝑖
)]⋂EP(𝑔) ̸= 0. Let {𝛼

𝑖,𝑛
} be a real sequence in (0, 1)

with ∑𝑛
𝑖=1

𝛼
𝑖,𝑛

= 1 and lim inf
𝑛→∞

𝛼
𝑖,𝑛

> 0 for every 𝑖 ≥ 1. Let
{𝑥
𝑛
} be a sequence generated by the following manner:

𝑥 ∈ 𝐾 chosen arbitrarily,

𝑢
𝑖,𝑛

∈ 𝐾 such that

𝑔 (𝑢
𝑖,𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑖,𝑛
) − ∇𝑓 (𝑇

𝑛

𝑖
𝑥
𝑛
) , 𝑦 − 𝑢

𝑖,𝑛
⟩

≥ 0, ∀𝑦 ∈ 𝐾, 𝑖 = 1, . . . , 𝑛,

𝐶
𝑛
= {𝑧 ∈ 𝐾 :

𝑛

∑

𝑖=1

𝛼
𝑖,𝑛
𝐷
𝑓
(𝑧, 𝑢
𝑖,𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
)} ,
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𝐷
𝑛
=

𝑛

⋂

𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= projf
𝐷
𝑛

x, 𝑛 = 1, 2, . . . .

(71)

Then, {𝑥
𝑛
} defined by (71) converges strongly to projf

Ω
x as 𝑛 →

∞.

Corollary 10. Let 𝐸 be a reflexive Banach space and let 𝑓 :

𝐸 → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable, and totally convex on bounded
subsets of 𝐸. Let 𝐾 be a nonempty, closed, and convex subset
of int dom𝑓. Let 𝑇 : 𝐾 → 𝐾 be a closed Bregman quasi-
nonexpansive mapping and 𝑔 : 𝐾 × 𝐾 → R a bifunction
satisfying conditions (C1)–(C4). Assume that Ω = 𝐹(𝑇) ∩

EP(𝑔) ̸= 0. Let {𝑥
𝑛
} be a sequence generated by the following

manner:
𝑥 ∈ 𝐾 chosen arbitrarily,

𝑢
𝑛
∈ 𝐾 such that

𝑔 (𝑢
𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑛
) − ∇𝑓 (𝑇

𝑛

𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐾,

𝐶
𝑛
= {𝑧 ∈ 𝐾 : 𝐷f (𝑧, 𝑢𝑛) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
)} ,

𝐷
𝑛
=

𝑛

⋂

𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= proj𝑓
𝐷
𝑛

𝑥, 𝑛 = 1, 2, . . . .

(72)

Then, {𝑥
𝑛
} defined by (72) converges strongly to projf

Ω
x as 𝑛 →

∞

Remark 11. Set 𝛼
𝑛,𝑖

= 1/𝑖(𝑖 + 1) + 1/𝑛(𝑛 + 1) for each 𝑛 ≥ 1

and 𝑖 = 1, 2, . . . , 𝑛 and 𝑘
𝑖,𝑛

= 1+ 1/𝑖𝑛 for each 𝑛 ≥ 1 and 𝑖 ≥ 1.
Then ∑

𝑛

𝑖=1
𝛼
𝑖,𝑛

= 1 and lim inf
𝑛→∞

𝛼
𝑖,𝑛

= 1/𝑖(𝑖 + 1) > 0. Also,
𝑘
𝑛
= sup{𝑘

𝑖,𝑛
: 𝑖 ≥ 1} = 1 for every 𝑛 ≥ 1. Hence, {𝛼

𝑖,𝑛
} and

{𝑘
𝑖,𝑛
} satisfy the conditions of Theorem 7.

Remark 12. It needs to notice that Corollaries 9 and 10 still
hold if we replace the closedness of themappings with𝐹(𝑇) =
𝐹(𝑇).

In the equilibrium problem, the bifunction 𝑔 is usually
required to satisfy conditions (C1)–(C4). But, if the condition
(C3) is replaced with the following condition:
(C3) for every fixed 𝑦 ∈ 𝐶, 𝑔(⋅, 𝑦) is continuous, then we

have the following result:

Lemma 13. Let 𝑓 : 𝐸 → (−∞, +∞) be a coercive (i.e.,
lim
‖𝑥‖ →∞

(𝑓(𝑥)/ ‖𝑥‖ ) = +∞) and G𝑎teaux differentiable
function. Let 𝐶 be a closed and convex subset of 𝐸. If the
bifunction 𝑔 : 𝐶 × 𝐶 → R satisfies conditions (𝐶1), (𝐶2),
(C3), and (𝐶4), then the mapping Res𝑓

𝑔
defined by (2.2) is

closed.

Proof. Let {𝑥
𝑛
} ⊂ 𝐸 converge to 𝑥 and {Res𝑓

𝑔
𝑥
𝑛
} to 𝑥. To end

the conclusion, we need to prove that Res𝑓
𝑔
𝑥


= 𝑥. Indeed, for
each 𝑥

𝑛
, Lemma 6 shows that there exists a unique 𝑧

𝑛
∈ 𝐶

such that 𝑧
𝑛
= Res𝑓

𝑔
𝑥
𝑛
, that is,

𝑔 (𝑧
𝑛
, 𝑦) + ⟨∇𝑓 (𝑧

𝑛
) − ∇𝑓 (𝑥

𝑛
) , 𝑦 − 𝑧

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(73)

Since 𝑓 is uniformly Fréchet differentiable, ∇𝑓 is uni-
formly continuous. So, taking the limit as 𝑛 → ∞ in (73),
by using (C3) we get

𝑔 (𝑥, 𝑦) + ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑥


) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (74)

which implies that Res𝑓
𝑔
𝑥


= 𝑥.This completes the proof.

If the bifunction 𝑔 satisfies conditions (C1), (C2), (C3),
and (C4) instead of (C1)–(C4), then we have a simplemethod
to prove that 𝑥∗ ∈ EP(𝑔) in the proof of Theorem 7. Indeed,
from the proof of Theorem 7, we see that

𝑢
𝑖,𝑛
− 𝑇
𝑛

𝑖
𝑥
𝑛
→ 0, that is, Res𝑓

𝑔
𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑇
𝑛

𝑖
𝑥
𝑛
→ 0,

𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
𝑛
→ 0 as 𝑛 → ∞, ∀𝑖 ≥ 1.

(75)

Note that 𝑥
𝑛
→ 𝑥
∗ as 𝑛 → ∞. This shows that 𝑇𝑛

𝑖
𝑥
𝑛
→

𝑥
∗ as 𝑛 → ∞ for every 𝑖 ≥ 1. It follows from the closedness

of Res𝑓
𝑔
that 𝑥∗ ∈ 𝐹(Res𝑓

𝑔
). Lemma 6 shows that 𝑥∗ ∈ EP(𝑔).

Remark 14. Obviously, the proof process of 𝑥∗ ∈ EP(𝑔)
is simple if we replace condition (C3) with (C3) which is
such that Res𝑓

𝑔
is closed. In fact, although condition (C3)

is stronger than (C3), it is not easier to verify condition
(C3) than to verify the condition (C3). Hence, from this
viewpoint, the condition (C3) is acceptable.
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