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This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO) and Recursive Neural
Networks (RNNs). State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data
for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve
this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results
obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel
CRF, region-based energy, simultaneous MRF, and superpixel MRF.

1. Introduction

Image parsing is an important step towards understanding an
image, which is to perform a full-scene labeling. The task of
image parsing consists in labeling every pixel in the image
with the category of the object it belongs to. After a perfect
image parsing, every region and every object are delineated
and tagged [1]. Image parsing is frequently used in a wide
variety of tasks including parsing scene [2, 3], aerial image
[4], and facade [5].

During the past decade, the image parsing technique has
undergone rapid development. Some methods for this task
such as [6] rely on a global descriptor which can do very
well for classifying scenes into broad categories. However,
these approaches fail to gain a deeper understanding of the
objects in the scene. Many other methods rely on CRFs [7],
MRFs [8], or other types of graphical models [9, 10] to ensure
the consistency of the labeling and to account for context.
Also, there are many approaches for image annotation and
semantic segmentation of objects into regions [11]. Note
that most of the graphical-based methods rely on a pre-
segmentation into superpixels or other segment candidates
and extract features and categories from individual segments
and from various combinations of neighboring segments.
The graphical model inference pulls out the most consistent
set of segments which covers the image [1]. Recently, these

ideas have been combined to provide more detailed scene
understanding [12–15].

It is well known that many graphical methods are based
on neural networks. The main reason is that neural networks
have promising potential for tasks of classification, associative
memory, parallel computation, and solving optimization
problems [16]. In 2011, Socher et al. proposed a RNN-
based parsing algorithm that aggregates segments in a greedy
strategy using a trained scoring function [17]. It recursively
merges pairs of segments into supersegments in a semanti-
cally and structurally coherent way. The main contribution
of the approach is that the feature vector of the combination
of two segments is computed from the feature vectors of the
individual segments through a trainable function. Experi-
mental results on Stanford background dataset revealed that
RNN-basedmethod outperforms state-of-the-art approaches
in segmentation, annotation, and scene classification. That
being said, it is worth noting that the objective function
is nondifferentiable due to the hinge loss. This could cause
problems since one of the principles of L-BFGS, which is
employed as the training algorithm in RNN, is that the
objective should be differentiable.

Since Particle SwarmOptimization (PSO) [18] has proven
to be an efficient and powerful problem-solving strategy, we
use a novel nonlinear PSO [19] to tune the weights of RNN.
The main idea is to use particle swarm for searching good
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Figure 1: Hierarchical architecture of image parsing based on recursive neural network.

combination of weights to minimize the objective function.
The experimental results show that the proposed algorithm
has better performance than traditional RNN on Stanford
background dataset.

The rest of the paper is organized as follows: Section 2
provides a brief description of the RNN-based image parsing
algorithm. Section 3 describes how PSO and the proposed
algorithmwork. Section 4 presents the dataset and the experi-
mental results. Section 5 draws conclusions.

2. Image Parsing Based on
Recursive Neural Networks

The main idea behind recursive neural networks for image
parsing lies in that images are oversegmented into small
regions and each segment has a vision feature. These features
are then mapped into a “semantic” space using a recursive
neural network. Figure 1 outlines the approach for RNN-
based image parsing method. Note that the RNN computes
(i) a score that is higher when neighboring regions should
be merged into a larger region, (ii) a new semantic feature
representation for this larger region, and (iii) its class label.
After regions with the same object label are merged, neigh-
boring objects are merged to form the full scene image.These
merging decisions implicitly define a tree structure in which
each node has associated with the RNN outputs (i)–(iii), and
higher nodes represent increasingly larger elements of the
image. Details of the algorithm are given from Sections 2.1
to 2.3.

2.1. Input Representation of Scene Images. Firstly, an image
𝑥 is oversegmented into superpixels (also called segments)
using the algorithm from [20]. Secondly, for each segment,
compute 119 features via [10]. These features include color
and texture features, boosted pixel classifier scores (trained on

the labeled training data), and appearance and shape features.
Thirdly, a simple neural network layer has been used to map
these features into the “semantic” 𝑛-dimensional space in
which the RNN operates, given as follows.

Let 𝐹
𝑖
be the features described previously for each seg-

ment, where 𝑖 = 1, . . . , 𝑁segs and𝑁segs denotes the number of
segments in an image. Then the representation is given as

𝑎
𝑖
= 𝑓 (𝑊

sem
𝐹
𝑖
+ 𝑏

sem
) , (1)

where𝑊sem
∈ 𝑅
𝑛×119 is the matrix of parameters we want to

learn, 𝑏sem is the bias, and 𝑓 is applied element wise and can
be any sigmoid-like function. In [17], the original sigmoid is
function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥) (Figure 2).

2.2. Greedy Structure Predicting. Since there are more than
exponentially many possible parse trees and no efficient
dynamic programming algorithms for RNN setting, there-
fore, Socher recommended a greedy strategy. The algorithm
finds the pairs of neighboring segments and adds their
activations to a set of potential child node pairs. Then the
network computes the potential parent representation for
these possible child nodes:

𝑝 (𝑖, 𝑗) = 𝑓 (𝑊[𝑐
𝑖
; 𝑐
𝑗
] + 𝑏) . (2)

With this representation, a local score can be determined by
using a simple inner product with a row vector𝑊score

∈ 𝑅
1×𝑛:

𝑠 (𝑖, 𝑗) = 𝑊
score

𝑝 (𝑖, 𝑗) . (3)

As illustrated in Figure 3, the recursive neural network is
different from the original RNN in that it predicts a score for
being a correct merging decision. The process repeats until
all pairs are merged and only one parent activation is left, as
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Figure 2: Illustration of the RNN training inputs: (a) a training image (red and blue are differently labeled regions). (b) An adjacency matrix
of image segments. (c) A set of correct trees which is oblivious to the order in which segments with the same label are merged.
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Figure 3: Recursive neural network which is replicated for each pair
of input vectors.

shown in Figure 1. The final score that we need for structure
prediction is simply the sum of all the local decisions:

𝑠 (RNN (𝜃, 𝑥
𝑖
, �̂�)) = ∑

𝑑∈𝑁(�̂�)

𝑠
𝑑
, (4)

where 𝜃 are all the parameters needed to compute a score 𝑠
with an RNN, �̂� is a parse for input 𝑥

𝑖
, and𝑁(�̂�) is the set of

nonterminal nodes.

2.3. Category Classifiers in the Tree. The main advantage of
the algorithm is that each node of the tree built by the RNN
has associated with it a distributed feature representation. To
predict class labels, a simple softmax layer is added to each
RNN parent node, as shown later:

label
𝑝
= softmax (𝑊label

𝑝) . (5)

When minimizing the cross-entropy error of this softmax
layer, the error will backpropagate and influence the RNN
parameters.

3. Nonlinear Particle Swarm
Optimization for Training FNN

As for traditional RNN-based method, the objective 𝐽 of
(5) is not differentiable due to the hinge loss. For training

RNN, Socher used L-BFGS over the complete training data
to minimize the objective, where the iteration of the swarm
relates to the update of the parameters of RNN. That being
said, it is worth noting that the basic principle of L-BFGS
is that the objective function should be differentiable. Since
the objective function for RNN is nondifferentiable, L-BFGS
could cause problems for computing the weights of RNN. To
solve this problem, a novel nonlinear PSO (NPSO) has been
used to tune the parameters of RNN.

3.1. Nonlinear Particle SwarmOptimization. As a population-
based evolutionary algorithm, PSO is initialized with a popu-
lation of candidate solutions. The activities of the population
are guided by some behavior rules. For example, let 𝑋

𝑖
(𝑡) =

(𝑥
𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝐷
(𝑡)) (𝑥

𝑖𝑑
(𝑡) ∈ [−𝑥

𝑑max, 𝑥𝑑max]) be the
location of the 𝑖th particle in the 𝑡th generation, where 𝑥

𝑑max
is the boundary of the 𝑑th search space for a given problem
and 𝑑 = 1, . . . , 𝐷. The location of the best fitness achieved
so far by the 𝑖th particle is denoted as 𝑝

𝑖
(𝑡) and the index

of the global best fitness by the whole population as 𝑝
𝑔
(𝑡).

The velocity of 𝑖th particle is 𝑉
𝑖
(𝑡) = (V

𝑖1
(𝑡), V
𝑖2
(𝑡), . . . , V

𝑖𝐷
(𝑡)),

where V
𝑖𝑑
is in [−V

𝑑max, V𝑑max] and V𝑑max is themaximal speed
of 𝑑th dimension.The velocity and position update equations
of the 𝑖th particle are given as follows:

V
𝑖𝑑 (
𝑡 + 1) = 𝑤 ⋅ V𝑖𝑑 (𝑡) + 𝑐1𝑟1 (𝑝𝑖𝑑 − 𝑥𝑖𝑑 (𝑡))

+ 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑥
𝑖𝑑 (
𝑡)) ,

𝑥
𝑖𝑑 (
𝑡 + 1) = 𝑥𝑖𝑑 (

𝑡) + V𝑖𝑑 (𝑡 + 1) ,

(6)

where 𝑖 = 1, . . . , 𝑛 and 𝑑 = 1, . . . , 𝐷. 𝑤, 𝑐
1
, 𝑐
2
≥ 0. 𝑤 is the

inertia weight, 𝑐
1
and 𝑐
2
denote the acceleration coefficients,

and 𝑟
1
and 𝑟
2
are random numbers, generated uniformly in

the range [0, 1].
Note that a suitable value for the inertia weight provides

a balance between the global and local exploration abilities
of the swarm. Based on the concept of decrease strategy, our
nonlinear inertia weight strategy [19] chooses a lower value
of 𝑤 during the early iterations and maintains higher value
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Figure 4: Nonlinear strategy of inertia weight.

of 𝑤 than linear model [21]. This strategy enables particles to
search the solution spacemore aggressively to look for “better
areas”, thus will avoid local optimum effectively.

The proposed update scheme of 𝑤(𝑡) is given as follows:

𝑤 (𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

(1 −

2𝑡

itermax
)

𝑟
(𝑤initial + 𝑤final)

2

+

(𝑤initial − 𝑤final)

2

, 𝑡 ≤

itermax
2

,

(1 −

2 (𝑡 − (itermax/2))

itermax
)

1/𝑟
(𝑤initial − 𝑤final)

2

+𝑤final, 𝑡 >

itermax
2

,

(7)

where itermax is themaximumnumber of iterations, 𝑡 denotes
the iteration generation, and 𝑟 > 1 is the nonlinear
modulation index.

Figure 4 illustrates the variations of nonlinear inertia
weight for different values of 𝑟. Note that 𝑟 = 1 is equal to
the linear model. In [19], we showed that a choice of 𝑟 within
[2-3] is normally satisfactory.

3.2. Encoding Strategy and Fitness Evaluation. Let 𝜃 = (𝑊sem;
𝑊; 𝑊score; 𝑊label

) be the set of RNN parameters; then
each particle can be the expressed as the combination of all
parameters, as shown later:

𝑊
sem 𝑊 𝑊

score
𝑊

label (8)

During the iteration, each particle relates to a combination of
weights of neural networks. The goal is to minimize a fitness
function, given as

𝐽 (𝜃) =

1

𝑁

𝑁

∑

𝑖=1

𝑟
𝑖 (
𝜃) +

𝜆

2

‖𝜃‖
2
, (9)

where 𝑟
𝑖
(𝜃) = 𝑠(RNN(𝜃, 𝑥

𝑖
, 𝑦
∗
)) + Δ(𝑥

𝑖
, 𝑙
𝑖
, 𝑦
∗
) −

max
𝑦𝑖∈𝑌(𝑥𝑖 ,𝑙𝑖)

(𝑠(RNN(𝜃, 𝑥
𝑖
, 𝑦
𝑖
))) and 𝑦

∗ denote the parse
tree generated by the greedy strategy according to parameter
𝜃. Minimizing this objective means minimize the error
between the parsing results, which is generated by the best
particle and the labeled training images (ground truth).

3.3. Summary of PSO-Based Training Algorithm.

Input includes a set of labeled images, the size of
the hidden layer 𝑛, the value of penalization term
for incorrect parsing decisions 𝜅, the regularization
parameter 𝜆, the population of particles𝑚, the values
of nonlinear parameter 𝑟 and the number of iterations
itermax.
Output includes the set of model parameters 𝜃 =

(𝑊
sem
, 𝑊, 𝑊

score
, and 𝑊label

), each with respect to
weights of a recursive neural network.

(1) Randomly initialize 𝑚 particles and randomize the
positions and velocities for entire population. Record
the global best location 𝑝

𝑔
of the population and the

local best locations 𝑝
𝑖
of the 𝑖th particle according to

(9), where 𝑖 = 1, 2, . . . , 𝑚.

(2) For each iteration, evaluate the fitness value of the 𝑖th
particle through (9). If (𝑓(𝑥

𝑖
)) < (𝑓(𝑝

𝑖
)), set𝑝

𝑖
= 𝑥
𝑖
as

the so far best position of the 𝑖th particle. If (𝑓(𝑥
𝑖
)) <

(𝑓(𝑝
𝑔
)), set 𝑝

𝑔
= 𝑥
𝑖
as the so far best position of the

population.

(3) Calculate the inertia weight through (7). Update the
position and velocity of particles according to (6).

(4) Repeat Step 2 and Step 3 until maximum number of
generation.

(5) Compute the weights of RNN according to the best
particle.

4. Experimental Results and Discussion

4.1. Description of the Experiments. In this section, PSO-
based RNN method is compared with traditional RNN
[17], pixel CRF [10], region-based energy [10], simultaneous
MRF [8], and superpixel MRF [8], by using images from
Stanford background dataset. All the experiments have been
conducted on a computer with Intel sixteen-core processor
2.67GHz processor and 32GB RAM.

As for RNN, Socher recommends that the size of the
hidden layer 𝑛 = 100, the penalization term for incorrect
parsing decisions 𝜅 = 0.05, and the regularization parameter
𝜆 = 0.001. As for the particle swarm optimization, we set
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Figure 5: Typical results of multiclass image segmentation and pixel-wise labeling with PSO-based recursive neural networks.

the population of particles𝑚 = 100, the number of iterations
itermax = 500, 𝑐1 = 𝑐2 = 2, 𝑤initial = 0.95, 𝑤final = 0.4, and
𝑟 = 2.5.

4.2. Scene Annotation. The first experiment aims at evaluat-
ing the accuracy of scene annotation on the Stanford back-
ground dataset. Like [17], we run fivefold cross-validation and
report pixel level accuracy in Table 1. Note that the traditional
RNN model influences the leaf embeddings through back-
propagation, while we use PSO to tune the weights of RNN.

As for traditional RNN model, we label the superpixels by
their most likely class based on the multinomial distribution
from the softmax layer at the leaf nodes. One can see that
in Table 1, our approach outperforms previous methods that
report results on this data, which means that the PSO-based
RNN constructs a promising strategy for scene annotation.
Some typical parsing results are illustrated in Figure 5.

4.3. Scene Classification. As described in [17], the Stanford
background dataset can be roughly categorized into three
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Table 1: Accuracy of pixel accuracy of state-of-the-art methods on
Stanford background dataset.

Method and semantic pixel accuracy in %

Pixel CRF, Gould et al. (2009) 74.3

Log. Regr. on superpixel features 75.9

Region-based energy, Gould et al. (2009) 76.4

Local labeling, Tighe and Lazebnik (2010) 76.9

Superpixel MRF, Tighe and Lazebnik (2010) 77.5

Simultaneous MRF, Tighe and Lazebnik (2010) 77.5

Traditional RNN, Socher and Fei-Fei (2011) 78.1

PSO-based RNN (our method) 78.3

scene types: city, countryside, and sea side. Therefore, like
traditional RNN, we trained SVM that using the average over
all nodes’ activations in the tree as features. That means the
entire parse tree and the learned feature representations of
the RNN are taken into account. As a result, the accuracy
has been promoted to 88.4%, which is better than traditional
RNN (88.1%) and Gist descriptors (84%) [6]. If only the top
node of the scene parse tree is considered, we will get 72%.
The results reveal that it does lose some information that is
captured by averaging all tree nodes.

5. Conclusions

In this paper, we have proposed an image parsing algorithm
that is based onPSO andRecursiveNeuralNetworks (RNNs).
The algorithm is an incremental version of RNN. The basic
idea is to solve the problem of nondifferentiable objective
function of traditional training algorithm such as L-BFGS.
Hence, PSO has been employed as an optimization tool to
tune the weights of RNN.The experimental results reveal that
the proposed algorithm has better performance than state-
of-the-art methods on Stanford background dataset. That
being said, the iteration of swarms dramatically increases the
runtime of the training process. Our future work may focus
on reducing the time complexity of the algorithm.
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