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The aim of this paper is to generalize fuzzy continuous posets. The concept of fuzzy subset system on fuzzy posets is introduced;
some elementary definitions such as fuzzy Z-continuous posets and fuzzy Z-algebraic posets are given. Furthermore, we try to find
some natural classes of fuzzy Z-continuous maps under which the images of such fuzzy algebraic structures can be preserved; we
also think about fuzzy Z-continuous closure operators in alternative ways. An extension theorem is presented for extending a fuzzy
monotone map defined on the Z-compact elements to a fuzzy Z-continuous map defined on the whole set.

1. Introduction

The concept of continuous lattice was initiated by Scott in [1,
2] in a topologicalmanner as amathematical tool in computer
sciences (domain theory). Although it has appeared in other
fields of mathematics as well, such as general topology, real
analysis, algebra, category theory, logic, this concept was
defined later in purely order theoretical terms and now has
become the one used in almost all references.

To introduce higher type variables into recursion equa-
tions,Wright et al. [3] introduced the notion of subset systems
𝑍 in the seventies, replacing the system of all directed subsets
by other types of subsets enjoying a certain stability property
under the monotone maps. Here, the authors devoted their
study to the so-called 𝑍-inductive posets, which is really a
generalization of 𝑍 version of algebraic posets. At the end of
the paper, the authors suggested an attempt to study the gen-
eralized counterpart of continuous poset (lattice) obtained by
replacing directed subsets by 𝑍-subsets, where 𝑍 is an arbi-
trary subset system. That undertaking was begun by Bandelt
and Erné [4, 5] and independently by Novak [6]; there was
subsequent research concerned by other authors [7–9].

On the other side, quantitative domain theory has been
developed to supply models for concurrent systems. Now it
forms a new focus on domain theory and has undergone
active research. Rutten’s generalized (ultra)metric spaces [10],
Flagg’s continuity spaces [11], and Wager’s Ω-categories [12]

are good examples, which consist of basic frameworks of
quantitative domain theory (cf. [13]).

In [13], Zhang and Fan investigated quantitative domains
based on frames. From the work go, they defined a fuzzy
partial order which is really a degree function on a nonempty
set; afterwards, they defined and studied fuzzy dcpos and
fuzzy domains. Yao and Shi [14, 15] studied fuzzy dcpos
and their continuity over complete residuated lattices; Su
and Li [16] discussed algebraic fuzzy dcpos and exploited
their relationship with fuzzy domains. Furthermore, from
the viewpoint of category, Hofmann andWaszkiewicz [17–19]
dealt with quantitative domains; Stubbe [20, 21] made a study
of quantitative completely distributive lattices; Lai and Zhang
[22] presented a systematic investigation of completeness and
directed completeness ofΩ-categories.

In view of the increasing interest in quantitative domain
theory and 𝑍-continuous posets. Therefore, it is natural
to give a presentation of these matters in a more general
framework. For this purpose, we are motivated to introduce
the notion of fuzzy subset systems as a structure to study
quantitative domain theory. We try to extend the theory of
quantitative domain theory to a more general fuzzy order
structure.

This paper is arranged as follows. In Section 2, we recall
some basic materials related to fuzzy posets and fuzzy
Galois connections. In Section 3, we give the definition
of fuzzy subset systems, then present the notions of fuzzy
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𝑍-continuous posets and fuzzy strongly 𝑍-continuous
posets, and study the relationship between such algebraic
structures. We also discuss the fuzzy 𝑍-continuous section-
retraction pair between fuzzy 𝑍-continuous posets. In
Section 4, we introduce the concept of fuzzy 𝑍-complete
closure systems and associate a fuzzy 𝑍-continuous closure
operator with a fuzzy 𝑍-complete closure system. We
prove that each fuzzy 𝑍-complete closure system of a fuzzy
𝑍-continuous poset is fuzzy 𝑍-continuous. In Section 5,
the notion of fuzzy 𝑍-algebraic posets is given, then
some algebraic properties of such a structure are studied.
An extension theorem based on 𝑍-compact elements is
obtained. In the last section, conclusions are made.

2. Preliminaries

In this paper, we will use a complete residuated lattice as
the structures of truth values. Such an algebraic structure is
significant in fuzzy logic in a narrow sense [23, 24]. If no
other conditions are imposed, in the sequel, 𝐿 always denotes
a complete residuated lattice.

Definition 1. A complete residuated lattice is an algebraic
structure (𝐿, ∧, ∨, ∗, → , 0, 1) such that

(1) (𝐿, ∧, ∨, 0, 1) is a complete lattice with the least ele-
ment 0 and the greatest element 1;

(2) (𝐿, ∗, 1) is a commutative monoid; that is, ∗ is com-
mutative, associative, and 𝑎∗1 = 𝑎 holds for all 𝑎 ∈ 𝐿;

(3) ∗ and → form an adjoint pair, that is, for any 𝑎, 𝑏, 𝑐 ∈
𝐿, 𝑎 ∗ 𝑏 ≤ 𝑐 ⇔ 𝑎 ≤ 𝑏 → 𝑐.

Proposition 2. For a complete residuated lattic 𝐿, one has

(1) 0 ∗ 𝑎 = 0 and 1 → 𝑎 = 𝑎,
(2) 𝑎 ≤ 𝑏 ⇔ 𝑎 → 𝑏 = 1,
(3) (𝑎 → 𝑏) ∗ (𝑏 → 𝑐) ≤ 𝑎 → 𝑐,
(4) 𝑎 → ⋀𝑗∈𝐽𝑎𝑗 = ⋀𝑗∈𝐽(𝑎 → 𝑎𝑗), and hence 𝑎 → 𝑏 ≤

𝑎 → 𝑐 whenever 𝑏 ≤ 𝑐,
(5) (⋁𝑗∈𝐽𝑎𝑗) → 𝑐 = ⋀𝑗∈𝐽(𝑎𝑗 → 𝑐), and hence 𝑎 → 𝑐 ≥

𝑏 → 𝑐 whenever 𝑎 ≤ 𝑏,
(6) 𝑎 → (𝑏 → 𝑐) = 𝑏 → (𝑎 → 𝑐) = 𝑎 ∗ 𝑏 → 𝑐,
(7) 𝑎 ∗ (𝑎 → 𝑏) ≤ 𝑏,
(8) (𝑎 → 𝑏) ∗ (𝑐 → 𝑑) ≤ 𝑎 ∗ 𝑐 → 𝑏 ∗ 𝑑,
(9) 𝑎 → 𝑏 ≤ (𝑏 → 𝑐) → (𝑎 → 𝑐).

More properties about complete residuated lattices can be
found in [24].

Let𝑋 be a nonempty set. An 𝐿-subset on𝑋 is a map from
𝑋 to 𝐿, and the family of all 𝐿-subsets on𝑋will be denoted by
𝐿
𝑋. All algebraic operations on 𝐿 can be extended pointwisely

to the power set 𝐿𝑋.That is, for any𝐴, 𝐵 ∈ 𝐿
𝑋
, 𝑥 ∈ 𝑋, we have

𝐴 ≤ 𝐵 ⇔ 𝐴(𝑥) ≤ 𝐵(𝑥), (𝐴 → 𝐵)(𝑥) = 𝐴(𝑥) → 𝐵(𝑥) and
(𝐴 ∗ 𝐵)(𝑥) = 𝐴(𝑥) ∗ 𝐵(𝑥).

Definition 3 (see [13, 25]). A fuzzy poset is a pair (𝑋, 𝑒) such
that𝑋 is a non-empty set and 𝑒 : 𝑋×𝑋 → 𝐿 is a map, called
a fuzzy order, that satisfies for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(1) 𝑒(𝑥, 𝑥) = 1;
(2) 𝑒(𝑥, 𝑦) ∗ 𝑒(𝑦, 𝑧) ≤ 𝑒(𝑥, 𝑧);
(3) 𝑒(𝑥, 𝑦) = 𝑒(𝑦, 𝑥) = 1 ⇒ 𝑥 = 𝑦.

If 𝑒 is an 𝐿-partial order on 𝑋, then (𝑋, 𝑒) is called an
𝐿-partial ordered set (simply, a fuzzy poset). To study fuzzy
relational systems, Belohlávek [23] defined and studied an 𝐿-
order over complete residuated lattices. It is shown in [14] that
the previous notion is equivalent to Belohlávek’s one.

Example 4. (1) For a non-empty set𝑋, the subsethood degree
map sub(−, −) : 𝐿

𝑋
× 𝐿
𝑋

→ 𝐿 is defined by for each pair
(𝐴, 𝐵) ∈ 𝐿

𝑋
× 𝐿
𝑋, sub(𝐴, 𝐵) = ⋀𝑥∈𝑋(𝐴(𝑥) → 𝐵(𝑥)), then

sub(−, −) is a fuzzy partial order on 𝐿
𝑋 and (𝐿

𝑋
, sub) is a

fuzzy poset. Especially, when 𝐴 ≤ 𝐵, we have sub(𝐴, 𝐵) =

⋀𝑥∈𝑋(𝐴(𝑥) → 𝐵(𝑥)) = 1.
(2) If𝑀 ⊆ 𝑋, then (𝑀, 𝑒𝑀) is also a fuzzy poset (relative

to the induced order from (𝑋, 𝑒)), where 𝑒𝑀 is the restriction
of 𝑒 to𝑀×𝑀.

Based on the introduction of fuzzy posets, the basic
notions, such as join, meet, fuzzy closure operator and fuzzy
Galois connection, can be established as an approach to
generalizing the classic order theory. Here, we only recall
some fundamental notions and give some basic properties
needed in this paper. One can refer to [13–16, 23, 26–29] for
further details.

Definition 5. In a fuzzy poset (𝑋, 𝑒), an element 𝑥0 ∈ 𝑋 is
called a join (or meet) of a fuzzy subset 𝐴, in symbols 𝑥0 =
⊔𝐴(or 𝑥0 = ⊓𝐴) if

(1) for any 𝑥 ∈ 𝑋, 𝐴(𝑥) ≤ 𝑒(𝑥, 𝑥0) (or 𝐴(𝑥) ≤ 𝑒(𝑥0, 𝑥)),
(2) for any 𝑦 ∈ 𝑋, ⋀𝑥∈𝑋(𝐴(𝑥) → 𝑒(𝑥, 𝑦)) ≤ 𝑒(𝑥0, 𝑦) (or

⋀𝑥∈𝑋(𝐴(𝑥) → 𝑒(𝑦, 𝑥)) ≤ 𝑒(𝑦, 𝑥0)).

For any 𝑥 ∈ 𝑋, ↓ 𝑥 ∈ 𝐿
𝑋
(or ↑ 𝑥 ∈ 𝐿

𝑋
) is defined as

for any 𝑦 ∈ 𝑋, ↓ 𝑥(𝑦) = 𝑒(𝑦, 𝑥) (or ↑ 𝑥(𝑦) = 𝑒(𝑥, 𝑦)). For
𝐴 ∈ 𝐿

𝑋, ↓ 𝐴 is defined as ↓ 𝐴(𝑥) = ⋁𝑑∈𝑋𝐴(𝑑) ∗ 𝑒(𝑥, 𝑑).
𝐴 ∈ 𝐿

𝑋 is called a fuzzy upper set (or a fuzzy lower set) if for
any𝑥, 𝑦 ∈ 𝑋,𝐴(𝑥)∗𝑒(𝑥, 𝑦) ≤ 𝐴(𝑦) (or𝐴(𝑥)∗𝑒(𝑦, 𝑥) ≤ 𝐴(𝑦)).

Proposition 6. Let (𝑋, 𝑒) be a fuzzy poset. Then

(1) 𝑥0 = ⊔𝐴 if and only if for any 𝑦 ∈ 𝑋, 𝑒(𝑥0, 𝑦) =

⋀𝑧∈𝑋(𝐴(𝑧) → 𝑒(𝑧, 𝑦)),
(2) 𝑥0 = ⊓𝐴 if and only if for any 𝑦 ∈ 𝑋, 𝑒(𝑦, 𝑥0) =

⋀𝑧∈𝑋(𝐴(𝑧) → 𝑒(𝑦, 𝑧)),

particularly, when 𝐴 =↓ 𝑥, one has

𝑒 (𝑥, 𝑦) = ⋀

𝑧∈𝑋

(𝑒 (𝑧, 𝑥) 󳨀→ 𝑒 (𝑧, 𝑦))

= ⋀

𝑧∈𝑋

(𝑒 (𝑦, 𝑧) 󳨀→ 𝑒 (𝑥, 𝑧)) .

(1)
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𝑥 ∈ 𝑋 is called the maximal (or minimal) element of 𝐴 ∈

𝐿
𝑋, in symbols 𝑥 = max𝐴 (or 𝑥 = min𝐴) if 𝐴(𝑥) = 1 and

for all 𝑦 ∈ 𝑋, 𝐴(𝑦) ≤ 𝑒(𝑦, 𝑥) (or 𝐴(𝑦) ≤ 𝑒(𝑥, 𝑦)). It is easy to
check that if 𝐴 has a maximal (or minimal) element, then it
is unique.

Definition 7. Given two fuzzy posets (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌), a
map 𝑓 : 𝑋 → 𝑌 is said to be fuzzy monotone if for any
𝑥, 𝑦 ∈ 𝑋, 𝑒𝑋(𝑥, 𝑦) ≤ 𝑒𝑌(𝑓(𝑥), 𝑓(𝑦)). Furthermore, a fuzzy
monotone map 𝑓 : 𝑋 → 𝑋 is called a projection on 𝑋 if for
all 𝑥 ∈ 𝑋, 𝑓 ∘ 𝑓(𝑥) = 𝑓(𝑥). We say a projection is a fuzzy
closure operator if 𝑒(𝑥, 𝑐(𝑥)) = 1 for all 𝑥 ∈ 𝑋.

Definition 8. Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) be two fuzzy posets,
𝑓 : (𝑋, 𝑒𝑋) → (𝑌, 𝑒𝑌) and 𝑔 : (𝑌, 𝑒𝑌) → (𝑋, 𝑒𝑋) two
fuzzy monotone maps. The pair (𝑓, 𝑔) is called a fuzzy Galois
connection between (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) provided that

for any 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑒𝑌 (𝑦, 𝑓 (𝑥)) = 𝑒𝑋 (𝑔 (𝑦) , 𝑥) ,

(2)

where 𝑓 is called the upper adjoint of 𝑔 and dually 𝑔 is the
lower adjoint of 𝑓.

Obviously, a fuzzy Galois connection is an extension of
a crisp Galois connection. The crisp Galois connection is
defined as follows: 𝑦 ≤ 𝑓(𝑥) ⇔ 𝑔(𝑦) ≤ 𝑥 for any 𝑥 ∈ 𝑋,
𝑦 ∈ 𝑌, and its relative properties can be found in [30].

Example 9. Let 𝑓 : 𝑋 → 𝑌 be a map. For each 𝐵 ∈ 𝐿
𝑌,

let 𝑓←𝐿 (𝐵) = 𝐵 ∘ 𝑓. Then we obtain a powerset operator:
𝑓
←
𝐿 : 𝐿

𝑌
→ 𝐿

𝑋. Conversely, define a powerset operator
𝑓
→
𝐿 : 𝐿

𝑋
→ 𝐿
𝑌 by

for any 𝑦 ∈ 𝑌, 𝐴 ∈ 𝐿
𝑋
, 𝑓
→
𝐿 (𝐴) (𝑦) = ⋁

𝑥∈𝑋

𝐴 (𝑥)

∗ 𝑒𝑌 (𝑦, 𝑓 (𝑥)) .

(3)

Then (𝑓
→
𝐿 , 𝑓
←
𝐿 ) is a fuzzy Galois connection between

(𝐿
𝑋
, sub) and (𝐿𝑌, Low).

Proposition 10. Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) be two fuzzy posets,
𝑓 : (𝑋, 𝑒𝑋) → (𝑌, 𝑒𝑌) and 𝑔 : (𝑌, 𝑒𝑌) → (𝑋, 𝑒𝑋) two maps.
Then the following are equivalent:

(1) (𝑓, 𝑔) is a fuzzy Galois connection,
(2) 𝑓 is fuzzy monotone and 𝑔(𝑦) = min𝑓←𝐿 (↑ 𝑦) for all

𝑦 ∈ 𝑌,
(3) 𝑔 is fuzzy monotone and 𝑓(𝑥) = max𝑓←𝐿 (↓ 𝑥) for all

𝑥 ∈ 𝑋.

Proposition 11. Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) be two fuzzy posets,
𝑓 : (𝑋, 𝑒𝑋) → (𝑌, 𝑒𝑌) and 𝑔 : (𝑌, 𝑒𝑌) → (𝑋, 𝑒𝑋) two maps.

(1) If 𝑓 is a fuzzy monotone map and has a lower adjoint,
then for any 𝐴 ∈ 𝐿

𝑋 such that ⊓𝐴 exists, 𝑓(⊓𝐴) =

⊓𝑓
→
𝐿 (𝐴).

(2) If 𝑔 is a fuzzymonotonemap and has an upper adjoint,
then for any 𝐷 ∈ 𝐿

𝑌 such that ⊔𝐷 exists, 𝑔(⊔𝐷) =

⊔𝑔
→
𝐿 (𝐷).

For any map 𝑓 : 𝑋 → 𝑌, we denote the corestriction to
the image as 𝑓∘ : 𝑋 → 𝑓(𝑋) and the inclusion of the image
into 𝑌 accordingly as 𝑓∘ : 𝑓(𝑋) → 𝑌. Thus, each 𝑓 has the
decomposition𝑓 = 𝑓∘𝑓

∘. If𝑋 = 𝑌, then𝑓∘𝑓∘ is the restriction
and corestriction 𝑓|𝑓(𝑋) : 𝑓(𝑋) → 𝑓(𝑋).

Proposition 12. Let (𝑋, 𝑒) be a fuzzy poset and 𝑓 : 𝑋 → 𝑋 a
fuzzy monotone map. Then the following are equivalent:

(1) 𝑓 is a fuzzy closure operator,
(2) (𝑓∘, 𝑓

∘
) is a fuzzy Galois connection between

(𝑓(𝑋), 𝑒𝑓(𝑋)) and (𝑋, 𝑒𝑋),
(3) There is a fuzzy Galois connection (𝑔, 𝑑) between some

fuzzy posets (𝑆, 𝑒𝑆) and (𝑋, 𝑒𝑋) such that 𝑓 = 𝑔𝑑.

3. Fuzzy Subset Systems and
Fuzzy 𝑍-Continuous Posets

In this section, we present the definition of fuzzy sub-
set systems, and in such a framework we propose the
notions of fuzzy 𝑍-continuous posets and fuzzy strongly 𝑍-
continuous posets and study the relationship between them.
We finally discuss the fuzzy 𝑍-continuous section-retraction
pair between fuzzy 𝑍-continuous posets and get the similar
results in [29].

Let FPO denote the category of all fuzzy posets with
fuzzy monotonemaps as morphisms and let FSET denote the
category of fuzzy subsets with fuzzy maps as morphisms.

Definition 13. A fuzzy subset system on FPO is a functor𝑍𝐿 :
FPO → FSET satisfying the following conditions.

(1) For any fuzzy poset (𝑋, 𝑒𝑋), 𝑍𝐿(𝑋) ⊆ 𝐿
𝑋.

(2) If (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) are two fuzzy posets and 𝑓 :

(𝑋, 𝑒𝑋) → (𝑌, 𝑒𝑌) a fuzzy monotone map, then for
any 𝐴 ∈ 𝑍𝐿(𝑋), 𝑍𝐿(𝑓)(𝐴) = 𝑓

→
𝐿 (𝐴) ∈ 𝑍𝐿(𝑌).

(3) For any 𝑥 ∈ 𝑋, ↓ 𝑥 ∈ 𝑍𝐿(𝑋).

It is clear that in order to define a fuzzy subset system
𝑍𝐿, it suffices to define its object maps satisfying the previous
conditions. Obviously, it is exactly the formal generalization
of the classic definition of a 𝑍-subset system in [3].

Let (𝑋, 𝑒) be a fuzzy poset. The following are some
examples of fuzzy subset systems.

(1) D𝐿(𝑋) is the family of all fuzzy direct subsets of𝑋.
(2) P𝐿(𝑋) is the family of all fuzzy arbitrary subsets of𝑋.
(3) L𝐿(𝑋) is the family of all fuzzy lower subsets of𝑋.

Based on a commutative, unital quantale Ω, the authors
[22, 31, 32] introduced the concept of a class of weights and
studied the complete properties of such a structure from the
viewpoint of category, where 𝑍𝐿(𝑋) is a fuzzy lower set and
𝑍𝐿(𝑓) = 𝑓

→
𝐿 , but 𝑍𝐿(𝑓)(𝐴) = 𝑓

→
𝐿 (𝐴) ∈ 𝑍𝐿(𝑌) is not

required.
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Definition 14. A fuzzy poset (𝑋, 𝑒) is said to be fuzzy 𝑍-
complete if for any 𝐴 ∈ 𝑍𝐿(𝑋), ⊔𝑋𝐴 exists. A fuzzy subset
𝐼 of a fuzzy poset (𝑋, 𝑒) is called a fuzzy 𝑍-ideal of𝑋 if it is a
fuzzy lower set generated by some𝐴 ∈ 𝑍𝐿(𝑋); that is, for any
fuzzy 𝑍-ideal 𝐼, there exists 𝐴 ∈ 𝑍𝐿(𝑋) with 𝐼 =↓ 𝐴. The sets
of all fuzzy𝑍-subsets and all fuzzy𝑍-ideals on𝑋 are denoted
by 𝑍𝐿(𝑋) and 𝑍𝐼𝐿(𝑋), respectively.

Definition 15. If (𝑋, 𝑒) is a fuzzy 𝑍-complete poset, then for
any 𝑥, 𝑦 ∈ 𝑋, define ⇓𝑍𝑥 ∈ 𝐿

𝑋 by

⇓𝑍𝑥 (𝑦) = ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦)) . (4)

⇓𝑍 : 𝑋 → 𝐿
𝑋 is called the fuzzy 𝑍-way-below relation.

For 𝑥 ∈ 𝑋, if ⇓𝑍𝑥(𝑥) = 1, then we call 𝑥 a compact element
in𝑋, and all compact elements in𝑋 are denoted by 𝐾(𝑋).

Next we give an equivalent definition of the fuzzy𝑍-way-
below relation in terms of fuzzy 𝑍-subsets.

Proposition 16. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset. Then
for any 𝑥, 𝑦 ∈ 𝑋,

⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

= ⋀

𝑆∈𝑍𝐿(𝑋)

(𝑒 (𝑥, ⊔𝑆) 󳨀→ (⋁

𝑑∈𝑋

𝑆 (𝑑) ∗ 𝑒 (𝑦, 𝑑))) .

(5)

That is, ⇓𝑍𝑥(𝑦) = ⋀𝑆∈𝑍𝐿(𝑋)
(𝑒(𝑥, ⊔𝑆) → (⋁𝑑∈𝑋𝑆(𝑑) ∗

𝑒(𝑦, 𝑑))).

Some basic properties of the fuzzy relation are listed in
the following.

Proposition 17. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset. For
any 𝑥, 𝑦, 𝑢, V ∈ 𝑋, then

(1) ⇓𝑍𝑥 ≤ ↓ 𝑥;
(2) 𝑒(𝑢, 𝑥) ∗ ⇓𝑍𝑦(𝑥) ∗ 𝑒(𝑦, V) ≤ ⇓𝑍V(𝑢).

Proof. (1) By Definition 13(3), for any 𝑥 ∈ 𝑋, ↓ 𝑥 ∈ 𝑍𝐼𝐿(𝑋),
then

⇓𝑍𝑥 (𝑦) = ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒 (𝑥, ⊔ ↓ 𝑥) 󳨀→↓ 𝑥 (𝑦)

= 1 󳨀→↓ 𝑥 (𝑦)

=↓ 𝑥 (𝑦) .

(6)

(2) Is straightforward.

Definition 18. A fuzzy 𝑍-complete poset (𝑋, 𝑒) is called a
fuzzy 𝑍-continuous poset if for any 𝑥 ∈ 𝑋, ⇓𝑍𝑥 ∈ 𝑍𝐿(𝑋) (or
⇓𝑍𝑥 ∈ 𝑍𝐼𝐿(𝑋)) and𝑥 = ⊔⇓𝑍𝑥. A fuzzy𝑍-continuous poset is
called strongly fuzzy 𝑍-continuous if the fuzzy 𝑍-way-below

relation has the interpolation property: for any 𝑥, 𝑦 ∈ 𝑋,
⇓𝑍𝑥(𝑦) = ⋁𝑑∈𝑋⇓𝑍𝑥(𝑑) ∗ ⇓𝑍𝑑(𝑦).

FuzzyD-continuous posets are known in the literature as
fuzzy domains. See [11–15, 18, 19, 25, 29] for further details.
Fuzzy P-continuous posets are known as fuzzy completely
distributive lattices which have been widely studied by [20–
22] from the viewpoint of category.

Definition 19. A fuzzy subset system 𝑍𝐿 is said to be fuzzy
union-complete if for any Φ ∈ 𝑍𝐿(𝑍𝐿(𝑋)), ⊔Φ exists and
⊔Φ ∈ 𝑍𝐿(𝑋).

Remark 20. The fuzzy subset systems D𝐿, P𝐿, and L𝐿 are
fuzzy union-complete.

Proof. It is trivial that the statement holds forP𝐿 andL𝐿.We
now give the proof in terms ofD𝐿. Recall that a fuzzy subset
𝐷 is a fuzzy directed subset if ⋁𝑥∈𝑋𝐷(𝑥) = 1, and for any
𝑎, 𝑏 ∈ 𝑋,𝐷(𝑎) ∗ 𝐷(𝑏) ≤ ⋁𝑑∈𝑋𝐷(𝑑) ∗ 𝑒(𝑎, 𝑑) ∗ 𝑒(𝑏, 𝑑).

For anyΦ ∈ D𝐿(D𝐿(𝑋)), put 𝜙 = ⋁𝜑∈D𝐿(𝑋)
Φ(𝜑) ∗ 𝜑. We

now show that ⊔Φ = 𝜙 and 𝜙 ∈ D𝐿(𝑋). For each 𝜓 ∈ D𝐿(𝑋),

sub (𝜙, 𝜓) = ⋀

𝑥∈𝑋

(𝜙 (𝑥) 󳨀→ 𝜓 (𝑥))

= ⋀

𝑥∈𝑋

( ⋁

𝜑∈D𝐿(𝑋)

Φ(𝜑) ∗ 𝜑 (𝑥) 󳨀→ 𝜓 (𝑥))

= ⋀

𝑥∈𝑋

⋀

𝜑∈D𝐿(𝑋)

(Φ (𝜑) 󳨀→ (𝜑 (𝑥) 󳨀→ 𝜓 (𝑥)))

= ⋀

𝜑∈D𝐿(𝑋)

(Φ(𝜑) 󳨀→ ⋀

𝑥∈𝑋

(𝜑 (𝑥) 󳨀→ 𝜓 (𝑥)))

= ⋀

𝜑∈D𝐿(𝑋)

(Φ (𝜑) 󳨀→ sub (𝜑, 𝜓)) ,

⋁

𝑥∈𝑋

𝜙 (𝑥) = ⋁

𝑥∈𝑋

⋁

𝜑∈D𝐿(𝑋)

Φ(𝜑) ∗ 𝜑 (𝑥) = ( ⋁

𝜑∈D𝐿(𝑋)

Φ(𝜑))

∗ (⋁

𝑥∈𝑋

𝜑 (𝑥)) = 1,

(7)

and for any 𝑎, 𝑏 ∈ 𝑋,

𝜙 (𝑎) ∗ 𝜙 (𝑏) = ⋁

𝜑1 ,𝜑2∈D𝐿(𝑋)

Φ(𝜑1) ∗ 𝜑1 (𝑎) ∗ Φ (𝜑2) ∗ 𝜑2 (𝑏)

≤ ⋁

𝜑1 ,𝜑2∈D𝐿(𝑋)

⋁

𝜑∈D𝐿(𝑋)

Φ(𝜑) ∗ sub (𝜑1, 𝜑)

∗ sub (𝜑2, 𝜑) ∗ 𝜑1 (𝑎) ∗ 𝜑2 (𝑏)

≤ ⋁

𝜑∈D𝐿(𝑋)

Φ(𝜑) ∗ 𝜑 (𝑎) ∗ 𝜑 (𝑏)
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≤ ⋁

𝑑∈𝑋

⋁

𝜑∈D𝐿(𝑋)

Φ(𝜑) ∗ 𝜑 (𝑑) ∗ 𝑒 (𝑎, 𝑑) ∗ 𝑒 (𝑏, 𝑑)

= ⋁

𝑑∈𝑋

𝜙 (𝑑) ∗ 𝑒 (𝑎, 𝑑) ∗ 𝑒 (𝑏, 𝑑) .

(8)

Lemma 21. In a fuzzy union-complete subset system 𝑍𝐿, if
(𝑋, 𝑒) is a fuzzy 𝑍-continuous poset, then for any 𝐴 ∈ 𝑍𝐿(𝑋),
we have⋁𝑥∈𝑋𝐴(𝑥) ∗ ⇓𝑍𝑥 ∈ 𝑍𝐿(𝑋).

Proof. Since (𝑋, 𝑒) is fuzzy 𝑍-continuous, then ⇓𝑍𝑥 ∈ 𝑍𝐿(𝑋)

for all 𝑥 ∈ 𝑋. Hence the map 𝑓 = ⇓𝑍 : 𝑋 → 𝑍𝐿(𝑋) is
welldefined. It is easy to verify that ⇓𝑍 is fuzzy monotone,
then by Definition 13(2), for any 𝐴 ∈ 𝑍𝐿(𝑋), we have
𝑓
→
𝐿 (𝐴) = ⋁𝑥∈𝑋𝐴(𝑥) ∗ sub(−, ⇓𝑍𝑥) ∈ 𝑍𝐿(𝑍𝐿(𝑋)). Since

𝑍𝐿 is fuzzy union-complete, to show ⋁𝑥∈𝑋𝐴(𝑥) ∗ ⇓𝑍𝑥 ∈

𝑍𝐿(𝑋), it suffices to show that ⊔(⋁𝑥∈𝑋𝐴(𝑥) ∗ sub(−, ⇓𝑍𝑥)) =
⋁𝑥∈𝑋𝐴(𝑥) ∗ ⇓𝑍𝑥. To this end, for any 𝜓 ∈ 𝑍𝐿(𝑋),

sub(⋁

𝑥∈𝑋

𝐴 (𝑥) ∗ ⇓𝑍𝑥, 𝜓)

= ⋀

𝑦∈𝑋

(⋁

𝑥∈𝑋

𝐴 (𝑥) ∗ ⇓𝑍𝑥 (𝑦) 󳨀→ 𝜓 (𝑦))

= ⋀

𝑥∈𝑋

(𝐴 (𝑥) 󳨀→ ⋀

𝑦∈𝑋

(⇓𝑍𝑥 (𝑦) 󳨀→ 𝜓 (𝑦)))

= ⋀

𝑥∈𝑋

(𝐴 (𝑥) 󳨀→ sub (⇓𝑍𝑥, 𝜓))

= ⋀

𝑥∈𝑋

(𝐴 (𝑥) 󳨀→ ⋀

𝜑∈𝑍𝐿(𝑋)

(sub (𝜑, ⇓𝑍𝑥) 󳨀→ sub (𝜑, 𝜓)))

= ⋀

𝜑∈𝑍𝐿(𝑋)

(⋁

𝑥∈𝑋

𝐴 (𝑥) ∗ sub (𝜑, ⇓𝑍𝑥) 󳨀→ sub (𝜑, 𝜓))

= ⋀

𝜑∈𝑍𝐿𝑋

(𝑓
→
𝐿 (𝐴) (𝜑) 󳨀→ sub (𝜑, 𝜓)) ,

(9)

which indicates that ⊔𝑓→𝐿 (𝐴) = ⋁𝑥∈𝑋𝐴(𝑥) ∗ ⇓𝑍𝑥.

Lemma 22. In a fuzzy union-complete subset system 𝑍𝐿, if
(𝑋, 𝑒) is a fuzzy 𝑍-continuous poset, and for any 𝐴 ∈ 𝑍𝐿(𝑋),
set 𝑎 = ⊔𝐴, then ⇓𝑍𝑎 = ⋁𝑑∈𝑋𝐴(𝑑) ∗ ⇓𝑍𝑑 holds.

Proof. We first show that ⊔(⋁𝑑∈𝑋𝐴(𝑑) ∗ ⇓𝑍𝑑) = ⊔𝐴. For any
𝑦 ∈ 𝑋,

⋀

𝑥∈𝑋

((⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑥)) 󳨀→ 𝑒 (𝑥, 𝑦))

= ⋀

𝑥∈𝑋

⋀

𝑑∈𝑋

(𝐴 (𝑑) 󳨀→ (⇓𝑍𝑑 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑦)))

= ⋀

𝑑∈𝑋

(𝐴 (𝑑) 󳨀→ ⋀

𝑥∈𝑋

(⇓𝑍𝑑 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑦)))

= ⋀

𝑑∈𝑋

(𝐴 (𝑑) 󳨀→ 𝑒 (⊔⇓𝑍𝑑, 𝑦))

= ⋀

𝑑∈𝑋

(𝐴 (𝑑) 󳨀→ 𝑒 (𝑑, 𝑦))

= 𝑒 (⊔𝐴, 𝑦) .

(10)

On the one hand, for any 𝑧 ∈ 𝑋, by Proposition 17(2),

⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑧) ≤ ⋁

𝑑∈𝑋

𝑒 (𝑑, ⊔𝐴) ∗ ⇓𝑍𝑑 (𝑧)

≤ ⋁

𝑑∈𝑋

⇓𝑍𝑎 (𝑧) = ⇓𝑍𝑎 (𝑧) .

(11)

On the other hand, since the fuzzy subset system is fuzzy
union-complete, by Lemma 21, we have

⇓𝑍𝑎 (𝑧)

= ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑎, ⊔𝐼) 󳨀→ 𝐼 (𝑧))

≤ 𝑒(𝑎, ⊔(⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑)) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑧))

= 𝑒 (𝑎, ⊔𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑧))

= ⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑧) .

(12)

Therefore, ⇓𝑍𝑎 = ⋁𝑑∈𝑋𝐴(𝑑) ∗ ⇓𝑍𝑑.

Proposition 23. Let a fuzzy subset system 𝑍𝐿 be fuzzy union-
complete. If (𝑋, 𝑒) is a fuzzy 𝑍-continuous poset, then for any
𝑥, 𝑦 ∈ 𝑋,

⇓𝑍𝑥 (𝑦) = ⋀

𝐴∈𝑍𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑦))) .

(13)

Proof. For any 𝐴 ∈ 𝑍𝐿(𝑋),⋁𝑑∈𝑋𝐴(𝑑) ∗ ⇓𝑍𝑑 ∈ 𝑍𝐼𝐿(𝑋), then
by Lemma 22,

⇓𝑍𝑥 (𝑦) ∗ 𝑒 (𝑥, ⊔𝐴)

= ⇓𝑍𝑥 (𝑦) ∗ 𝑒(𝑥, ⊔(⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑))
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=𝑒(𝑥, ⊔(⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑))∗ ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑) (𝑦)

= ⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑦) .

(14)

This implies that ⇓𝑍𝑥(𝑦) ≤ 𝑒(𝑥, ⊔𝐴) → (⋁𝑑∈𝑋𝐴(𝑑) ∗

⇓𝑍𝑑(𝑦)).
By the arbitrariness of 𝐴, we have

⇓𝑍𝑥 (𝑦) ≤ ⋀

𝐴∈𝑍𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑦))) .

(15)

Conversely, by Proposition 17(1),

𝑒 (𝑥, ⊔𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑦)) ≤ 𝑒 (𝑥, ⊔𝐴)

󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ↓ 𝑑 (𝑦)) .

(16)

Thus

⋀

𝐴∈𝑍𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑦))) ≤ ⇓𝑍𝑥 (𝑦) .

(17)

Hence, ⇓𝑍𝑥(𝑦) = ⋀𝐴∈𝑍𝐿(𝑋)
(𝑒(𝑥, ⊔𝐴) 󳨀→ (⋁𝑑∈𝑋𝐴(𝑑) ∗

⇓𝑍𝑑(𝑦))).

Theorem 24. In a fuzzy union-complete subset system 𝑍𝐿, a
fuzzy 𝑍-continuous poset (𝑋, 𝑒) is exactly a strongly fuzzy 𝑍-
continuous poset.

Proof. By Definition 18, it suffices to show ⇓𝑍𝑥(𝑦) =

⋁𝑑∈𝑋⇓𝑍𝑥(𝑑)∗⇓𝑍𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Proposition 17 implies
that the left side of the equation is larger than or equal to
the right side. We only need to show the other side. By
Proposition 23,

⇓𝑍𝑥 (𝑦)

= ⋀

𝐴∈𝑍𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐴) 󳨀→ ⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ ⇓𝑍𝑑 (𝑦))

≤ 𝑒 (𝑥, ⊔⇓𝑍𝑥) 󳨀→ ⋁

𝑑∈𝑋

⇓𝑍𝑥 (𝑑) ∗ ⇓𝑍𝑑 (𝑦)

= 1 󳨀→ ⋁

𝑑∈𝑋

⇓𝑍𝑥 (𝑑) ∗ ⇓𝑍𝑑 (𝑦)

= ⋁

𝑑∈𝑋

⇓𝑍𝑥 (𝑑) ∗ ⇓𝑍𝑑 (𝑦) .

(18)

Stubbe [20] presented an elegant characterization of
the fuzzy completely distributive lattices by fuzzy Galois
connection; Albert andKelly [31] and Lai andZhang [22] gave
an equivalent characterization of Φ-cocomplete Ω-category.
In the next theorem, we will give a more explicit one and find
constructionmethodswhich allow us to obtain amultitude of
fuzzy𝑍-continuous posets by using the given ones as building
blocks.

Theorem 25. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset. Then the
following statements are equivalent:

(1) (𝑋, 𝑒) is a fuzzy 𝑍-continuous poset;

(2) for each 𝑥 ∈ 𝑋,⇓𝑍𝑥 is the smallest fuzzy𝑍-ideal 𝐼with
𝑒(𝑥, ⊔𝐼) = 1;

(3) for each 𝑥 ∈ 𝑋, there exists a smallest fuzzy 𝑍-ideal 𝐼
with 𝑒(𝑥, ⊔𝐼) = 1;

(4) the sup map 𝑟 = (𝐼 → ⊔𝐼) : 𝑍𝐼𝐿(𝑋) → 𝑋 has a
lower adjoint. These conditions imply

(5) the sup map 𝑟 = (𝐼 → ⊔𝐼) : 𝑍𝐼𝐿(𝑋) → 𝑋 preserves
all existing inf.

Proof. (1) ⇒ (2): Condition (1) holds if and only if for each
𝑥 ∈ 𝑋, ⇓𝑍𝑥 ∈ 𝑍𝐼𝐿(𝑋) and 𝑥 = ⊔⇓𝑍𝑥. Hence ⇓𝑍𝑥 is a fuzzy
𝑍-ideal with 𝑒(𝑥, ⊔⇓𝑍𝑥) = 𝑒(𝑥, 𝑥) = 1.

Moreover, for all 𝑦 ∈ 𝑋, 𝐼󸀠 ∈ 𝑍𝐼𝐿(𝑋) with 𝑒(𝑥, ⊔𝐼
󸀠
) = 1,

we have

⇓𝑍𝑥 (𝑦) = ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒 (𝑥, ⊔𝐼
󸀠
) 󳨀→ 𝐼

󸀠
(𝑦)

= 1 󳨀→ 𝐼
󸀠
(𝑦) = 𝐼

󸀠
(𝑦) .

(19)

This establishes (2).
Condition (2) trivially implies (3).
(3) ⇔ (4): It is easy to check that 𝑟 is a fuzzy monotone

map. By Proposition 10, 𝑟 has a lower adjoint if and only if
min 𝑟←𝐿 (↑ 𝑥) exists for all 𝑥 ∈ 𝑋, where min 𝑟←𝐿 (↑ 𝑥) =

min{𝐼 ∈ 𝑍𝐼𝐿(𝑋), 𝑒(𝑥, ⊔𝐼) = 1}. This means min 𝑟←𝐿 (↑ 𝑥) is
precisely the smallest fuzzy 𝑍-ideal 𝐼 with 𝑒(𝑥, ⊔𝐼) = 1.

(4) ⇒ (1): Let 𝑠 : 𝑋 → 𝑍𝐼𝐿(𝑋) be the lower adjoint of 𝑟.
To show that (𝑋, 𝑒) is a fuzzy 𝑍-continuous poset, it suffices
to prove 𝑠(𝑥) = ⇓𝑍𝑥 for all 𝑥 ∈ 𝑋.

On the one hand, for all 𝑦 ∈ 𝑋, since 𝑠(𝑥) ∈ 𝑍𝐼𝐿(𝑋), then

⇓𝑍𝑥 (𝑦) = ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒 (𝑥, ⊔𝑠 (𝑥)) 󳨀→ 𝑠 (𝑥) (𝑦)

= 𝑠 (𝑥) (𝑦) .

(20)
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On the other hand, 𝑠(𝑥)(𝑦) ∗ sub(𝑠(𝑥), 𝐼) ≤ 𝐼(𝑦),

𝑠 (𝑥) (𝑦) ≤ ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(sub (𝑠 (𝑥) , 𝐼) 󳨀→ 𝐼 (𝑦))

= ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

= ⇓𝑍𝑥 (𝑦) .

(21)

(4) ⇒ (5): It is immediate from Proposition 11.

In [29], the authors studied section-retraction pair of
fuzzy domains in a systematic way; here, we further give an
application in fuzzy 𝑍-continuous posets.

Definition 26 (see [29]). Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) be two fuzzy
posets, 𝑠 : (𝑋, 𝑒𝑋) → (𝑌, 𝑒𝑌) and 𝑟 : (𝑌, 𝑒𝑌) → (𝑋, 𝑒𝑋)

two fuzzy monotone maps. The pair (𝑠, 𝑟) is called a fuzzy
monotone section-retraction pair if 𝑟 ∘ 𝑠 = 𝑖𝑑𝑋. In this
situation, we call (𝑋, 𝑒𝑋) a fuzzy monotone retraction of
(𝑌, 𝑒𝑌).

It is clear that 𝑟 is surjective and 𝑠 is injective in a fuzzy
monotone section-retraction pair (𝑠, 𝑟).

Definition 27. Given two fuzzy𝑍-complete posets (𝑋, 𝑒𝑋) and
(𝑌, 𝑒𝑌), a fuzzy monotone map 𝑓 : (𝑋, 𝑒𝑋) → (𝑌, 𝑒𝑌) is said
to be fuzzy 𝑍-continuous if for any 𝐴 ∈ 𝑍𝐿(𝑋), 𝑓(⊔𝑋𝐴) =

⊔𝑌𝑓
→
𝐿 (𝐴).

Definition 28. A fuzzy monotone section-retraction pair
(𝑠, 𝑟) is called a fuzzy 𝑍-continuous section-retraction pair
if (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌) are fuzzy 𝑍-complete posets and 𝑠, 𝑟 are
both fuzzy 𝑍-continuous, then we speak of (𝑋, 𝑒𝑋) as a fuzzy
𝑍-continuous retraction of (𝑌, 𝑒𝑌).

Lemma29. Let the pair (𝑠, 𝑟) be a fuzzy𝑍-continuous section-
retraction-pair between (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌). Then for any 𝑥 ∈

𝑋, 𝑦 ∈ 𝑌, ⇓𝑍𝑠(𝑥)(𝑦) ≤ ⇓𝑍𝑥(𝑟(𝑦)).

Proof. Note that for any 𝐼󸀠 ∈ 𝑍𝐼𝐿(𝑋), 𝑠→𝐿 (𝐼
󸀠
) ∈ 𝑍𝐼𝐿(𝑌), then

⇓𝑍𝑠 (𝑥) (𝑦)

= ⋀

𝐼∈𝑍𝐼𝐿(𝑌)

(𝑒𝑌 (𝑠 (𝑥) , ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑌 (𝑠 (𝑥) , ⊔𝑠
→
𝐿 (𝐼
󸀠
)) 󳨀→ 𝑠

→
𝐿 (𝐼
󸀠
) (𝑦))

= ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑌 (𝑠 (𝑥) , 𝑠 (⊔𝐼
󸀠
)) 󳨀→ 𝑠

→
𝐿 (𝐼
󸀠
) (𝑦))

≤ ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑋 (𝑥, ⊔𝐼
󸀠
) 󳨀→ 𝑠

→
𝐿 (𝐼
󸀠
) (𝑦))

= ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑋 (𝑥, ⊔𝐼
󸀠
) 󳨀→ (⋁

𝑎∈𝑋

𝐼
󸀠
(𝑎) ∗ 𝑒𝑌 (𝑦, 𝑠 (𝑎))))

≤ ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑋 (𝑥, ⊔𝐼
󸀠
) 󳨀→ (⋁

𝑎∈𝑋

𝐼
󸀠
(𝑎)

∗𝑒𝑋 (𝑟 (𝑦) , 𝑟 (𝑠 (𝑎))) ))

= ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑋 (𝑥, ⊔𝐼
󸀠
) 󳨀→ (⋁

𝑎∈𝑋

𝐼
󸀠
(𝑎) ∗ 𝑒𝑋 (𝑟 (𝑦) , 𝑎)))

= ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

(𝑒𝑋 (𝑥, ⊔𝐼
󸀠
) 󳨀→ 𝐼

󸀠
(𝑟 (𝑦)))

= ⇓𝑍𝑥 (𝑟 (𝑦)) .

(22)

Theorem 30. A fuzzy 𝑍-continuous retraction of a fuzzy 𝑍-
continuous poset is also a fuzzy 𝑍-continuous poset.

Proof. Assume that (𝑠, 𝑟) is a fuzzy 𝑍-continuous section-
retraction-pair between (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌), where (𝑌, 𝑒𝑌) is
a fuzzy 𝑍-continuous poset, we need to show that (𝑋, 𝑒𝑋) is
also a fuzzy 𝑍-continuous poset.

Since 𝑟 ∘ 𝑠 = 𝑖𝑑𝑋, then for any 𝑥 ∈ 𝑋, 𝑥 = 𝑟(𝑠(𝑥)).
Note that 𝑟 is fuzzy 𝑍-continuous and (𝑌, 𝑒𝑌) is a fuzzy 𝑍-
continuous poset, then 𝑟

→
𝐿 (⇓𝑍𝑠(𝑥)) ∈ 𝑍𝐼𝐿(𝑋) and

⊔𝑟
→
𝐿 (⇓𝑍𝑠 (𝑥)) = 𝑟 (⊔⇓𝑍𝑠 (𝑥)) = 𝑟 (𝑠 (𝑥)) = 𝑥. (23)

Therefore, to prove (𝑋, 𝑒𝑋) is fuzzy 𝑍-continuous, it suffices
to show that 𝑟→𝐿 (⇓𝑍𝑠(𝑥)) = ⇓𝑍𝑥. On the one hand, for any
𝑦 ∈ 𝑋 and by Lemma 29,

𝑟
→
𝐿 (⇓𝑍𝑠 (𝑥)) (𝑦) = ⋁

𝑧∈𝑌

⇓𝑍𝑠 (𝑥) (𝑧) ∗ 𝑒𝑋 (𝑦, 𝑟 (𝑧))

≤ ⋁

𝑧∈𝑌

⇓𝑍𝑥 (𝑟 (𝑧)) ∗ 𝑒𝑋 (𝑦, 𝑟 (𝑧))

≤ ⋁

𝑧∈𝑌

⇓𝑍𝑥 (𝑦) = ⇓𝑍𝑥 (𝑦) .

(24)

On the other hand,

⇓𝑍𝑥 (𝑦) = ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒 (𝑥, ⊔ (𝑟
→
𝐿 (⇓𝑍𝑠 (𝑥)))) 󳨀→ 𝑟

→
𝐿 (⇓𝑍𝑠 (𝑥)) (𝑦)

= 𝑟
→
𝐿 (⇓𝑍𝑠 (𝑥)) (𝑦) .

(25)

Therefore, 𝑟→𝐿 (⇓𝑍𝑠(𝑥)) = ⇓𝑍𝑥.

4. Fuzzy 𝑍-Complete Closure Systems

In [33], the authors studied fuzzy closure systems on 𝐿-
order sets, where the 𝐿-order sets are really fuzzy posets,
and discussed their relationship with fuzzy closure operators.
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In this section, we further introduce the concept of fuzzy 𝑍-
complete closure systems and associate a fuzzy𝑍-continuous
closure operator with a fuzzy𝑍-complete closure system. We
prove that each fuzzy 𝑍-complete closure system of a fuzzy
𝑍-continuous poset is fuzzy 𝑍-continuous.

Definition 31 (see [33]). If (𝑋, 𝑒) is a fuzzy poset, a fuzzy
closure system on 𝑋 is a subset 𝑀 of 𝑋 such that for each
𝑥 ∈ 𝑋, min{↑ 𝑥 ∗ 1𝑀} exists, where 1𝑀 is the constant fuzzy
set with the value 1 on𝑀.

Theorem32 (see [33]). Let (𝑋, 𝑒) be a fuzzy poset, 𝑐 : 𝑋 → 𝑋

a fuzzy monotone map, and 𝑐
∘
: 𝑋 → 𝑐(𝑋) the corestriction

to the image. Then one has the following.

(1) If𝑀 is a fuzzy closure system on𝑋 and for each 𝑥 ∈ 𝑋,
𝑐
∘
(𝑥) = min{↑ 𝑥 ∗ 1𝑀}, then the map 𝑐 : 𝑋 → 𝑋 is a

fuzzy closure operator.
(2) If 𝑐 : 𝑋 → 𝑋 is a fuzzy closure operator, then 𝑐(𝑋) is

a fuzzy closure system on𝑋.
(3) The map defined by (1) from the set of fuzzy closure

systems on 𝑋 to the set of fuzzy closure operators on 𝑋

is bijective, and its converse is the map defined by (2).

Lemma 33. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset and 𝑀 ⊆

𝑋. Then for any 𝐴 ∈ 𝑍𝐿(𝑀), ⊔𝑋𝐴 = ⊔𝑋𝑖
→
𝑀𝐿(𝐴). Here, 𝑖𝑀 is

an inclusion map from 𝑀 to 𝑋. Moreover, if ⊔𝑋𝐴 ∈ 𝑀, then
⊔𝑋𝐴 = ⊔𝑀𝐴.

Proof. It is trivial that 𝑖𝑀 is fuzzy monotone, then for any𝐴 ∈

𝑍𝐿(𝑀), 𝑖→𝑀𝐿(𝐴) ∈ 𝑍𝐿(𝑋) and ⊔𝑋𝑖
→
𝑀𝐿(𝐴) exists. For any 𝑧 ∈ 𝑋,

𝑒𝑋 (⊔
𝑋
𝑖
→
𝑀𝐿 (𝐴) , 𝑧)

= ⋀

𝑥∈𝑋

(𝑖
→
𝑀𝐿 (𝐴) (𝑥) 󳨀→ 𝑒𝑋 (𝑥, 𝑧))

= ⋀

𝑥∈𝑋

(⋁

𝑦∈𝑀

𝐴 (𝑦) ∗ 𝑒𝑋 (𝑥, 𝑖𝑀 (𝑦)) 󳨀→ 𝑒𝑋 (𝑥, 𝑧))

= ⋀

𝑦∈𝑀

(𝐴 (𝑦) 󳨀→ ⋀

𝑥∈𝑋

(𝑒𝑋 (𝑥, 𝑦) 󳨀→ 𝑒𝑋 (𝑥, 𝑧)))

= ⋀

𝑦∈𝑀

(𝐴 (𝑦) 󳨀→ 𝑒𝑋 (𝑦, 𝑧)) .

(26)

Thus ⊔𝑋𝐴 = ⊔𝑋𝑖
→
𝑀𝐿(𝐴).

Furthermore, if ⊔𝑋𝐴 ∈ 𝑀, then for any 𝑧󸀠 ∈ 𝑀, we have

𝑒𝑋 (⊔
𝑋
𝑖
→
𝑀𝐿 (𝐴) , 𝑧

󸀠
) = 𝑒𝑀 (⊔

𝑋
𝑖
→
𝑀𝐿 (𝐴) , 𝑧

󸀠
)

= ⋀

𝑦∈𝑀

(𝐴 (𝑦) 󳨀→ 𝑒𝑀 (𝑦, 𝑧
󸀠
)) .

(27)

This shows that ⊔𝑀𝐴 = ⊔𝑋𝑖
→
𝑀𝐿(𝐴). Hence ⊔𝑀𝐴 = ⊔𝑋𝐴.

Lemma 34. Let (𝑋, 𝑒) be a fuzzy poset, 𝑓 : 𝑋 → 𝑋 a
projection, and 𝑖𝑓(𝑋) : 𝑓(𝑋) → 𝑋 an inclusion map. Then
(1) for any 𝐴 ∈ 𝑍𝐿(𝑓(𝑋)), 𝑓→𝐿 (𝑖

→
𝑓(𝑋)𝐿(𝐴)) = 𝑓

→
𝐿 (𝐴); (2) for

any 𝐵 ∈ 𝑍𝐿(𝑋), 𝑓→𝐿 (𝑓
→
𝐿 (𝐵)) = 𝑓

→
𝐿 (𝐵).

Proof. (1) For any 𝑦 ∈ 𝑓(𝑋), note that 𝑦 = 𝑓(𝑦),

𝑓
→
𝐿 (𝑖
→
𝑓(𝑋)𝐿 (𝐴)) (𝑦)

= ⋁

𝑧∈𝑋

𝑖
→
𝑓(𝑋)𝐿 (𝐴) (𝑧) ∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑧))

= ⋁

𝑧∈𝑋

⋁

𝑥∈𝑓(𝑋)

𝐴 (𝑥) ∗ 𝑒𝑋 (𝑧, 𝑥) ∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑧))

≤ ⋁

𝑧∈𝑋

⋁

𝑥∈𝑓(𝑋)

𝐴 (𝑥) ∗ 𝑒𝑓(𝑋) (𝑓 (𝑧) , 𝑓 (𝑥))

∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑧))

≤ ⋁

𝑧∈𝑋

⋁

𝑥∈𝑓(𝑋)

𝐴 (𝑥) ∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑥))

= ⋁

𝑥∈𝑓(𝑋)

𝐴 (𝑥) ∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑥))

= 𝑓
→
𝐿 (𝐴) (𝑦) .

(28)

For the converse,

𝑓
→
𝐿 (𝑖
→
𝑓(𝑋)𝐿 (𝐴)) (𝑦) ⋁

𝑧∈𝑋

⋁

𝑥∈𝑓(𝑋)

= 𝐴 (𝑥) ∗ 𝑒𝑋 (𝑧, 𝑥)

∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑧))

≥ ⋁

𝑥∈𝑓(𝑋)

𝐴 (𝑥) ∗ 𝑒𝑓(𝑋) (𝑦, 𝑓 (𝑥))

= 𝑓
→
𝐿 (𝐴) (𝑦) .

(29)

Similarly, we can prove (2).

Proposition 35. Let (𝑋, 𝑒) be a fuzzy𝑍-complete poset and𝑓 :

𝑋 → 𝑋 a fuzzy 𝑍-continuous projection. Then (𝑓(𝑋), 𝑒𝑓(𝑋))

is a fuzzy 𝑍-complete poset.

Proof. By Lemma 33, it suffices to show that ⊔𝑋𝐴 ∈ 𝑓(𝑋) for
each 𝐴 ∈ 𝑍𝐿(𝑓(𝑋)). Actually, assume that 𝑎 = ⊔𝑋𝐴, which
means for all 𝑧 ∈ 𝑋, 𝑒𝑋(𝑎, 𝑧) = ⋀𝑥∈𝑓(𝑋)(𝐴(𝑥) → 𝑒𝑋(𝑥, 𝑧)).
Then

⋀

𝑥∈𝑓(𝑋)

(𝑓
→
𝐿 (𝐴) (𝑥) 󳨀→ 𝑒𝑋 (𝑥, 𝑧))

= ⋀

𝑥∈𝑓(𝑋)

( ⋁

𝑦∈𝑓(𝑋)

𝐴 (𝑦) ∗ 𝑒𝑓(𝑋) (𝑥, 𝑓 (𝑦)) 󳨀→ 𝑒𝑋 (𝑥, 𝑧))
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= ⋀

𝑦∈𝑓(𝑋)

(𝐴(𝑦) 󳨀→ ⋀

𝑥∈𝑓(𝑋)

(𝑒𝑓(𝑋) (𝑥, 𝑓 (𝑦)) 󳨀→ 𝑒𝑋 (𝑥, 𝑧)))

= ⋀

𝑦∈𝑓(𝑋)

(𝐴 (𝑦) 󳨀→ 𝑒𝑋 (𝑦, 𝑧)) ,

(30)

which implies that 𝑒𝑋(𝑎, 𝑧) = ⋀𝑥∈𝑓(𝑋)(𝑓
→
𝐿 (𝐴)(𝑥) →

𝑒𝑋(𝑥, 𝑧)).
Since 𝑓 is fuzzy 𝑍-continuous and by Lemmas 33, 34, we

have

𝑎 = ⊔
𝑋
𝑓
→
𝐿 (𝐴) = ⊔

𝑋
𝑓
→
𝐿 (𝑖
→
𝑓(𝑋)𝐿 (𝐴)) = 𝑓(⊔

𝑋
𝑖
→
𝑓(𝑋)𝐿 (𝐴))

= 𝑓(⊔
𝑋
𝐴) = 𝑓 (𝑎) .

(31)

Remark 36. The preceding proposition states that for any
fuzzy 𝑍-continuous projection 𝑓 : 𝑋 → 𝑋, the inclusion
map from 𝑓(𝑋) to𝑋 is fuzzy 𝑍-continuous.

Proof. Since for any 𝐴 ∈ 𝑍𝐿(𝑓(𝑋)), 𝑖𝑓(𝑋)(⊔𝑓(𝑋)𝐴) =

⊔𝑓(𝑋)𝐴 and ⊔𝑋𝑖
→
𝑓(𝑋)𝐿(𝐴) = ⊔𝑋𝐴, then by Lemma 33 and

Proposition 35, we have 𝑖𝑓(𝑋)(⊔𝑓(𝑋)𝐴) = ⊔𝑋𝑖
→
𝑓(𝑋)𝐿(𝐴); that is,

the inclusionmap from𝑓(𝑋) to𝑋 is fuzzy𝑍-continuous.

Proposition 37. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset, 𝑓 :

𝑋 → 𝑋 a fuzzy𝑍-continuous projection and𝑌 = 𝑓(𝑋). Then
for all 𝐴 ∈ 𝑍𝐿(𝑋), 𝑓(⊔𝑋𝐴) = ⊔𝑌𝑓

→
𝐿 (𝐴) (in other words, the

corestriction of 𝑓 to 𝑌 is fuzzy 𝑍-continuous).

Proof. Since 𝑓 is fuzzy 𝑍-continuous, then for any 𝐴 ∈

𝑍𝐿(𝑋), 𝑓(⊔𝑋𝐴) = ⊔𝑋𝑓
→
𝐿 (𝐴). Moreover, 𝑓 is fuzzy mono-

tone, which indicates that 𝑓→𝐿 (𝐴) ∈ 𝑍𝐿(𝑌). By Lemma 33
and Proposition 35, ⊔𝑋𝑓

→
𝐿 (𝐴) = ⊔𝑌𝑓

→
𝐿 (𝐴). Thus 𝑓(⊔𝑋𝐴) =

⊔𝑌𝑓
→
𝐿 (𝐴).

Theorem 38. Let (𝑋, 𝑒) be a fuzzy 𝑍-continuous poset and 𝑓 :

𝑋 → 𝑋 a fuzzy 𝑍-continuous projection. Then (𝑓(𝑋), 𝑒𝑓(𝑋))

is fuzzy 𝑍-continuous (relative to the induced fuzzy order).

Proof. By Proposition 35, (𝑓(𝑋), 𝑒𝑓(𝑋)) is a fuzzy𝑍-complete
lattice. For any 𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑓 ∘ 𝑓(𝑥) = 𝑓(𝑖𝑓(𝑋)(𝑓(𝑥))) =

(𝑓 ∘ 𝑖𝑓(𝑋))(𝑓(𝑥)), which implies 𝑓 ∘ 𝑖𝑓(𝑋) = 𝑖𝑑𝑓(𝑋).
By Remark 36 and Proposition 37, (𝑖𝑓(𝑋), 𝑓) is a fuzzy 𝑍-
continuous section-retraction pair between (𝑓(𝑋), 𝑒𝑓(𝑋)) and
(𝑋, 𝑒). Since (𝑋, 𝑒) is a fuzzy 𝑍-continuous poset, then
(𝑓(𝑋), 𝑒𝑓(𝑋)) is a fuzzy 𝑍-continuous poset which follows
fromTheorem 30.

Definition 39. A fuzzy closure system on 𝑋 is fuzzy 𝑍-
complete if for each 𝐴 ∈ 𝑍𝐿(𝑀), such that ⊔𝑋𝐴 exists, we
have ⊔𝑋𝐴 ∈ 𝑀 (in other words, 𝑀 is closed in 𝑋 under the
formation of sups of fuzzy 𝑍-subsets of𝑀).

Theorem 40. In a fuzzy 𝑍-complete poset (𝑋, 𝑒), the one-
to-one correspondence established by Theorem 32 induces

a one-to-one correspondence between fuzzy𝑍-complete closure
systems on𝑋 and fuzzy 𝑍-continuous closure operators on𝑋.

Proof. Suppose that a subset𝑀 is a fuzzy𝑍-complete closure
system on𝑋; byTheorem 32, it suffices to show that 𝑐 : 𝑋 →

𝑋 is fuzzy 𝑍-continuous. Since 𝑐 is a fuzzy monotone map,
then for any 𝐴 ∈ 𝑍𝐿(𝑋), 1 = 𝑒𝑋(⊔𝑋𝑐

→
𝐿 (𝐴), 𝑐(⊔𝑋𝐴)). It

remains to show 1 = 𝑒𝑋(𝑐(⊔𝑋𝐴), ⊔𝑋𝑐
→
𝐿 (𝐴)), to this end, for

any 𝑦 ∈ 𝑋,

𝑒𝑋 (⊔
𝑋
𝑐
→
𝐿 (𝐴) , 𝑦)

= ⋀

𝑥∈𝑀

(𝑐
→
𝐿 (𝐴) (𝑥) 󳨀→ 𝑒𝑋 (𝑥, 𝑦))

= ⋀

𝑥∈𝑀

( ⋁

𝑥󸀠∈𝑋

𝐴(𝑥
󸀠
) ∗ 𝑒𝑀 (𝑥, 𝑐 (𝑥

󸀠
)) 󳨀→ 𝑒𝑋 (𝑥, 𝑦))

= ⋀

𝑥󸀠∈𝑋

(𝐴(𝑥
󸀠
) 󳨀→ ⋀

𝑥∈𝑀

(𝑒𝑀 (𝑥, 𝑐 (𝑥
󸀠
)) 󳨀→ 𝑒𝑋 (𝑥, 𝑦)))

= ⋀

𝑥󸀠∈𝑋

(𝐴 (𝑥
󸀠
) 󳨀→ 𝑒𝑋 (𝑥

󸀠
, 𝑐 (𝑥
󸀠
)) ∗ 𝑒𝑋 (𝑐 (𝑥

󸀠
) , 𝑦))

≤ ⋀

𝑥󸀠∈𝑋

(𝐴 (𝑥
󸀠
) 󳨀→ 𝑒𝑋 (𝑥

󸀠
, 𝑦))

= 𝑒𝑋 (⊔
𝑋
𝐴, 𝑦) .

(32)

Thus for any 𝑦 ∈ 𝑋, 𝑒𝑋(⊔𝑋𝑐
→
𝐿 (𝐴), 𝑦) ≤ 𝑒𝑋(⊔𝑋𝐴, 𝑦),

especially, set 𝑦 = ⊔𝑋𝑐
→
𝐿 (𝐴) and note that ⊔𝑋𝑐

→
𝐿 (𝐴) =

⊔𝑀𝑐
→
𝐿 (𝐴) = 𝑐(⊔𝑋𝑐

→
𝐿 (𝐴)); then

1 = 𝑒𝑋 (⊔
𝑋
𝑐
→
𝐿 (𝐴) , ⊔

𝑋
𝑐
→
𝐿 (𝐴)) ≤ 𝑒𝑋 (⊔

𝑋
𝐴, ⊔
𝑋
𝑐
→
𝐿 (𝐴))

≤ 𝑒𝑋 (𝑐 (⊔
𝑋
𝐴) , ⊔
𝑋
𝑐
→
𝐿 (𝐴)) .

(33)

Assume that 𝑐 : 𝑋 → 𝑋 is a fuzzy 𝑍-continuous closure
operator, then 𝑐(𝑋) is a fuzzy 𝑍-complete closure system
which follows from Proposition 35 andTheorem 38.

By Theorems 32(2), 38, and 40, we can deduce the
following result.

Theorem 41. Any fuzzy 𝑍-complete closure system of a fuzzy
𝑍-continuous poset is fuzzy 𝑍-continuous.

5. Fuzzy 𝑍-Algebraic Posets

In this section, the notion of fuzzy 𝑍-algebraic posets is
given, then we investigate some algebraic properties of such
a structure. Moreover, an extension theorem of a fuzzy 𝑍-
algebraic poset is obtained.

In universal algebra, algebraic lattice has become familiar
objects as lattices of congruences and lattices of subalgebras
of an algebra. Yao [14] gave the definition of fuzzy (directed)
algebraic posets, and Stubbe [21] presented a systematic
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investigation of fuzzy (directed) algebraic posets. Here, we
study such an algebraic structure from the viewpoint of the
fuzzy subset systems.

Definition 42. Let (𝑋, 𝑒) be a fuzzy𝑍-complete poset and 𝑥 ∈

𝑋. Define a map 𝑘𝑥 : 𝑋 → 𝐿 by 𝑘𝑥 =↓ 𝑥|𝐾(𝑋), 𝑘𝑥 restricted
on 𝐾(𝑋), that is, 𝑘𝑥(𝑦) = 𝑒(𝑦, 𝑥) if 𝑦 ∈ 𝐾(𝑋) and otherwise
0. The fuzzy 𝑍-complete poset (𝑋, 𝑒) is said to be a fuzzy 𝑍-
algebraic poset if and only if 𝑘𝑥 ∈ 𝑍𝐿(𝑋) and 𝑥 = ⊔𝑘𝑥.

Next we give an example of fuzzy 𝑍-algebraic posets.

Example 43. In a fuzzy union-complete subset system 𝑍𝐿,
(𝑍𝐼𝐿(𝑋), sub) is a fuzzy 𝑍-algebraic poset.

Proof. Let Φ ∈ 𝑍𝐼𝐿(𝑍𝐼𝐿(𝑋)). It is easy to verify that ⊔Φ =

⋁𝐼∈𝑍𝐼𝐿(𝑋)
Φ(𝐼) ∗ 𝐼. Since 𝑍𝐿 is fuzzy union-complete, then

⊔Φ ∈ 𝑍𝐿(𝑋). Moreover, ⋁𝐼∈𝑍𝐼𝐿(𝑋)Φ(𝐼) ∗ 𝐼 is a fuzzy lower
set; hence (𝑍𝐼𝐿(𝑋), sub) is a fuzzy 𝑍-complete poset.

Next we show ↓ 𝑦 ∈ 𝐾(𝑍𝐼𝐿(𝑋)) for any 𝑦 ∈ 𝑋. To this
end, it suffices to show ⇓ 𝐼(𝐼) = ⋁𝑥∈𝑋𝐼(𝑥) ∗ sub(𝐼, ↓ 𝑥) for
any 𝐼 ∈ 𝑍𝐼𝐿(𝑋).

On the one hand, note that (⊔Φ)(𝑥) = Φ(↓ 𝑥); then

𝐼 (𝑥) ∗ sub (𝐼, ↓ 𝑥) ∗ sub (𝐼, ⊔Φ) ≤ sub (𝐼, ↓ 𝑥)

∗ (⊔Φ) (𝑥)

= sub (𝐼, ↓ 𝑥) ∗ Φ (↓ 𝑥)

≤ Φ (𝐼) .

(34)

Thus 𝐼(𝑥) ∗ sub(𝐼, ↓ 𝑥) ≤ sub(𝐼, ⊔Φ) → Φ(𝐼), which implies
that⋁𝑥∈𝑋𝐼(𝑥) ∗ sub(𝐼, ↓ 𝑥) ≤⇓ 𝐼(𝐼).

On the other hand, since 𝑓 =↓: 𝑋 → 𝑍𝐼𝐿(𝑋) is a
fuzzy monotone map, then for any 𝐼 ∈ 𝑍𝐼𝐿(𝑋), we have
𝑓
→
𝐿 (𝐼) = ⋁𝑥∈𝑋𝐼(𝑥) ∗ sub(−, 𝑓(𝑥)) = ⋁𝑥∈𝑋𝐼(𝑥) ∗ sub(−, ↓

𝑥) ∈ 𝑍𝐼𝐿(𝑍𝐼𝐿(𝑋)) and ⊔𝑓→𝐿 (𝐼) = 𝐼. Then

⇓ 𝐼 (𝐼) ⋁

Φ∈𝑍𝐼𝐿(𝑍𝐼𝐿(𝑋))

= (sub (𝐼, ⊔Φ) 󳨀→ Φ (𝐼))

≤ sub (𝐼, ⊔𝑓→𝐿 (𝐼)) 󳨀→ 𝑓
→
𝐿 (𝐼) (𝐼) .

= ⋁

𝑥∈𝑋

𝐼 (𝑥) ∗ sub (𝐼, ↓ 𝑥) .

(35)

Hence ⇓ 𝐼(𝐼) = ⋁𝑥∈𝑋𝐼(𝑥) ∗ sub(𝐼, ↓ 𝑥). This indicates that
↓ 𝑦 ∈ 𝐾(𝑍𝐼𝐿(𝑋)).

At last, we show for any 𝐼 ∈ 𝑍𝐼𝐿(𝑋), 𝑘𝐼 satisfies
Definition 42. It is easy to check that 𝑘𝐼 ∈ 𝑍𝐼𝐿(𝑋), and it
remains to show ⊔𝑘𝐼 = 𝐼. Appealing to the previous proof,
we obtain

⊔𝑘𝐼 = ⋁

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

𝑘𝐼 (𝐼
󸀠
) ∗ 𝐼
󸀠
≥ ⋁

𝑥∈𝑋

sub (↓ 𝑥, 𝐼) ∗ ↓ 𝑥 = 𝐼,

⊔𝑘𝐼 = ⋁

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

𝑘𝐼 (𝐼
󸀠
) ∗ 𝐼
󸀠
= ⋁

𝐼󸀠∈𝑍𝐼𝐿(𝑋)

sub (𝐼󸀠, 𝐼) ∗ 𝐼
󸀠
≤ 𝐼.

(36)

These complete the proof.

Definition 44. In a fuzzy 𝑍-complete poset, a fuzzy subset
system 𝑍𝐿 is said to be consistent if for any 𝑥 ∈ 𝑋, there
exists a fuzzy subset 𝐴 ∈ 𝑍𝐿(𝑋) satisfying that 𝐴 ≤ ⇓𝑍𝑥 and
𝑥 = ⊔𝐴, then ⇓𝑍𝑥 ∈ 𝑍𝐿(𝑋) and 𝑥 = ⊔⇓𝑍𝑥.

Remark 45. Fuzzy D-complete posets, fuzzy P-complete
posets, and fuzzyL-complete posets are consistent.

Proof. Obviously, fuzzy P-complete posets and fuzzy L-
complete posets are consistent. Next we give the proof in
terms of fuzzyD-complete posets.

Let (𝑋, 𝑒) be a fuzzy dcpo. For any 𝑥 ∈ 𝑋, if there exists
a fuzzy directed subset 𝐴 such that 𝐴 ≤⇓ 𝑥 and 𝑥 = ⊔𝐴, we
should show that ⇓ 𝑥 ∈ D𝐿(𝑋) and 𝑥 = ⊔ ⇓ 𝑥. For any
𝑦 ∈ 𝑋, we first show ⇓ 𝑥(𝑦) ≤ ⋁𝑑∈𝑋𝐴(𝑑) ∗ 𝑒(𝑦, 𝑑). Indeed,

⇓ 𝑥 (𝑦) = ⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒 (𝑥, ⊔ ↓ 𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑦, 𝑑))

= 1 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑦, 𝑑))

= ⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑦, 𝑑) .

(37)

Thus, for any 𝑎, 𝑏 ∈ 𝑋, we have

⇓ 𝑥 (𝑎) ∗ ⇓ 𝑥 (𝑏) ≤ ⋁

𝑑1 ,𝑑2∈𝑋

𝐴 (𝑑1) ∗ 𝐴 (𝑑2) ∗ 𝑒 (𝑎, 𝑑1)

∗ 𝑒 (𝑏, 𝑑2)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑑1, 𝑑) ∗ 𝑒 (𝑑2, 𝑑)

∗ 𝑒 (𝑎, 𝑑1) ∗ 𝑒 (𝑏, 𝑑2)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑎, 𝑑) ∗ 𝑒 (𝑏, 𝑑)

= ⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑎, 𝑑) ∗ 𝑒 (𝑏, 𝑑)

≤ ⋁

𝑑∈𝑋

⇓ 𝑥 (𝑑) ∗ 𝑒 (𝑎, 𝑑) ∗ 𝑒 (𝑏, 𝑑) .

(38)

Moreover, ⋁𝑦∈𝑋 ⇓ 𝑥(𝑦) = 1 follows from 1 = ⋁𝑦∈𝑋𝐴(𝑦) ≤

⋁𝑦∈𝑋 ⇓ 𝑥(𝑦). Hence, ⇓ 𝑥 is fuzzy directed.
Since 𝐴 ≤⇓ 𝑥 and ⊔ is fuzzy monotone, then 1 =

sub(𝐴, ⇓ 𝑥) ≤ 𝑒(⊔𝐴, ⊔ ⇓ 𝑥) = 𝑒(𝑥, ⊔ ⇓ 𝑥). Meanwhile,
1 = sub(⇓ 𝑥, ↓ 𝑥) ≤ 𝑒(⊔ ⇓ 𝑥, ⊔ ↓ 𝑥) = 𝑒(⊔ ⇓ 𝑥, 𝑥).Therefore,
𝑥 = ⊔ ⇓ 𝑥.

Lemma 46. In a fuzzy union-complete subset system 𝑍𝐿, if
(𝑋, 𝑒) is a fuzzy𝑍-algebraic poset, then for any 𝑥 ∈ 𝑋, we have
⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧 ∈ 𝑍𝐿(𝑋).
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Proof. By Definition 13(3), ↓ 𝑥 ∈ 𝑍𝐿(𝑋) for any 𝑥 ∈

𝑋. Therefore, the map 𝑓 =↓: 𝑋 → 𝑍𝐿(𝑋) is well
defined. Assume that (𝑋, 𝑒) is a fuzzy 𝑍-algebraic poset, then
𝑘𝑥 ∈ 𝑍𝐿(𝑋). Since the map 𝑓 =↓ is fuzzy monotone,
by Definition 13(2), 𝑓→𝐿 (𝑘𝑥) = ⋁𝑧∈𝐾(𝑋)𝑘𝑥(𝑧) ∗ sub(−, ↓
𝑧) ∈ 𝑍𝐿(𝑍𝐿(𝑋)). Since 𝑍𝐿 is fuzzy union-complete, to show
⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧 ∈ 𝑍𝐿(𝑋), it suffices to show that
⊔(⋁𝑧∈𝐾(𝑋)𝑘𝑥(𝑧) ∗ sub(−, ↓ 𝑧)) = ⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧. For
any 𝜓 ∈ 𝑍𝐿(𝑋),

sub( ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ ↓ 𝑧, 𝜓)

= ⋀

𝑦∈𝑋

( ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ ↓ 𝑧 (𝑦) 󳨀→ 𝜓 (𝑦))

= ⋀

𝑧∈𝐾(𝑋)

(↓ 𝑥 (𝑧) 󳨀→ sub (↓ 𝑧, 𝜓))

= ⋀

𝜑∈𝑍𝐿(𝑋)

( ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ sub (𝜑, ↓ 𝑧) 󳨀→ sub (𝜑, 𝜓))

= ⋀

𝜑∈𝑍𝐿(𝑋)

(𝑓
→
𝐿 (𝑘𝑥) (𝜑) 󳨀→ sub (𝜑, 𝜓)) .

(39)

Thus ⊔𝑓→𝐿 (𝑘𝑥) = ⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧.

Proposition 47. In a fuzzy union-complete and consistent
subset system 𝑍𝐿, if (𝑋, 𝑒) is a fuzzy 𝑍-algebraic poset, then
(𝑋, 𝑒) is a fuzzy 𝑍-continuous poset and for any 𝑥, 𝑦 ∈ 𝑋,

⇓𝑍 𝑥 (𝑦) = ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ ↓ 𝑧 (𝑦) . (40)

Proof. The 𝑍-continuity of (𝑋, 𝑒) is immediate from
Definition 44; it remains to show that for any 𝑥, 𝑦 ∈ 𝑋,
⇓𝑍𝑥(𝑦) = ⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧(𝑦).

On the one hand, by Proposition 17(2),

⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ ↓ 𝑧 (𝑦) = ⋁

𝑧∈𝐾(𝑋)

⇓𝑍𝑧 (𝑧) ∗ ↓ 𝑥 (𝑧) ∗ ↓ 𝑧 (𝑦)

≤ ⇓𝑍𝑥 (𝑦) .

(41)

On the other hand, since𝑍𝐿 is fuzzy union-complete and
⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧 is a fuzzy lower set, by Lemma 46,
⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧 ∈ 𝑍𝐼𝐿(𝑋). It is easy to check that
𝑥 = ⊔(⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧), then

⇓𝑍𝑥 (𝑦)

= ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒(𝑥, ⊔( ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ ↓ 𝑧)) 󳨀→ ( ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧)

∗ ↓ 𝑧 (𝑦))

= ⋁

𝑧∈𝐾(𝑋)

↓ 𝑥 (𝑧) ∗ ↓ 𝑧 (𝑦) .

(42)
Therefore, ⇓𝑍𝑥(𝑦) = ⋁𝑧∈𝐾(𝑋) ↓ 𝑥(𝑧) ∗ ↓ 𝑧(𝑦).

Proposition 48. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset and
𝑐 : (𝑋, 𝑒) → (𝑋, 𝑒) a fuzzy 𝑍-continuous closure operator.
Then 𝑐(𝐾(𝑋)) ⊆ 𝐾(𝑐(𝑋)) and the equality holds if (𝑋, 𝑒) is a
fuzzy 𝑍-algebraic poset.

Proof. For any 𝑥 ∈ 𝐾(𝑋), 𝑒(𝑥, 𝑐(𝑥)) = 1 and for any 𝐼
󸀠
∈

𝑍𝐼𝐿(𝑐(𝑋)), by Proposition 35, we have ⊔𝐼󸀠 ∈ 𝑐(𝑋). Note that
𝑖
→
𝑐(𝑋)𝐿(𝐼

󸀠
) ∈ 𝑍𝐼𝐿(𝑋); then

⇓𝑍𝑥 (𝑥)

= ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑥))

≤ ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑐(𝑋))

(𝑒𝑋 (𝑥, ⊔𝑖
→
𝑐(𝑋)𝐿 (𝐼

󸀠
)) 󳨀→ 𝑖

→
𝑐(𝑋)𝐿 (𝐼

󸀠
) (𝑥))

= ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑐(𝑋))

(𝑒𝑋 (𝑥, ⊔𝐼
󸀠
) 󳨀→ ⋁

𝑑󸀠∈𝑐(𝑋)

𝐼
󸀠
(𝑑
󸀠
) ∗ 𝑒𝑋 (𝑥, 𝑑

󸀠
))

≤ ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑐(𝑋))

(𝑒𝑐(𝑋) (𝑐 (𝑥) , ⊔𝐼
󸀠
) ∗ 𝑒𝑋 (𝑥, 𝑐 (𝑥))

󳨀→ ⋁

𝑑󸀠∈𝑐(𝑋)

𝐼
󸀠
(𝑑
󸀠
) ∗ 𝑒𝑐(𝑋) (𝑐 (𝑥) , 𝑑

󸀠
))

= ⋀

𝐼󸀠∈𝑍𝐼𝐿(𝑐(𝑋))

(𝑒𝑐(𝑋) (𝑐 (𝑥) , ⊔𝐼
󸀠
) 󳨀→ 𝐼

󸀠
(𝑐 (𝑥)))

= ⇓𝑍𝑐 (𝑥) (𝑐 (𝑥)) .

(43)
Further, if (𝑋, 𝑒) is a fuzzy 𝑍-algebraic poset, then for

any 𝑦 ∈ 𝐾(𝑐(𝑋)), there exists 𝑘𝑦 ∈ 𝑍𝐿(𝑋) such that 𝑦 =

⊔𝑘𝑦. Since 𝑐 is fuzzy monotone, then 𝑐
→
𝐿 (𝑘𝑦) ∈ 𝑍𝐼𝐿(𝑐(𝑋)).

Consider
1 = ⇓𝑐(𝑋)𝑦 (𝑦) = ⋀

𝐼∈𝑍𝐼𝐿(𝑐(𝑋))

(𝑒𝑐(𝑋) (𝑦, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ 𝑒𝑐(𝑋) (𝑦, ⊔𝑐
→
𝐿 (𝑘𝑦)) 󳨀→ 𝑐

→
𝐿 (𝑘𝑦) (𝑦) = 𝑐

→
𝐿 (𝑘𝑦) (𝑦)

= ⋁

𝑥∈𝐾(𝑋)

𝑒 (𝑥, 𝑦) ∗ 𝑒 (𝑦, 𝑐 (𝑥))

≤ ⋁

𝑥∈𝐾(𝑋)

𝑒 (𝑐 (𝑥) , 𝑦) ∗ 𝑒 (𝑦, 𝑐 (𝑥)) ,

(44)
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which indicates that there exists 𝑥󸀠 ∈ 𝐾(𝑋) such that 1 =

𝑒(𝑐(𝑥
󸀠
), 𝑦) ∗ 𝑒(𝑦, 𝑐(𝑥

󸀠
)), hence 𝑦 = 𝑐(𝑥

󸀠
). Therefore, 𝑦 ∈

𝑐(𝐾(𝑋)).

Proposition 49. Let (𝑋, 𝑒) be a fuzzy 𝑍-algebraic poset and
𝑐 : (𝑋, 𝑒) → (𝑋, 𝑒) a fuzzy 𝑍-continuous closure operator.
Then (𝑐(𝑋), 𝑒𝑐(𝑋)) is a fuzzy 𝑍-algebraic poset (relative to the
induced fuzzy order).

Proof. For any 𝑦 ∈ 𝑐(𝑋) ⊆ 𝑋, there exists 𝑘𝑦 ∈ 𝑍𝐿(𝑋) such
that 𝑦 = ⊔𝑘𝑦. Note that 𝑐 : (𝑋, 𝑒) → (𝑋, 𝑒) is a fuzzy 𝑍-
continuous closure operator; then

𝑦 = 𝑐 (𝑦) = 𝑐 (⊔𝑘𝑦) = ⊔𝑐
→
𝐿 (𝑘𝑦) . (45)

To show (𝑐(𝑋), 𝑒𝑐(𝑋)) is a fuzzy 𝑍-algebraic poset, it
suffices to show that 𝑐→𝐿 (𝑘𝑦) = 𝑘𝑦. On the one hand, for any
𝑧 ∈ 𝐾(𝑐(𝑋)),

𝑐
→
𝐿 (𝑘𝑦) (𝑧) = ⋁

𝑥∈𝐾(𝑋)

𝑘𝑦 (𝑥) ∗ 𝑒 (𝑧, 𝑐 (𝑥))

≤ ⋁

𝑥∈𝐾(𝑋)

𝑒 (𝑥, ⊔𝑘𝑦) ∗ 𝑒 (𝑧, 𝑐 (𝑥))

≤ ⋁

𝑥∈𝐾(𝑋)

𝑒 (𝑐 (𝑥) , 𝑦) ∗ 𝑒 (𝑧, 𝑐 (𝑥))

≤ 𝑒 (𝑧, 𝑦) = 𝑘𝑦 (𝑧) .

(46)

On the other hand, for 𝑧 ∈ 𝐾(𝑐(𝑋)), by Proposition 48,
there exists 𝑧󸀠 ∈ 𝐾(𝑋) with 𝑐(𝑧

󸀠
) = 𝑧. Since 𝑐 is a fuzzy

closure operator, by Proposition 12, (𝑖𝑐(𝑋), 𝑐) is a fuzzy Galois
connection between 𝑐(𝑋) and 𝑋. Thus 𝑘𝑦(𝑧) = 𝑒(𝑧, 𝑦) =

𝑒(𝑐(𝑧
󸀠
), 𝑦) = 𝑒(𝑧

󸀠
, 𝑖𝑐(𝑋)(𝑦)) = 𝑒(𝑧

󸀠
, 𝑦), and

𝑐
→
𝐿 (𝑘𝑦) (𝑧) = ⋁

𝑥∈𝐾(𝑋)

𝑒 (𝑥, 𝑦) ∗ 𝑒 (𝑧, 𝑐 (𝑥))

≥ 𝑒 (𝑧
󸀠
, 𝑦) ∗ 𝑒 (𝑧, 𝑐 (𝑧

󸀠
)) = 𝑒 (𝑧

󸀠
, 𝑦) .

(47)

ByTheorem 32 and Proposition 49, we get the following.

Theorem 50. Any 𝑍-complete closure system of a fuzzy 𝑍-
algebraic poset is a fuzzy 𝑍-algebraic poset.

Lemma 51. Let (𝑋, 𝑒) be a fuzzy 𝑍-complete poset and 𝐴 ∈

𝑍𝐿(𝑋). Then 𝐾𝐴 = 𝑘⊔𝐴, where 𝐾𝐴 : 𝑋 → 𝐿 defined by 𝐾𝐴 =
⋁𝑥󸀠∈𝑋𝐴(𝑥

󸀠
)∗ ↓ 𝑥

󸀠
|𝐾(𝑋) for any 𝐴 ∈ 𝑍𝐿(𝑋), 𝐾𝐴 restricted on

𝐾(𝑋), that is,𝐾𝐴(𝑦) = ⋁𝑥󸀠∈𝑋𝐴(𝑥
󸀠
)∗𝑒(𝑦, 𝑥

󸀠
) if 𝑦 ∈ 𝐾(𝑋) and

otherwise 0.

Proof. For any 𝑥 ∈ 𝐾(𝑋),

𝐾𝐴 (𝑥) = ⋁

𝑦∈𝑋

𝐴 (𝑦) ∗ 𝑒 (𝑥, 𝑦) ≤ ⋁

𝑦∈𝑋

𝑒 (𝑦, ⊔𝐴) ∗ 𝑒 (𝑥, 𝑦)

= 𝑒 (𝑥, ⊔𝐴) = 𝑘⊔𝐴 (𝑥) .

(48)

For the converse,

𝑘⊔𝐴 (𝑥) = ⇓𝑍 (⊔𝐴) (𝑥) = ⋀

𝐼∈𝑍𝐼𝐿(𝑋)

(𝑒 (⊔𝐴, ⊔𝐼) 󳨀→ 𝐼 (𝑥))

≤ ⋁

𝑑∈𝑋

𝐴 (𝑑) ∗ 𝑒 (𝑥, 𝑑) = 𝐾𝐴 (𝑥) .

(49)

Lai and Zhang [22] pointed out that for any dcpo (𝑌, 𝑒)

and fuzzy monotone map 𝑓 : (𝑋, 𝑒) → (𝑌, 𝑒), there is
a unique fuzzy Scott continuous map 𝑓 : (I(𝑋), 𝑒) →

(𝑌, 𝑒) such that 𝑓 = 𝑓 ∘ y, where y is a yoneda embedding.
The following is the similar conclusion of that. It says that
any fuzzy monotone maps defined on the compact elements
of fuzzy 𝑍-algebraic posets extend uniquely to fuzzy 𝑍-
continuous maps on the whole fuzzy poset.

Theorem 52. Let (𝑋, 𝑒) be a fuzzy 𝑍-algebraic poset, (𝑌, 𝑒) a
fuzzy𝑍-complete poset, and𝑓 : 𝐾(𝑋) → 𝑌 a fuzzy monotone
map. Then there exists a unique fuzzy 𝑍-continuous 𝑓 : 𝑋 →

𝑌, which extends 𝑓.

Proof. For any 𝑥 ∈ 𝑋, there exists 𝑘𝑥 ∈ 𝑍𝐿(𝑋) such that 𝑥 =

⊔𝑘𝑥. Since𝑓 is fuzzymonotone and (𝑌, 𝑒) a fuzzy𝑍-complete
poset, then ⊔𝑓

→
𝐿 (𝑘𝑥) exists in 𝑌. Now for 𝑓 to extend 𝑓 to

be fuzzy 𝑍-continuous, we must have 𝑓(⊔𝐴) = ⊔𝑓
→
𝐿 (𝐴) for

any 𝐴 ∈ 𝑍𝐿(𝑋). We need to show that 𝑓 defined in this way
is indeed well defined, fuzzy 𝑍-continuous.

For any 𝑥 ∈ 𝐾(𝑋), 𝑓(𝑥) = 𝑓(⊔𝑘𝑥) = ⊔𝑓
→
𝐿 (𝑘𝑥). Next we

show that ⊔𝑓→𝐿 (𝑘𝑥) = 𝑓(𝑥). For any 𝑦 ∈ 𝑌,

𝑓
→
𝐿 (𝑘𝑥) (𝑦) = ⋁

𝑧∈𝐾(𝑋)

𝑘𝑥 (𝑧) ∗ 𝑒 (𝑦, 𝑓 (𝑧))

≤ ⋁

𝑧∈𝐾(𝑋)

𝑒 (𝑓 (𝑧) , 𝑓 (𝑥)) ∗ 𝑒 (𝑦, 𝑓 (𝑧))

≤ 𝑒 (𝑦, 𝑓 (𝑥)) ,

(50)

and for any 𝑧 ∈ 𝑌,

⋀

𝑦∈𝑌

(𝑓
→
𝐿 (𝑘𝑥) (𝑦) 󳨀→ 𝑒 (𝑦, 𝑧))

= ⋀

𝑦∈𝑌

( ⋁

𝑧󸀠∈𝐾(𝑋)

𝑘𝑥 (𝑧
󸀠
) ∗ 𝑒 (𝑦, 𝑓 (𝑧

󸀠
)) 󳨀→ 𝑒 (𝑦, 𝑧))

= ⋀

𝑧󸀠∈𝐾(𝑋)

(𝑘𝑥 (𝑧
󸀠
) 󳨀→ 𝑒 (𝑓 (𝑧

󸀠
) , 𝑧))

≤ 𝑘𝑥 (𝑥) 󳨀→ 𝑒 (𝑓 (𝑥) , 𝑧)

= 𝑒 (𝑓 (𝑥) , 𝑧) .

(51)

Hence by Definition 5,𝑓(𝑥) = ⊔𝑓
→
𝐿 (𝑘𝑥); that is,𝑓(𝑥) = 𝑓(𝑥)

holds for all 𝑥 ∈ 𝐾(𝑋). Moreover, for 𝑥 ∈ 𝑋, 𝑓(𝑥) =

⊔𝑓
→
𝐿 (𝑘𝑥), and these indicate that 𝑓 is well defined.
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Next we show that 𝑓 is fuzzy 𝑍-continuous. Since 𝑓 is a
fuzzy monotone map, then for any 𝑥, 𝑦 ∈ 𝑋,

𝑒 (𝑥, 𝑦) ≤ sub (𝑘𝑥, 𝑘𝑦) ≤ sub (𝑓→𝐿 (𝑘𝑥) , 𝑓
→
𝐿 (𝑘𝑦))

≤ sub (⊔𝑓→𝐿 (𝑘𝑥) , ⊔𝑓
→
𝐿 (𝑘𝑦))

= 𝑒 (𝑓 (𝑥) , 𝑓 (𝑦)) ,

(52)

which implies that 𝑓 is fuzzy monotone; hence we have 1 =

𝑒(⊔𝑓
→

𝐿 (𝐴), 𝑓(⊔𝐴)), and it remains to show the other side. To
this end, by Lemma 51, 𝑓(⊔𝐴) = ⊔𝑓

→
𝐿 (𝑘⊔𝐴) = ⊔𝑓

→
𝐿 (𝐾𝐴),

and note that 𝑓(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐾(𝑋), it suffices to
show that 𝑓→𝐿 (𝐾𝐴) ≤ 𝑓

→

𝐿 (𝐴). For any 𝑦 ∈ 𝑌,

𝑓
→
𝐿 (𝐾𝐴) (𝑦) = ⋁

𝑥∈𝐾(𝑋)

𝐾𝐴 (𝑥) ∗ 𝑒 (𝑦, 𝑓 (𝑥))

= ⋁

𝑥∈𝐾(𝑋)

⋁

𝑥󸀠∈𝑋

𝐴(𝑥
󸀠
) ∗ 𝑒 (𝑥, 𝑥

󸀠
) ∗ 𝑒 (𝑦, 𝑓 (𝑥))

≤ ⋁

𝑥∈𝐾(𝑋)

⋁

𝑥󸀠∈𝑋

𝐴(𝑥
󸀠
) ∗ 𝑒 (𝑓 (𝑥) , 𝑓 (𝑥

󸀠
))

∗ 𝑒 (𝑦, 𝑓 (𝑥))

≤ ⋁

𝑥󸀠∈𝑋

𝐴(𝑥
󸀠
) ∗ 𝑒 (𝑦, 𝑓 (𝑥

󸀠
))

= 𝑓
→

𝐿 (𝐴) (𝑦) .

(53)

These indicate that 𝑓 is fuzzy 𝑍-continuous and the unique-
ness of 𝑓 is obvious.

Thus, we complete the proof.

6. Conclusions

Through introducing the concept of fuzzy subset systems,
we study fuzzy 𝑍-continuous posets, strongly fuzzy 𝑍-
continuous posets, and fuzzy 𝑍-algebraic posets. Because of
the outstanding properties of complete residuated lattices,
the fuzzy 𝑍-continuous posets and fuzzy 𝑍-algebraic posets
inherit many good properties from 𝑍-continuous posets and
𝑍-algebraic posets, such as the fuzzy 𝑍-continuous section-
retraction pair between fuzzy 𝑍-continuous posets, and we
also give the definition of fuzzy 𝑍-complete closure systems
and associate a fuzzy 𝑍-continuous closure operator with a
fuzzy 𝑍-complete closure system; it is shown that each fuzzy
𝑍-complete closure system of a fuzzy 𝑍-continuous poset is
fuzzy𝑍-continuous; we also present an extension theorem of
fuzzy 𝑍-algebraic posets.
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