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We propose an algae-fish semicontinuous system for the Zeya Reservoir to study the control of algae, including biological and
chemical controls.The bifurcation and periodic solutions of the systemwere studied using a Poincaré map and a geometricmethod.
The existence of order-1 periodic solution of the system is discussed. Based on previous analysis, we investigated the change in the
location of the order-1 periodic solution with variable parameters and we described the transcritical bifurcation of the system.
Finally, we provided a series of numerical results to illustrate the feasibility of the theoretical results. These results may help to
facilitate a better understanding of algal control in the Zeya Reservoir.

1. Introduction

The economic development of human society means that
the waters of lakes, marshes, and reservoirs are experiencing
increasingly serious eutrophication, which can cause sus-
tained algal growth.With a high level of eutrophication, algae
with rapid growth characteristics may form algal blooms,
which can lead to ecological failure and even cause harm
to humans. For example, algal blooms due to eutrophication
appear frequently in the Zeya Reservoir inWenzhou, which is
located in a subtropical region, and this may cause deteriora-
tion in the water quality that could deprive millions of people
of drinking water.

Therefore, it is necessary to control algal growth. Indeed,
many researchers have studied these ecological systems,
including the use of biological and chemical controls, and
these systems have been described using impulsive differen-
tial equations. The theory of impulsive differential equations
has experienced a period of intensive development [1–3].
These studies are concerned mainly with the properties
of their solutions, such as existence, uniqueness, stability,
boundedness, and periodicity, as well as the potential appli-
cations of these theories in ecosystems. In applied studies,

most investigations using impulsive differential equations
have focused on systems where the impulses have fixed times
[4–8].

In many practical cases, however, such as algal blooms
and pest control, the impulses often depend on the state
rather than fixed time periods. Thus, semicontinuous
dynamic systems have been introduced for these purposes.
In this study, the so-called semicontinuous dynamic system
is defined using a set of impulsive state-dependent differ-
ential equations [9, 10], where the solutions are piecewise
continuous functions [11].The application of semicontinuous
dynamic systems to ecosystems has been studied in the last
decade [12–15]. In particular, in the literature [14], the authors
find chaos because of impulsive effect. It is well known
that chaos is very important for dynamical studies. A lot of
scientific workers are attracted by chaotic investigation. For
example, in the literature [16], Bianca and Rondoni studied
a chaotic model with flat obstacles. In their work, analytical
and numerical investigations support the idea that this model
of transport ofmatter has both chaotic and nonchaotic steady
states with a quite peculiar sensitive dependence on the field
and on the geometry, not observed before [16]. These results
which they got are very important for studies of chaos.
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In this paper, we consider a semicontinuous ecological
system. The main difference between our results and those
described in [12–15] is that we discuss the change in location
of the order-1 periodic solution with variable parameters.The
system is described as follows:

𝑑𝐴

𝑑𝑡
= 𝑟𝐴(1 −

𝐴

𝐾
) −

𝑎𝐴𝐹

𝐹 + 𝑎𝑑𝐴
,

𝑑𝐹

𝑑𝑡
=
𝜀𝑎𝐴𝐹

𝐹 + 𝑎𝑑𝐴
− 𝑚𝐹, 𝐴 < ℎ,

Δ𝐴 = −𝑝𝐴, Δ𝐹 = 𝑞𝐹 + 𝜏, 𝐴 = ℎ,

(1)

where 𝐴 denotes the algae population density, 𝐹 denotes the
fish population density, 𝑟 is the intrinsic per capita algae
population growth rate, 𝑎 is the grazing rate of fish on algae,
𝜀 is the prey assimilation efficiency of fish, 𝐾 is the carrying
capacity, 𝑑 is the handling time, and 𝑚 is the mortality and
respiration rate of fish. The parameters 𝑝 ∈ (0, 1), ℎ > 0,
𝜏 ≥ 0, and 𝑞 > −1 represent fishes being harvested when 𝑞 ∈
(−1, 0) and released when 𝑞 ∈ (0, +∞), Δ𝐴(𝑡) = 𝐴(𝑡+) −𝐴(𝑡),
Δ𝐹(𝑡) = 𝐹(𝑡

+
) − 𝐹(𝑡).

This paper is organized as follows. Section 2 provides
some background information. Section 3 discusses the exis-
tence of an order-1 periodic solution, the change in the loca-
tion of the order-1 periodic solutionwith variable parameters,
and the transcritical bifurcation. Section 4 provides numeri-
cal results for the theory we present while the conclusions are
stated in the final section.

2. Preliminaries

We consider an autonomous system with an impulse effect as

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) , (𝑥, 𝑦) ∉ 𝑀,

Δ𝑥 = 𝑓 (𝑥, 𝑦) , Δ𝑦 = 𝑔 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ 𝑀,

(2)

where 𝑡 ∈ 𝑅, (𝑥, 𝑦) ∈ 𝑅2, and 𝑃, 𝑄, 𝑓, 𝑔 : 𝑅2 → 𝑅,𝑀 ⊂ 𝑅2
are the set of impulses. It is assumed that𝑃,𝑄,𝑓, and 𝑔 are all
continuous with respect to 𝑥, 𝑦 in 𝑅2 so the points in𝑀 ⊂ 𝑅2
lie on a line. For each point 𝑆(𝑥, 𝑦) ∈ 𝑀, 𝐼 : 𝑅2 → 𝑅

2 is
defined as

𝐼 (𝑆) = 𝑆
+

= (𝑥
+

, 𝑦
+

) ∈ 𝑅
2

,

𝑥
+

= 𝑥 + 𝑓 (𝑥, 𝑦) , 𝑦
+

= 𝑦 + 𝑔 (𝑥, 𝑦) .

(3)

Let𝑁 = 𝐼(𝑀) be the phase set of𝑀, where𝑁 ∩𝑀 = 𝜙.
System (2) is generally known as a semicontinuous dynamic
system.

Definition 1 (see [11]). Let Γ be a first-order periodic solution
of system (2), and we say that Γ is

(1) orbitally stable if for all 𝜀 > 0, ∃𝑝 ∈ 𝑁, 𝑝 ∈ Γ, and
∃𝛿 > 0 such that for all𝑝

1
∈ ∪(𝑝, 𝛿), 𝜌(𝜋(𝑝

1
, 𝑡), Γ) < 𝜀

when 𝑡 > 𝑡
0
;

(2) orbitally semistable if for all 𝜀 > 0, ∃𝑝 ∈ 𝑁,𝑝 ∈ Γ, and
∃𝛿 > 0 such that for all 𝑝

1
∈ (𝑝, 𝑝 + 𝛿) (or (𝑝 − 𝛿, 𝑝)),

𝜌(𝜋(𝑝
1
, 𝑡), Γ) < 𝜀 when 𝑡 > 𝑡

0
;

(3) orbitally attractive if for all 𝜀 > 0 and for all 𝑝
2
∈ 𝑁,

∃𝑇 > 0 such that 𝜌(𝜋(𝑝
2
, 𝑡), Γ) < 𝜀 when 𝑡 > 𝑇 + 𝑡

0
;

(4) orbitally asymptotically stable if it is orbitally stable
and orbitally attractive.

In this discussion, ∪(𝑝, 𝛿) denotes a 𝛿-neighborhood of
the point 𝑝 ∈ 𝑁, 𝜌(𝜋(𝑝

1
, 𝑡), Γ) is the distance from 𝜋(𝑝

1
, 𝑡) to

Γ, and 𝜋(𝑝
1
, 𝑡) is the solution of system (2) that satisfies the

initial condition 𝜋(𝑝
1
, 𝑡
0
) = 𝑝
1
.

Definition 2. The phase plane is divided into two parts by
the trajectory of the differential equations that constitute the
order-1 cycle.The section containing the impulse line and the
trajectory is known as the inside of the order-1 cycle.

Definition 3 (see [9]). We assume that 𝑀 and 𝑁 are both
straight lines and define a new number axis 𝑙 on𝑁. Suppose
that 𝑁 intersects with 𝑥-axis at point 𝑄. Take the origin at
point 𝑄 and define positive direction and unit length to be
consistent with the coordinate 𝑦-axis, and then we obtain a
number axis 𝑙. For any point 𝐴 ∈ 𝑙, let 𝑙(𝐴) = 𝑎 be coordinate
of point 𝐴. Assume further that the trajectory through point
𝐴 via 𝑘th impulsive intersects with 𝑁 at point 𝐵

𝑘
, and then

set 𝑙(𝐵
𝑘
) = 𝑏
𝑘
, point𝐵

𝑘
is called the order-𝑘 successor point of

point𝐴, and𝐹
𝑘
(𝐴) is known as the order-𝑘 successor function

of point 𝐴, where 𝐹
𝑘
(𝐴) = 𝑙(𝐵

𝑘
) − 𝑙(𝐴) = 𝑏

𝑘
− 𝑎, 𝑘 = 1, 2, . . ..

Lemma 4 (see [9]). The successor function 𝐹
𝑘
(𝐴) is continu-

ous.

Lemma 5 (see [11]). The 𝑇-periodic solution (𝑥, 𝑦) =

(𝜉(𝑡), 𝜂(𝑡)) of the system

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) , 𝜙 (𝑥, 𝑦) ̸= 0,

Δ𝑥 = 𝜉 (𝑥, 𝑦) , Δ𝑦 = 𝜂 (𝑥, 𝑦) , 𝜙 (𝑥, 𝑦) = 0.

(4)

is orbitally asymptotically stable if the Floquet multiplier 𝜇
satisfies the condition |𝜇| < 1, where

𝜇 =

𝑛

∏

𝑘=1

Δ
𝑘
exp [∫

𝑇

0

(
𝜕𝑃

𝜕𝑥
(𝜉 (𝑡) , 𝜂 (𝑡))

+
𝜕𝑄

𝜕𝑦
(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡]

(5)

with

Δ
𝑘
= (𝑃
+
(
𝜕𝛽

𝜕𝑦

𝜕𝜙

𝜕𝑥
−
𝜕𝛽

𝜕𝑥

𝜕𝜙

𝜕𝑦
+
𝜕𝜙

𝜕𝑥
)

+ 𝑄
+
(
𝜕𝛼

𝜕𝑥

𝜕𝜙

𝜕𝑦
−
𝜕𝛼

𝜕𝑦

𝜕𝜙

𝜕𝑥
+
𝜕𝜙

𝜕𝑦
))

× (𝑃
𝜕𝜙

𝜕𝑥
+ 𝑄
𝜕𝜙

𝜕𝑦
)

−1

(6)



Abstract and Applied Analysis 3

and 𝑃, 𝑄, 𝜕𝛼/𝜕𝑥, 𝜕𝛼/𝜕𝑦, 𝜕𝛽/𝜕𝑥, 𝜕𝛽/𝜕𝑦, 𝜕𝜙/𝜕𝑥, 𝜕𝜙/𝜕𝑦,
which are calculated for the points (𝜉(𝑡

𝑘
), 𝜂(𝑡
𝑘
)), 𝑃
+
= 𝑃(𝜉(𝑡

+

𝑘
),

𝜂(𝑡
+

𝑘
)), and𝑄

+
= 𝑄(𝜉(𝑡

+

𝑘
), 𝜂(𝑡
+

𝑘
)), where 𝜙(𝑥, 𝑦) is a sufficiently

smooth function so grad 𝜙(𝑥, 𝑦) ̸= 0, and 𝑡
𝑘
(𝑘 ∈ 𝑁) is the time

of the kth jump.

Lemma 6 (see [17]). Let 𝐹 : 𝑅 × 𝑅 → 𝑅 be a one-parameter
family of the 𝐶2 map that satisfies

(i) 𝐹(0, 𝜇) = 0,
(ii) (𝜕𝐹/𝜕𝑥)(0, 0) = 1,
(iii) (𝜕2𝐹/𝜕𝑥𝜕𝜇)(0, 0) > 0,
(iv) (𝜕2𝐹/𝜕𝑥2)(0, 0) < 0.

𝐹 has two branches of fixed points for 𝜇 near zero. The first
branch is 𝑥

1
(𝜇) = 0 for all 𝜇. The second bifurcating branch

𝑥
2
(𝜇) changes its value from negative to positive as 𝜇 increases

through 𝜇 = 0 with 𝑥
2
(0) = 0. The fixed points of the first

branch are stable if 𝜇 < 0 and unstable if 𝜇 > 0, whereas those
of the bifurcating branch have the opposite stability.

Lemma 7 (see [10]). In system (1), if an order-1 periodic
solution where there is no singular point is orbitally attractive,
the order-1 periodic solution is orbitally asymptotically stable.

Lemma 8. In system (1), one supposes that there exists an
order-1 periodic solutionwhere the crossover points of the order-
1 periodic solution for the impulsive set and phase set are points
𝐶 and 𝐷, respectively, and 𝑦

𝐷
> 𝑟𝑎𝑑ℎ(𝐾 − (1 − 𝑝)ℎ)(1 −

𝑝)/(𝑎𝐾 − 𝑟(𝐾 − (1 − 𝑝)ℎ)). If a trajectory is attracted by
the order-1 periodic solution, the order-1 periodic solution is
orbitally stable.

Proof. For all 𝑆 ∈ 𝑄, 𝑦
𝑆
∈ [𝑦
𝐵
, 𝑦
𝑂
], point 𝑆 does not belong

to the set of periodic solutions.Therefore, the combination of
the order-1 and order-2 successor function of point 𝑆 is one
of the following:

[𝐹
1
(𝑆) > 0, 𝐹

2
(𝑆) > 0] , [𝐹

1
(𝑆) > 0, 𝐹

2
(𝑆) < 0] ,

[𝐹
1
(𝑆) < 0, 𝐹

2
(𝑆) > 0] , [𝐹

1
(𝑆) > 0, 𝐹

2
(𝑆) < 0] .

(7)

Set 𝑑
𝑛
= 𝐹
2𝑛−1
(𝑆) − 𝐹

2𝑛
(𝑆).

(i) 𝐹
1
(𝑆) > 0 and 𝐹

2
(𝑆) < 0

If 𝐹
1
(𝑆) > 0 and 𝐹

2
(𝑆) < 0, then

𝐹
1
(𝑆) < 𝐹

3
(𝑆) < ⋅ ⋅ ⋅ < 𝐹

2𝑛−1
(𝑆) ,

𝐹
2
(𝑆) > 𝐹

4
(𝑆) > ⋅ ⋅ ⋅ > 𝐹

2𝑛
(𝑆) ,

𝐹
2𝑛−1
(𝑆) > 𝐹

2𝑛
(𝑆) , 𝑑

𝑛
> 𝑑
𝑛−1
> 0,

(8)

where 2𝑛 ≤ 𝑘. If 𝑛 = 1, 2, 3, it is obvious that (i) holds.
Suppose that (i) holds when 𝑛 = 𝑗. Now set 𝑛 = 𝑗 + 1. For
the trajectory with the initial point order-2𝑗 − 1 successor
point, its order-1 successor point is the order-2𝑗 successor
point of point 𝑆, its order-2 successor point is the order-2𝑗+1
successor point of point 𝑆, and its order-3 successor point is
the order-2𝑗 + 2 successor point of point 𝑆. It is obvious that

𝐹
2𝑗−1
< 𝐹
2𝑗+1

, 𝐹
2𝑗
> 𝐹
2𝑗+2

, 𝐹
2𝑗+1
(𝑆) > 𝐹

2𝑗+2
(𝑆), and 𝑑

𝑗+1
> 𝑑
𝑗
.

Therefore, (i) holds.
Similar to (i), we have

(ii) 𝐹
1
(𝑆) < 0 and 𝐹

2
(𝑆) > 0

𝐹
1
(𝑆) > 𝐹

3
(𝑆) > ⋅ ⋅ ⋅ > 𝐹

2𝑛−1
(𝑆) ,

𝐹
2
(𝑆) < 𝐹

4
(𝑆) < ⋅ ⋅ ⋅ < 𝐹

2𝑛
(𝑆) ,

𝐹
2𝑛−1
(𝑆) < 𝐹

2𝑛
(𝑆) , 𝑑

𝑛
< 𝑑
𝑛−1
< 0,

(9)

(iii) 𝐹
1
(𝑆) < 0 and 𝐹

2
(𝑆) < 0.

If 𝐹
1
(𝑆) < 0 and 𝐹

2
(𝑆) < 0, then

𝐹
1
(𝑆) < 𝐹

3
(𝑆) < ⋅ ⋅ ⋅ < 𝐹

2𝑛−1
(𝑆) ,

𝐹
2
(𝑆) > 𝐹

4
(𝑆) > ⋅ ⋅ ⋅ > 𝐹

2𝑛
(𝑆) ,

𝐹
2𝑛
(𝑆) > 𝐹

2𝑛−1
(𝑆) ,

0 > 𝑑
𝑛
= 𝛼
𝑛−1
𝑑
𝑛−1
, (0 < 𝛼

𝑛
< 1) .

(10)

If 𝑛 = 1, 2, 3, it is obvious that (iii) holds. Suppose that
(iii) holds when 𝑛 = 𝑗. Now set 𝑛 = 𝑗 + 1. For the trajectory
with the initial point order-2𝑗 − 1 successor point, its order-
1 successor point is the order-2𝑗 successor point of point 𝑆,
its order-2 successor point is the order-2𝑗 + 1 successor point
of point 𝑆, and its order-3 successor point is the order-2𝑗 + 2
successor point of point 𝑆. It is obvious that 𝐹

2𝑗−1
< 𝐹
2𝑗+1

,
𝐹
2𝑗
> 𝐹
2𝑗+2

,𝐹
2𝑗+1
(𝑆) < 𝐹

2𝑗+2
(𝑆), and 𝑑

𝑗+1
< 𝑑
𝑗
.Therefore, (iii)

holds. Moreover, based on 0 > 𝑑
𝑛
= 𝛼
𝑛−1
𝑑
𝑛−1

, (0 < 𝛼
𝑛
< 1),

it is known that 𝑑
𝑛
= 𝛼
1
⋅ ⋅ ⋅ 𝛼
𝑛−1
𝑑
1
because 0 < 𝛼

𝑛
< 1, so

lim
𝑛→+∞

𝑑
𝑛
= 0.

Similar to (iii), we have

(iv) 𝐹
1
(𝑆) > 0 and 𝐹

2
(𝑆) > 0

𝐹
1
(𝑆) > 𝐹

3
(𝑆) > ⋅ ⋅ ⋅ > 𝐹

2𝑛−1
(𝑆) ,

𝐹
2
(𝑆) < 𝐹

4
(𝑆) < ⋅ ⋅ ⋅ < 𝐹

2𝑛
(𝑆) ,

𝐹
2𝑛−1
(𝑆) > 𝐹

2𝑛
(𝑆) ,

0 < 𝑑
𝑛
= 𝛼
𝑛−1
𝑑
𝑛−1
, (0 < 𝛼

𝑛
< 1) .

(11)

Therefore, the trajectory with the initial point 𝑆 is
attracted by an order-1 periodic solution if case (iii) or case
(iv) holds.

According to (iv), the trajectory with the initial point 𝐵
is attracted by an order-1 periodic solution. Let 𝐵

𝑘
be the

order-𝑘 successor point of point 𝐵. It is easy to show that
the trajectory with the initial point 𝐵

2
is attracted by the

order-1 periodic solution. Therefore, if we take a point 𝑈
between point 𝐵 and point 𝐵

2
, 𝐹
2
(𝑈) > 0 and 𝐹

1
(𝑈) > 0,

while according to (iv), the trajectory with the initial point
𝑈 is attracted by the order-1 periodic solution. Similarly,
any trajectory with an initial point that belongs to a phase
set between 𝑦

𝑆
and 𝑦

𝐻
is attracted by the order-1 periodic

solution, where 𝑦
𝐻
= 𝑟𝑎𝑑ℎ(𝐾 − (1 − 𝑝)ℎ)(1 − 𝑝)/(𝑎𝐾 −

𝑟(𝐾 − (1 − 𝑝)ℎ)) is a crossover point of the vertical line and
the phase set (see Section 3). Obviously, the order-1 periodic
solution is orbitally attractive. According to Lemma 7, the
order-1 periodic solution is also orbitally stable.
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E∗

ẏ = 0

ẋ = 0

Figure 1: A vector graph of system (1): the black cure, �̇� = 0, denote
vertical isocline, and the black cure, ̇𝑦 = 0, denotes horizontal
isocline. The blue cures denote the trajectory in system (1).

Similar to Lemma 8, we have Lemma 9 as follows.

Lemma 9. In system (1), one supposes that there exists an
order-1 periodic solutionwhere the crossover points of the order-
1 periodic solution for the impulsive set and phase set are points
𝐶 and 𝐷, respectively, and 𝑦

𝐷
≤ 𝑟𝑎𝑑ℎ(𝐾 − (1 − 𝑝)ℎ)(1 −

𝑝)/(𝑎𝐾 − 𝑟(𝐾 − (1 − 𝑝)ℎ)). If a trajectory is attracted by
the order-1 periodic solution, the order-1 periodic solution is
orbitally semistable at least.

3. Main Results

First, we consider the case of system (1) without an impulsive
effect. Obviously,𝐹 = 𝑓(𝐴) = 𝑟𝑎𝑑(1−𝐴/𝐾)𝐴/(𝑎−𝑟(1−𝐴/𝐾))
is a vertical line and 𝐹 = 𝑔(𝐴) = ((𝜀𝑎 − 𝑎𝑑𝑚)/𝑚)𝐴 is a
horizontal isocline. A direct calculation shows that (0, 𝐾) is
a saddle while 𝐸∗ is a stable positive focus in the condition
((𝑟 − 𝑎 + 𝑚)𝑒

2
+ 𝑚
2
𝑑(𝑎𝑑 − 𝑒))

2

> 4𝑒
2
𝑚(𝑟𝑒 − 𝑒𝑎 + 𝑎𝑑𝑚)(𝑒 −

𝑚𝑑), 𝑎 < 𝑟𝑒/(𝑒 − 𝑚𝑑), 𝑒 > 𝑚𝑑, 𝑎(𝑒2 − 𝑚2𝑑2) < (𝑟𝑒 + 𝑚𝑒 −
𝑚
2
𝑑)𝑒, where 𝐸∗ = (𝐴∗, 𝐹∗), 𝐹∗ = (𝑎(𝑒 − 𝑚𝑑)/𝑟)𝐴∗, and

𝐴
∗
= 𝐾(𝑟𝑒 − 𝑒𝑎 + 𝑚𝑎𝑑)/𝑟𝑒. The vector graph of system (1) is

shown in Figure 1.Throughout this paper, we suppose that the
condition always holds based on ecological practice, where
𝑄 and 𝑀 are the impulsive set and phase set, respectively,
and ℎ < 𝐴∗. Next, we discuss the order-1 periodic solution
of system (1).

3.1. Existence of Order-1 Periodic Solution for System (1)

3.1.1.TheCaseWhere 𝜏 = 0. In this subsection, wewill derive
some basic properties for the following subsystem of system
(1), where fish, 𝐹(𝑡), is absent:

𝑑𝐴

𝑑𝑡
= 𝑟𝐴(1 −

𝐴

𝐾
) , 𝐴 ̸= ℎ

Δ𝐴 = −𝑝𝐴, 𝐴 = ℎ.

(12)

Setting 𝐴
0
= 𝐴(0) = (1 − 𝑝)ℎ produces the following

solution of system (12):𝐴(𝑡) = 𝐾(1−𝑝)ℎ exp(𝑟(𝑡 −𝑛𝑇))/(𝐾−
(1−𝑝)ℎ+(1−𝑝)ℎ exp(𝑟(𝑡−𝑛𝑇))). If we let𝑇 = (1/𝑟) ln((𝐾−(1−

𝑝)ℎ)/(𝐾−ℎ)(1−𝑝)), then𝐴(𝑇) = ℎ and𝐴(𝑇+) = (1−𝑝)ℎ.This
means that system (1) has the following semitrivial periodic
solution:

𝐴 (𝑡) =
𝐾 (1 − 𝑝) ℎ exp (𝑟 (𝑡 − 𝑛𝑇))

𝐾 − (1 − 𝑝) ℎ + (1 − 𝑝) ℎ exp (𝑟 (𝑡 − 𝑛𝑇))
,

𝐹 (𝑡) = 0,

(13)

where 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ 𝑁, which is implied by (𝜉(𝑡), 0).
Thus, the following theorem is obtained.

Theorem 10. There exists a semitrivial order-1 periodic solu-
tion (13) in system (1), which is orbitally asymptotically stable
if

−1 < 𝑞 < (
(1 − 𝑝) (𝐾 − ℎ)

𝐾 − (1 − 𝑝) ℎ
)

(𝜀−𝑚𝑑)/𝑟𝑑

− 1. (14)

Proof. It is known that 𝑃(𝐴, 𝐹) = 𝑟𝐴(1 − 𝐴/𝐾) − 𝑎𝐴𝐹/(𝐹 +
𝑎𝑑𝐴), 𝑄(𝐴, 𝐹) = 𝜀𝑎𝐴𝐹/(𝐹 + 𝑎𝑑𝐴) − 𝑚𝐹, 𝛼(𝐴, 𝐹) = −𝑝𝐴,
𝛽(𝐴, 𝐹) = 𝑞𝐹, 𝜙(𝐴, 𝐹) = 𝐴 − ℎ, (𝜉(𝑇), 𝜂(𝑇)) = (ℎ, 0),
and (𝜉(𝑇+), 𝜂(𝑇+)) = ((1 − 𝑝)ℎ, 0). Using Lemma 5 and a
straightforward calculation, it is possible to obtain

𝜕𝑃

𝜕𝐴
= 𝑟 (1 −

2

𝐾
𝐴) −

𝑎𝐹
2

(𝐹 + 𝑎𝑑𝐴)
2
,

𝜕𝑄

𝜕𝐹
=
𝜀𝑑𝑎
2
𝐴
2

(𝐹 + 𝑎𝑑𝐴)
2
− 𝑚,

𝜕𝛼

𝜕𝐴
= −𝑝,

𝜕𝛼

𝜕𝐹
= 0,

𝜕𝛽

𝜕𝐴
= 0,

𝜕𝛽

𝜕𝐹
= 𝑞,

𝜕𝜙

𝜕𝐴
= 1,

𝜕𝜙

𝜕𝐹
= 0,

Δ
1
= (𝑃
+
(
𝜕𝛽

𝜕𝐹

𝜕𝜙

𝜕𝐴
−
𝜕𝛽

𝜕𝐴

𝜕𝜙

𝜕𝐹
+
𝜕𝜙

𝜕𝐴
)

+ 𝑄
+
(
𝜕𝛼

𝜕𝐴

𝜕𝜙

𝜕𝐹
−
𝜕𝛼

𝜕𝐹

𝜕𝜙

𝜕𝐴
+
𝜕𝜙

𝜕𝐹
))

× (𝑃
𝜕𝜙

𝜕𝐴
+ 𝑄
𝜕𝜙

𝜕𝐹
)

−1

=
𝑃
+
(𝜉 (𝑇
+
) , 𝜂 (𝑇

+
)) (1 + 𝑞)

𝑃 (𝜉 (𝑇) , 𝜂 (𝑇))

= (1 − 𝑝) (1 + 𝑞)
𝐾 − (1 − 𝑝) ℎ

𝐾 − ℎ
.

(15)
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Figure 2: (a) is the proof onTheorem 12; (b) is the proof onTheorem 13. In (a) and (b), the red line𝑀 and the blue line𝑄 represent impulsive
set and phase set, respectively. The black cure, �̇� = 0, denotes vertical isocline, and the black cure, ̇𝑦 = 0, denotes horizontal isocline.

Furthermore,

exp [∫
𝑇

0

(
𝜕𝑃

𝜕𝐴
(𝜉 (𝑡) , 𝜂 (𝑡)) +

𝜕𝑄

𝜕𝐹
(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡]

= exp [∫
𝑇

0

(𝑟 (1 −
2

𝐾
𝜉 (𝑡)) +

𝜀

𝑑
− 𝑚)𝑑𝑡]

= (
𝐾 − (1 − 𝑝) ℎ

(𝐾 − ℎ) (1 − 𝑝)
)

1+((𝜀−𝑚𝑑)/𝑟𝑑)

(
𝐾 − (1 − 𝑝) ℎ

𝐾 − ℎ
)

−2

.

(16)
Therefore, it is possible to obtain the Floquet multiplier 𝜇

by direct calculation as follows:

𝜇 =

𝑛

∏

𝑘=1

Δ
𝑘
exp [∫

𝑇

0

(
𝜕𝑃

𝜕𝑥
(𝜉 (𝑡) , 𝜂 (𝑡))

+
𝜕𝑄

𝜕𝑦
(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡]

= (1 + 𝑞)(
𝐾 − (1 − 𝑝) ℎ

(1 − 𝑝) (𝐾 − ℎ)
)

(𝜀−𝑚𝑑)/𝑟𝑑

.

(17)

Thus, |𝜇| < 1 if (14) holds. This completes the proof.

Remark 11. If 𝑞∗ = ((1 − 𝑝)(𝐾 − ℎ)/(𝐾 − (1 − 𝑝)ℎ))(𝜀−𝑚𝑑)/𝑟𝑑−
1, a bifurcation may occur if 𝑞 = 𝑞∗ for |𝜇| = 1, whereas a
positive periodic solution may emerge if 𝑞 > 𝑞∗.

Theorem 12. There exists a positive order-1 periodic solution
in system (1) if 𝑞 > 𝑞∗ where the semitrivial periodic solution is
orbitally unstable.

Proof. Because ℎ < 𝐴∗, 𝑀 and 𝑄 are both in the left 𝐸∗.
The trajectory that passes through point 𝐵 tangents to𝑀 at

point 𝐵 and intersects with 𝑄 at point 𝐶. Thus, there may be
three cases of phase point (𝐶+) for point 𝐶 as follows (see
Figure 2(a)).

Case I (𝑦
𝐵
= 𝑦
𝐶
+). In this case, it is obvious that 𝐵𝐶𝐵 is an

order-1 periodic solution.

Case II (𝑦
𝐵
< 𝑦
𝐶
+). Point 𝐶+ is the order-1 successor point of

point 𝐵, so the order-1 successor function of point𝐵 is greater
than zero; that is, 𝐹

1
(𝐵) = 𝑦

𝐶
+ − 𝑦
𝐵
> 0. In addition, the

trajectory with the initial point 𝐶+ intersects with the set of
impulses𝑄 at point𝐷 and reaches𝐷+ via the impulsive effect.
Due to the disjointedness of the different trajectories, it is easy
to see that point 𝐷+ is located below point 𝐶+. Therefore,
the successor function 𝐹

1
(𝐶
+
) < 0. According to Lemma 4,

a point 𝐸 ∈ 𝑀 is known to exist such that 𝐹
1
(𝐸) = 0, so there

exists an order-1 periodic solution for system (1).

Case III (𝑦
𝐵
> 𝑦
𝐶
+). According to 𝑦

𝐵
> 𝑦
𝐶
+ , the order-

1 successor point of point 𝐵 is located below point 𝐵, so
𝐹
1
(𝐵) < 0. If we suppose that 𝑝

0
is a crossover point of

the semitrivial periodic solution and impulsive set, because
the semitrivial periodic solution is orbitally unstable, then
there exists a point 𝐸 ∈ ∪(𝑝

0
, 𝛿) such that 𝐹

1
(𝐸) ≥ 0. If

𝐹
1
(𝐸) < 0, the trajectorywith the initial point𝐸 is attracted by

the semitrivial periodic solution and, according to Lemma 9,
the semi-periodic solution is orbitally stable. Obviously, this
is a contradiction, so 𝐹

1
(𝐸) ≥ 0. Thus, there exists a order-

1 positive periodic solution when 𝐹
1
(𝐸) = 0. According to

Lemma 4, a point𝐾 ∈ 𝑀 is known to exist such that 𝐹
1
(𝐾) =

0 when 𝐹
1
(𝐸) > 0. Therefore, there exists an order-1 periodic

solution for system (1).
The proof is completed.
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3.1.2. The Case Where 𝜏 > 0. In this case, we suppose that
ℎ < 𝐴

∗ and the following theorem is described.

Theorem 13. There exists a positive order-1 periodic solution
for system (1) if 𝜏 > 0 and ℎ < 𝐴∗.

Proof (see Figure 2(b)). Themethod for this proof is similar to
the method for Theorem 12. The main difference is the proof
for the case 𝑦

𝐵
> 𝑦
𝐶
+ . Suppose that 𝐸 is a crossover point

for a semitrivial periodic solution and an impulsive set. The
trajectory with initial point𝐸 intersects the impulsive set at𝐹.
Obviously, 𝑦

𝐸
= 𝑦
𝐹
= 0. Because 𝜏 > 0, 𝑦

𝐹
+ = (1 + 𝑞)𝑦

𝐹
+ 𝜏 >

0 = 𝑦
𝐹
. Thus, there exists a positive order-1 periodic solution

for system (1), which completes the proof.

In summary, system (1) has a stable semitrivial periodic
solution or a positive order-1 periodic solution when 𝜏 ≥ 0.
Furthermore, using the analogue of the Poincaré criterion,
the stability of positive order-1 periodic solution is obtained.

Theorem 14. For any 𝜏 > 0, 𝑞 > −1, or 𝜏 = 0, 𝑞 ≥ 𝑞∗, the
order-1 periodic solution of system (1) is orbitally stable if the
following condition holds:



(1 − 𝑝) (1 + 𝑞) × (𝑟(1 −
(1 − 𝑝) ℎ

𝐾
)

−
𝑎 ((1 + 𝑞) 𝜂

0
+ 𝜏)

((1 + 𝑞) 𝜂
0
+ 𝜏) + 𝑎𝑑 (1 − 𝑝) ℎ

)

× (𝑟(1 −
ℎ

𝐾
) −

𝑎𝜂
0

𝜂
0
+ 𝑎𝑑ℎ

)

−1

× exp(∫
𝑇

0

𝐺 (𝑡) 𝑑𝑡)



< 1,

(18)

where 𝐺(𝑡) = (𝜕𝑃/𝜕𝐴)(𝜉(𝑡), 𝜂(𝑡)) + (𝜕𝑄/𝜕𝐹)(𝜉(𝑡), 𝜂(𝑡)).

Proof. We suppose that the period of the order-1 periodic
solution is 𝑇, so the order-1 periodic solution intersects the
impulsive set at𝐸(ℎ, 𝜂

0
) andphase set at𝐸+((1−𝑝)ℎ, (1+𝑞)𝜂

0
+

𝜏). Let (𝜉(𝑡), 𝜂(𝑡)) be the expression of the order-1 periodic
solution. The difference between this case and the case in
Theorem 10 is that (𝜉(𝑇), 𝜂(𝑇)) = (ℎ, 𝜂

0
), (𝜉(𝑇+), 𝜂(𝑇+)) =

((1 − 𝑝)ℎ, (1 + 𝑞)𝜂
0
+ 𝜏), whereas the others are the same.

Thus, we have

Δ
1
= (1 − 𝑝) (1 + 𝑞)

× (𝑟(1 −
(1 − 𝑝) ℎ

𝐾
)

−
𝑎 ((1 + 𝑞) 𝜂

0
+ 𝜏)

((1 + 𝑞) 𝜂
0
+ 𝜏) + 𝑎𝑑 (1 − 𝑝) ℎ

)

× (𝑟(1 −
ℎ

𝐾
) −

𝑎𝜂
0

𝜂
0
+ 𝑎𝑑ℎ

)

−1

,

𝜇
2
= Δ
1
exp(∫

𝑇

0

𝐺 (𝑡) 𝑑𝑡) .

(19)

According to condition (18), |𝜇
2
| < 1, so the order-1 periodic

solution is orbitally stable using the analogue of the Poincaré
criterion. The proof is complete.

3.2. Bifurcation and the Movement of the Order-1
Periodic Solution

3.2.1. Transcritical Bifurcation. In this subsection, we will
discuss the bifurcation near the semitrivial periodic solution.
The following Poincaré map 𝑃 is used:

𝑦
+

𝑘
= (1 + 𝑞) 𝑔 (𝑦

+

𝑘−1
) , (20)

where we choose section 𝑆
0
= (1 − 𝑝)ℎ as a Poincaré section.

If we set 0 ≤ 𝑢 = 𝑦+
𝑘
at a sufficiently small value, the map can

be written as follows:

𝑢 → (1 + 𝑞) 𝑔 (𝑢) ≡ 𝐺 (𝑢, 𝑞) . (21)

Using Lemma 6, the following theorem can be obtained.

Theorem 15. A transcritical bifurcation occurs when 𝑞 =
𝑞
∗, 𝜏 = 0. Therefore, a stable positive fixed point appears
when the parameter 𝑞 changes through 𝑞∗ from left to right.
Correspondingly, system (1) has a stable positive periodic
solution if 𝑞 ∈ (𝑞∗, 𝑞∗ + 𝛿) with 𝛿 > 0.

Proof. The values of 𝑔(𝑢) and 𝑔(𝑢) must be calculated at
𝑢 = 0 where 0 ≤ 𝑢 ≤ 𝑢

0
. Here, 𝑢

0
= 𝑟𝑎𝑑𝐾ℎ(1 − 𝑝)(𝐾 −

(1 − 𝑝)ℎ)/(𝑎𝐾 − 𝑟(𝐾 − (1 − 𝑝)ℎ)). Thus, system (1) can be
transformed as follows:

𝑑𝐹

𝑑𝐴
=
𝑄 (𝐴, 𝐹)

𝑃 (𝐴, 𝐹)
, (22)

where 𝑃(𝐴, 𝐹) = 𝑟𝐴(1 − 𝐴/𝐾) − 𝑎𝐴𝐹/(𝐹 + 𝑎𝑑𝐴), 𝑄(𝐴, 𝐹) =
𝜀𝑎𝐴𝐹/(𝐹 + 𝑎𝑑𝐴) − 𝑚𝐹.

Let (𝐴, 𝐹(𝐴; 𝐴
0
, 𝐹
0
)) be an orbit of system (22) and 𝐴

0
=

(1 − 𝑝)ℎ, 𝐹
0
= 𝑢, 0 ≤ 𝑢 ≤ 𝑢

0
. Then,

𝐹 (𝐴; (1 − 𝑝) ℎ, 𝑢) ≡ 𝐹 (𝐴, 𝑢) ,

(1 − 𝑝) ℎ ≤ 𝐴 ≤ ℎ, 0 ≤ 𝑢 ≤ 𝑢
0
. (23)

Using (23),

𝜕𝐹 (𝐴, 𝑢)

𝜕𝑢
= exp [∫

𝐴

(1−𝑝)ℎ

𝜕

𝜕𝐹
(
𝑄 (𝑠, 𝐹 (𝑠, 𝑢))

𝑃 (𝑠, 𝐹 (𝑠, 𝑢))
) 𝑑𝑠] ,

𝜕
2
𝐹 (𝐴, 𝑢)

𝜕𝑢2
=
𝜕𝐹 (𝐴, 𝑢)

𝜕𝑢

× ∫

𝐴

(1−𝑝)ℎ

𝜕
2

𝜕𝐹2
(
𝑄 (𝑠, 𝐹 (𝑠, 𝑢))

𝑃 (𝑠, 𝐹 (𝑠, 𝑢))
)
𝜕𝐹 (𝑠, 𝑢)

𝜕𝑢
𝑑𝑠,

(24)
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Figure 3: It represents the proof onTheorem 17. In (a) and (b), the line𝑀 and the line 𝑄 represent impulsive set and phase set, respectively.
The cures represent trajectory of system (1), and the lines denote impulsive line of system (1).

and it can clearly be deduced that 𝜕𝐹(𝐴, 𝑢)/𝜕𝑢 > 0, and

𝑔


(0) =
𝜕𝐹 (ℎ, 0)

𝜕𝑢

= exp(∫
ℎ

(1−𝑝)ℎ

𝜕

𝜕𝐹
(
𝑄 (𝑠, 𝐹 (𝑠, 0))

𝑃 (𝑠, 𝐹 (𝑠, 0))
) 𝑑𝑠)

= exp(∫
ℎ

(1−𝑝)ℎ

𝐾 (𝜀 − 𝑑𝑚)

𝑟𝑠 (𝐾 − 𝑠)
𝑑𝑠)

= (
𝐾 − (1 − 𝑝) ℎ

(1 − 𝑝) (𝐾 − ℎ)
)

(𝜀−𝑑𝑚)/𝑟𝑑

.

(25)

Furthermore,

𝑔


(0) = 𝑔


(0) ∫

ℎ

(1−𝑝)ℎ

𝑚(𝑠)
𝜕𝐹 (𝑠, 0)

𝜕𝑢
𝑑𝑠, (26)

where𝑚(𝑠) = (𝜕2/𝜕𝐹2)(𝑄(𝑠, 𝐹(𝑠, 0))/𝑃(𝑠, 𝐹(𝑠, 0))) = 2𝐾(𝜀𝑟𝑠−
𝐾(𝜀𝑟 + 𝑎𝑑𝑚− 𝜀𝑎))/𝑎𝑑

2
𝑟
2
𝑠
2
(𝐾− 𝑠)

2, 𝑠 ∈ [(1 −𝑝)ℎ, ℎ]. Because
𝑢 is sufficiently small, this yields 𝜀𝑟𝑠−𝐾(𝜀𝑟+𝑎𝑑𝑚−𝜀𝑎) < 0. It
can be determined that𝑚(𝑠) < 0, 𝑠 ∈ [(1 − 𝑝)ℎ, ℎ). Therefore,

𝑔


(0) < 0. (27)

Thenext step is to checkwhether the following conditions
are satisfied.

(a) It is easy to see that 𝐺(0, 𝑞) = 0, 𝑞 ∈ (0,∞).
(b) Using (25), 𝜕𝐺(0, 𝑞)/𝜕𝑢 = (1 + 𝑞)𝑔


(0) =

(1+𝑞)((𝐾 − (1 − 𝑝)ℎ)/(1 − 𝑝)(𝐾 − ℎ))
(𝜀−𝑑𝑚)/𝑟𝑑, which

yields 𝜕𝐺(0, 𝑞∗)/𝜕𝑢 = 1. This means that (0, 𝑞∗) is a
fixed point with an eigenvalue of 1 in map (20).

(c) Because (25) holds, 𝜕2𝐺(0, 𝑞∗)/𝜕𝑢𝜕𝑞 = 𝑔(0) > 0.
(d) Finally, inequality (27) implies that 𝜕2𝐺(0, 𝑞∗)/𝜕𝑢2 =
(1 + 𝑞

∗
)𝑔

(0) < 0.

These conditions satisfy the conditions of Lemma 6. This
completes the proof.

3.2.2. Movement of the Order-1 Periodic Solution. In this
subsection, we will discuss the movement of the order-1
periodic solution with variable parameters. The following
theorem is required.

Theorem 16. The rotation direction of the pulse line is clock-
wise if 𝑞 changes from 𝑞 = 0 to 𝑞 > 0.

Proof. Let 𝜃 be the angle of the pulse line and the𝑥-axis.Then,
tan 𝜃 = Δ𝐹/Δ𝐴 = 𝑄/𝑃, so 𝜃 = tan−1(𝑄/𝑃). Furthermore,
𝜕𝜃/𝜕𝑞 = (1/(𝑃

2
+𝑄
2
))


𝑃 𝑄

𝜕𝑃/𝜕𝑞 𝜕𝑄/𝜕𝑞


= (1/(𝑃

2
+𝑄
2
))(−𝑝𝐴𝐹) <

0. Therefore, 𝜃 is a monotonically decreasing function of 𝑞.
This completes the proof.

The existence of an order-1 periodic solution was proved
in the previous analysis, so we assume that there exists an
order-1 periodic solution when 𝑞 = 𝑞∗ and 𝜏 > 0, where
the crossover points of the order-1 periodic solution for
the impulsive set and the phase set are points 𝐶 and 𝐷,
respectively. The following theorem is then described.

Theorem 17. In system (1), one supposes that there exists a
stable and positive order-1 periodic solution if 𝑞 = 𝑞∗, 𝜏 > 0,
and 𝑦
𝐷
> 𝑟𝑎𝑑ℎ(𝐾−(1−𝑝)ℎ)(1−𝑝)/(𝑎𝐾−𝑟(𝐾−(1−𝑝)ℎ)).The

order-1 periodic solution moves toward the inside of the order-
1 periodic solution along the pulse set and it is orbitally stable
when 𝑞 changes appropriately from 𝑞 = 𝑞∗ to 𝑞 < 𝑞∗.

Proof (see Figure 3(a)). The order-1 periodic solution breaks
when 𝑞 changes. According to Theorem 16, point 𝐸, which is
the phase point of point 𝐶, is located below point 𝐷 when
𝑞
∗ decreases. Because 𝑦+ = 𝑦 + 𝑞𝑦 + 𝜏 (here 𝑦 > 0) is a
monotonically increasing and continuing function of 𝑞, there
exists 𝜀 > 0 such that 𝑦

𝐷
< 𝑦
𝐸
< 𝑦
𝐼
. Figure 3(a) shows that

point 𝐸 is the order-1 successor point of point𝐷, while point
𝐺 is the order-1 successor point of point 𝐸, so 𝐹

1
(𝐷) < 0,

𝐹
1
(𝐸) > 0. Therefore, there exists a point 𝐾 between point 𝐷

and 𝐸 such that 𝐹
1
(𝐾) = 0. According to the disjointedness
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Figure 4: Trajectories with the initial point (0.02, 0.01) in system (1) where (a) 𝑞 = −0.6 and (b) 𝑞 = −0.3, where the blue line CD displays
the semitrivial of system (1).

of the different trajectories, the order-1 periodic solution is
inside the order-1 periodic solution𝐷𝐼𝐶𝐷.

Next, the orbital stability can be established based on the
following proof (see Figure 3(b)).

The order-1 periodic solution𝐷𝐼𝐶𝐷 is orbitally stable, so
according to Lemma 8 and the disjointedness of the pulse
line, there exists a point 𝑆 between points 𝐷 and 𝐼 (see
Figure 3(a)) such that 𝐹

1
(𝑆) > 0, 𝐹

2
(𝑆) > 0. We suppose that

the reduction in 𝑞∗ is 𝜀 > 0.
If 𝜀 = 0, point 𝐵 is the order-1 successor point of 𝑆 and

point 𝐹 is the order-2 successor point of point 𝑆. Because of
𝑦
𝐵
= (1+ 𝑞

∗
)𝑦
𝐴
+𝜏, 𝑦
𝐹
= (1+ 𝑞

∗
)𝑦
𝐸
+𝜏, so 𝐹

1
(𝑆) = 𝑦

𝐵
−𝑦
𝑆
=

(1+𝑞
∗
)𝑦
𝐴
+𝜏−𝑦

𝑆
> 0,𝐹

2
(𝑆) = 𝑦

𝐹
−𝑦
𝑆
= (1+𝑞

∗
)𝑦
𝐸
+𝜏−𝑦

𝑆
> 0.

While 𝜀 > 0, the order-1 and order-2 successor points of
point 𝑆 are points𝐺 and 𝑅, respectively, where 𝑦

𝐺
= (1+𝑞

∗
−

𝜀)𝑦
𝐴
+𝜏, 𝑦
𝑅
= (1+𝑞

∗
−𝜀)𝑦
𝐻
+𝜏.Therefore, 𝐹

1
(𝑆) = 𝑦

𝐺
−𝑦
𝑆
=

(1+𝑞
∗
−𝜀)𝑦
𝐴
+𝜏−𝑦

𝑆
, 𝐹
2
(𝑆) = 𝑦

𝑅
−𝑦
𝑆
= (1+𝑞

∗
−𝜀)𝑦
𝐻
+𝜏−𝑦

𝑆
,

where set 𝐹
1
(𝑆) = 𝐹

1

1
(𝑆) and 𝐹

2
(𝑆) = 𝐹

2

2
(𝑆) distinguish the

successor function between 𝜀 = 0 and 𝜀 > 0. Therefore, we
have the following: 𝐹1

1
(𝑆) = (1 + 𝑞

∗
− 𝜀)𝑦
𝐴
+ 𝜏 − 𝑦

𝑆
= (1 +

𝑞
∗
)𝑦
𝐴
+ 𝜏 − 𝑦

𝑆
− 𝜀𝑦
𝐴
, Because (1 + 𝑞∗)𝑦

𝐴
+ 𝜏 − 𝑦

𝑆
> 0, so

𝐹
1

1
(𝑆) > 0 when 0 < 𝜀 < (((1 + 𝑞∗)𝑦

𝐴
+ 𝜏 − 𝑦

𝑆
)/𝑦
𝐴
)

define
→ 𝜀

1
.

In addition,

𝐹
2
(𝑆) − 𝐹

2

2
(𝑆) = (1 + 𝑞

∗

) 𝑦
𝐸
+ 𝜏 − 𝑦

𝑆

− (1 + 𝑞
∗

− 𝜀) 𝑦
𝐻
+ 𝜏 − 𝑦

𝑆

= (1 + 𝑞
∗

) (𝑦
𝐸
− 𝑦
𝐻
) + 𝜀𝑦

𝐻
.

(28)

Obviously, 𝐹
2
(𝑆) − 𝐹

2

2
(𝑆) < 0 when 0 < 𝜀 < ((1 +

𝑞
∗
)(𝑦
𝐻
−𝑦
𝐸
)/𝑦
𝐻
)

define
→ 𝜀

2
, where 𝑦

𝐻
> 𝑦
𝐸
from Figure 3(b).

If we set 𝜀∗ = min(𝜀
1
, 𝜀
2
), 𝐹1
1
(𝑆) > 0 and 𝐹2

2
(𝑆) > 0 when

𝜀 ∈ (0, 𝜀
∗
). From case (iv) in Lemma 8, the trajectory with

an initial point 𝑆 is attracted by the periodic solution 𝐷𝐼𝐶𝐷.

According to Lemma 8, the order-1 periodic solution 𝐷𝐼𝐶𝐷
is orbitally stable. This completes the proof.

Similar to the method used for the proof of Theorem 17,
the following theorem exists.

Theorem 18. In system (1), one supposes that there exists a
stable and positive order-1 periodic solution if 𝑞 = 𝑞∗, 𝜏 > 0,
and 𝑦

𝐷
≤ 𝑟𝑎𝑑ℎ(𝐾 − (1 − 𝑝)ℎ)(1 − 𝑝)/(𝑎𝐾 − 𝑟(𝐾 − (1 −

𝑝)ℎ)).Therefore, the order-1 periodic solutionmoves toward the
outside of the order-1 periodic solution along the pulse set and
it is orbitally stable when 𝑞 changes appropriately from 𝑞 = 𝑞∗
to 𝑞 < 𝑞∗.

4. Numerical Results

The following numerical results are provided to illustrate
the feasibility of the theoretical results. In this section, the
parameters are fixed as follows: 𝑟 = 0.6, 𝐾 = 2, 𝑎 = 1,
𝑑 = 0.6, 𝜀 = 0.5, and 𝑚 = 0.4. The stable positive focus is
𝐸
∗
= (0.31, 0.2015), so ℎ < 0.31.

4.1. Stability of the Semitrivial Solution. Based on the previous
analysis, there exists a semitrivial solution when 𝜏 = 0 in
system (1). If we set 𝑝 = 0.6 and ℎ = 0.25, the semitrivial
solution is𝐴(𝑡) = 2 exp(0.6154(𝑡 − 𝑛𝑇))/(19 + exp(0.6154(𝑡 −
𝑛𝑇))) and 𝐹(𝑡) = 0with𝑇 = 1.622609349, where 𝑡 ∈ (𝑛𝑇, (𝑛+
1)𝑇], 𝑛 ∈ 𝑁. Based on Remark 11, 𝑞∗ = −0.5049669337.
According to Theorem 10, the semitrivial periodic solution
CDC is orbitally stable when 𝑞 ∈ (−1, 𝑞∗), as shown in
Figure 4(a) where 𝑞 = −0.6. While 𝑞 > 𝑞∗, the semitrivial
periodic solution CDC is unstable, as shown in Figure 4(b)
where 𝑞 = −0.3.
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Figure 5: (a) an order-1 periodic solution of system (1); (b) a trajectory with the initial point (0.02, 0.01) in system (1), and the trajectory is
attracted by an order-1 periodic solution; (c) several trajectories with different initial point in system (1), and these trajectories are attracted
by the same order-1 periodic solution; (d) the time series of system (1) corresponding to (b).

4.2. The Existence and Stability of the Order-1 Periodic Solu-
tion. According toTheorems 12 and 13, there exists a positive
order-1 periodic solution for system (1). In addition, the
order-1 periodic solution is orbitally asymptotically stable
when the conditions of Theorem 14 or Lemma 8 hold. If we
set 𝑝 = 0.6, ℎ = 0.275, 𝜏 = 0.01, and 𝑞 = 0.1 in system (1), an
order-1 periodic solution exists for Figure 5(a). Furthermore,
the trajectory is attracted by the order-1 periodic solution
in Figure 5(b). Figures 5(c) and 5(d) prove that the order-
1 periodic solution is orbitally asymptotically stable; that is,
Lemma 8 is correct.

Figure 6 is provided to further consider the existence of
an order-1 periodic solution of system (1). Figure 6 shows the
existing regions of an order-1 periodic solution, which is the

0.43
0.42
0.41
0.40

0 0.025 0.050 0.075 0.100

p

q

Figure 6: Existence of an order-1 periodic solution for system (1)
versus the parameters 𝑝 and 𝑞. In the black zone, there always exists
an order-1 periodic solution in system (1). Note: this figure does not
mean that there is no order-1 periodic solution in system (1).

part of the bifurcation of the positive stable order-1 periodic
solution of system (1), where 𝑝 and 𝑞 are parameters.
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Figure 7: Transition of the order-1 periodic solution of system (1).The line𝑀 and the line𝑄 represent impulsive set and phase set, respectively.
Black cures show the order-1 periodic of system (1).
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Figure 8: Bifurcation diagrams for system (1) 𝑞 ∈ (−1, 8], where (a) 𝜏 = 0 and (b) 𝜏 = 0.009.

4.3. Movement of the Order-1 Periodic Solution. From Theo-
rems 17 and 18, the order-1 periodic solution moves toward
the inside or outside of the order-1 periodic solution along the
pulse set and phase set if 𝑞 changes appropriately from 𝑞 = 𝑞∗
to 𝑞 < 𝑞∗. In Section 4.2, there exists an order-1 periodic
solution when 𝑞 = 0.1. Next, we reduce 𝑞 = 0.1 to 𝑞 = 0.05
and 𝑞 = 0.01. It is then easy to see that the order-1 periodic
solution moves toward the inside along the impulsive set and
the phase set from Figure 7(a), while Figure 7(b) proves that
an order-1 periodic solution moves toward the outside along

the impulsive set and phase set under the conditions stated in
Theorem 18.

4.4. Bifurcation Analysis. To study the dynamics of system
(1), a bifurcation is obtained that provides a summary of the
essential dynamical behavior of system (1). The bifurcation
diagrams of system (1) are plotted as a function of the
bifurcation parameter 𝑞 and shown in Figure 8. Due to the
similarity between Figures 8(a) and 8(b), which is a flip
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bifurcation of Figure 8(a), only Figure 8(a) is analyzed in
detail, where 𝑝 = 0.5, ℎ = 0.275, and 𝜏 = 0 in Figure 8(a)
and 𝜏 = 0.009 in Figure 8(b). It is obvious that the semitrivial
periodic solution is stable for 𝑞 ∈ (−1, −0.418) and unstable
for 𝑞 > −0.418.

According to Theorem 15, a transcritical bifurcation
occurs when 𝑞 = 𝑞

∗
≈ −0.418, which leads to a

positive order-1 periodic solution from a semitrivial periodic
solution. As 𝑞 increases, order-1 periodic solution→ order-2
periodic solution→ order-4 periodic solution, and a cascade
of period-halving bifurcations leads to chaos.

5. Conclusion and Discussion

In this paper, we developed an algae-fish semicontinuous
model, which we studied analytically and numerically. The-
oretical mathematical studies have investigated the existence
and stability of a semi-trival periodic solution and an order-1
periodic solution of system (1), proving that the positive peri-
odic solution emerges from the semitrivial periodic solution
via a transcritical bifurcation using bifurcation theory.

In the semicontinuous system, the movement of the
order-1 periodic solutionwas first studied theoretically, which
will be useful for studying the control of algae. In system
(1), the impulsive effect demonstrated the biological and
chemical control of algae. Using this theory, we can study
the effects of biological control on system (1). Furthermore, it
will be helpful for studying the effect of increased biological
and decreased chemical controls on system (1), because it is
harmful to use chemical controls in this environment.

In addition, our results are useful for others systems. For
example, some applications refer to the mathematical model
proposed in the literature [18]. In the literature [18], Bianca
and Pennisi develop a model, which is the first mathematical
model that reproduces the SimTriplex results on the triplex
vaccine.Themodel ismore valuable, which takes into account
both the humoral and cellular branches of the immune
response and includes many realistic factors. From their
work, we think that it is feasible to investigate vaccine models
using our results.
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