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From rotational potential vorticity-conserved equation with topography effect and dissipation effect, with the help of the multiple-
scale method, a new integro-differential equation is constructed to describe the Rossby solitary waves in deep rotational fluids.
By analyzing the equation, some conservation laws associated with Rossby solitary waves are derived. Finally, by seeking the
numerical solutions of the equation with the pseudospectral method, by virtue of waterfall plots, the effect of detuning parameter
and dissipation on Rossby solitary waves generated by topography are discussed, and the equation is compared with KdV equation
and BO equation. The results show that the detuning parameter 𝛼 plays an important role for the evolution features of solitary
waves generated by topography, especially in the resonant case; a large amplitude nonstationary disturbance is generated in the
forcing region. This condition may explain the blocking phenomenon which exists in the atmosphere and ocean and generated by
topographic forcing.

1. Introduction

Among the many wave motions that occur in the ocean and
atmosphere, Rossby waves play one of the most important
roles.They are largely responsible for determining the ocean’s
response to atmospheric and other climate changes [1]. In
the past decades, the research on nonlinear Rossby solitary
waves had been givenmuch attention in themathematics and
physics, and some models had been constructed to describe
this phenomenon. Based upon the pioneering work of Long
[2] and Benney [3] on barotropic Rossby waves, there had
been remarkably exciting developments [4–11] and formed
classical solitary waves theory and algebraic solitary waves
theory.The so-called classical solitary waves indicate that the
evolution of solitary waves is governed by the Korteweg-de
Vries (KdV) type model, while the behavior of solitary waves
is governed by the Benjamin-Ono (BO) model, it is called
algebraic solitary waves. After the KdVmodel and BOmodel,
a more general evolution model for solitary waves in a finite-
depth fluid was given by Kubota, and the model was called

intermediate long-wave (ILW) model [12, 13]. Many math-
ematicians solved the above models by all kinds of method
and got a series of results [14–19]. We note that most of the
previous researches about solitary waves were carried out in
the zonal area and could not be applied directly to the spheri-
cal earth, and little attention had been focused on the solitary
waves in the rotational fluids [20]. Furthermore, as everyone
knows the real oceanic and atmospheric motion is a forced
and dissipative system. Topography effect as a forcing factor
has been studied by many researchers [21–25]; on the other
hand, dissipation effect must be considered in the oceanic
and atmospheric motion; otherwise, the motion would grow
explosively because of the constant injecting of the external
forcing energy. Our aim is to construct a new model to
describe the Rossby solitary waves in rotational fluid with
topography effect and dissipation effect. It has great difference
from the previous researches.

In this paper, from rotational potential vorticity-con-
served equationwith topography effect and dissipation effect,
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with the help of the multiple-scale method, we will first con-
struct a new model to describe Rossby solitary waves in deep
rotational fluids. Then we will analyse the conservation rela-
tions of themodel and derive the conservation laws of Rossby
solitarywaves. Finally, themodel is solved by the pseudospec-
tral method [26]. Based on the waterfall plots, the effect of
detuning parameter and dissipation on Rossby solitary waves
generated by topography are discussed, the model is com-
pared with KdVmodel and BOmodel, and some conclusions
are obtained.

2. Mathematics Model

According to [27], taking plane polar coordinates (𝑟, 𝜃), 𝑟
pointing to lower latitude is positive and the positive rotation
is counter-clockwise, and then the rotational potential vortic-
ity-conserved equation including topography effect and tur-
bulent dissipation is, in the nondimensional form, given by
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where Ψ is the dimensionless stream function; 𝛽 =
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ticity dissipation which is caused by the Ekman boundary
layer and 𝜆

0
is a dissipative coefficient, 𝑄 is the external

source, and the form of 𝑄 will be given in the latter.
In order to consider weakly nonlinear perturbation on a

rotational flow, we assume
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where 𝛼 is a small disturbance in the basic flow and reflects
the proximity of the system to a resonate state; 𝑐 is a constant,
which is regarded as a Rossby waves phase speed; 𝜓 denotes
disturbance stream function; Ω(𝑟) expresses the rotational
angular velocity. In order to consider the role of nonlinearity,
we assume the following type of rotational angular velocity:
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Substituting (2), (3), and (4) into (1) leads to the following
equation for the perturbation stream function 𝜓:
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In the domain [𝑟
2
,∞], the parameter 𝛽 is smaller than that

in the domain [𝑟
1
, 𝑟
2
], and we assume 𝛽 = 0 for [𝑟

2
,∞]. Fur-

thermore, the turbulent dissipation and topography effect are
absent in the domain and only consider the features of distur-
bances generated. Substituting (2) and (3) into (1), we have the
following governing equations:
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For (5), we introduce the following stretching transforma-
tions:
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and the perturbation expansion of 𝜓 is in the following form:
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Substituting (7) and (8) into (5), comparing the samepower of
𝜀 term, we can obtain the 𝜀
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Assume the perturbation at boundary 𝑟 = 𝑟
1
does not exist,

that is,
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is determined by (6).

For the linear solution to be separable, assuming the solution
of (9) in the form:
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On the other hand, we proceed to the 𝜀
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the equation degenerates to the KdV equation. When 𝑎
2

=

𝜆 = 𝐻 = 0, the equation degenerates to the so-called rota-
tional BO equation. Here we call (27) forced rotational KdV-
BO-Burgers equation.Aswe know, the forced rotationalKdV-
BO-Burgers equation as a governing model for Rossby soli-
tary waves is first derived in the paper.

3. Conservation Laws

In this section, the conservation laws are used to explore some
features of Rossby solitary waves. In [7], Ono presented four
conservation laws of BO equation, and we extend Ono’s work
to investigate the following questions: Has the rotational
KdV-BO-Burgers equation also conservation laws without
dissipation effect? Has it four conservation laws or more?
How to change of these conservation quantities in the pres-
ence of dissipation effect?

In this section, topography effect is ignored; that is, 𝐻 is
taken zero in (27). Based on periodicity condition, we assume
that the values of 𝐴, 𝐴

Θ
, 𝐴
ΘΘ

, 𝐴
ΘΘΘ

at Θ = 0 equal that at
Θ = 2𝜋. Then integrating (27) with respect to Θ over (0, 2𝜋),
we are easy to obtain the following conservation relation:

𝑄
1
= ∫

2𝜋

0

𝐴𝑑Θ = exp (−𝜆𝑇)∫

2𝜋

0

𝐴 (Θ, 0) 𝑑Θ. (28)

From (28), it is obvious that 𝑄
1
decreases exponentially with

the evolution of time 𝑇 and the dissipation coefficient 𝜆. By
analogy with the KdV equation, 𝑄

1
is regarded as the mass

of the solitary waves. This shows that the dissipation effect
causes the mass of solitary waves decrease exponentially.
When dissipation effect is absent, the mass of the solitary
waves is conserved.

In what follows, (27) has another simple conservation
law, which becomes clear if we multiply (27) by 𝐴(Θ, 𝑇) and
carry the integration; by using the property of the operator
H : ∫

2𝜋

0
𝑓(Θ)H(𝑓(Θ))𝑑Θ = 0, then we get

𝑄
2
= ∫

2𝜋

0

𝐴
2
𝑑Θ = exp (−2𝜆𝑇)∫

2𝜋

0

𝐴
2
(Θ, 0) 𝑑Θ. (29)

Similar to the mass 𝑄
1
, 𝑄
2
is regarded as the momentum of

the solitary waves and is conserved without dissipation. The
momentumof the solitary waves also decreases exponentially
with the evolution of time 𝑇 and the increasing of dissipative
coefficient 𝜆 in the presence of dissipation effect. Further-
more, the rate of decline of momentum is faster than the rate
of mass.

Next, wemultiply (27) by (𝐴2−(𝑎
3
/𝑎
1
)H(𝐴

Θ
)) and obtain

(

1

3

𝐴
3
)

𝑇

−

𝑎
3

𝑎
1

H (𝐴
Θ
) 𝐴
𝑇

+ (𝛼 + 𝑎
1
𝐴)𝐴
Θ
(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
))

+ 𝑎
2
𝐴
ΘΘΘ

(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
))

+ 𝑎
3
(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
)) (H (𝐴))

ΘΘ

+ 𝜆(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
))𝐴 = 0.

(30)

Then taking the derivative of (27) with respect toΘ andmul-
tiplying (−(2𝑎

2
/𝑎
1
)𝐴
Θ
+ (𝑎
3
/𝑎
1
)H(𝐴)) lead to

(−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))𝐴
Θ𝑇

+ [𝛼𝐴
ΘΘ

+ 𝑎
1
(𝐴𝐴
Θ
)
Θ
] (−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))

+ 𝑎
2
𝐴
ΘΘΘΘ

(−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))

+ 𝑎
3
(−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))H(𝐴)
ΘΘΘ

+ 𝜆𝐴(−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴)) = 0.

(31)

Adding (30) to (31), by virtue of the property of operatorH:

H(𝐴)
ΘΘ

= H (𝐴
ΘΘ

) , ∫

2𝜋

0

𝑢HV𝑑Θ = −∫

2𝜋

0

VH𝑢𝑑Θ,

(32)

we have

(

1

3

𝐴
3
−

𝑎
2

𝑎
1

𝐴
2

Θ
+

𝑎
3

𝑎
1

𝐴
Θ
H (𝐴))

𝑇

+ 𝛼[

1

3

𝐴
3
−

𝑎
2

𝑎
1

𝐴
2

Θ
+

𝑎
3

𝑎
1

H (𝐴)𝐴
Θ
]

Θ

+ (

𝑎
1

4

𝐴
4
)

Θ

+

𝑎
2

3

2𝑎
1

[𝐻 (𝐴)𝐻(𝐴)
ΘΘ

]
Θ

+

𝑎
2
𝑎
3

𝑎
1

(𝐴
ΘΘΘ

𝐻(𝐴) − 2𝐴
Θ
𝐻(𝐴)
ΘΘ

)
Θ

−

2𝑎
2

𝑎
1

(𝐴
Θ
𝐴
ΘΘΘ

−

1

2

𝐴
2

ΘΘ
)

Θ

+ 𝑎
2
(𝐴
2
𝐴
ΘΘ

− 2𝐴𝐴
2

Θ
)
Θ

+ 𝑎
3
[𝐴(𝐴H (𝐴))

Θ
]
Θ
+ 𝜆(𝐴

3
−

𝑎
2

𝑎
1

𝐴
2

Θ
+

𝑎
3

𝑎
1

𝐴
Θ
𝐻(𝐴))

= 0.

(33)

Taking𝑄
3
= ∫

2𝜋

0
((1/3)𝐴

3
−(𝑎
2
/𝑎
1
)𝐴
2

Θ
+(𝑎
3
/𝑎
1
)𝐴
Θ
H(𝐴))𝑑Θ,

we are easy to see that when the dissipation effect is absent,
that is, 𝜆 = 0, 𝑄

3
is a conserved quantity and regarded as

the energy of the solitary waves. So we can conclude that the
energy of solitary waves is conserved without dissipation. By
analysing (33), we can find the decreasing trend of energy of
solitary waves.
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Finally, let us consider a quantity related to the phase of
solitary waves:

𝑄
4
=

𝑑

𝑑𝑇

∫

2𝜋

0

Θ𝐴𝑑Θ, (34)

and we can get 𝑑𝑄
4
/𝑑𝑇 = 0 without dissipation. According

[7], we present the velocity of the center of gravity for
the ensemble of such waves 𝑄

4
= 𝑄
4
/𝑄
1
; by employing

𝑑𝑄
1
/𝑑𝑇 = 0 and 𝑑𝑄

4
/𝑑𝑇 = 0, we have 𝑑𝑄

4
/𝑑𝑇 = 0, which

shows that the velocity of the center of gravity is conserved
without dissipation.

After the four conservation relations are given, we can
proceed to seek the fifth conservation quantity. In fact, after
tedious calculation, we can also verify that

𝑄
5
=∫

2𝜋

0

(

1

4

𝐴
4
−

3𝑎
2

𝑎
1

𝐴𝐴
2

Θ
+

9𝑎
2

𝑎
2

1

𝐴
2

ΘΘ
+

𝑎
3

4𝑎
1

𝐴
2
H (𝐴)) 𝑑Θ

(35)

is also conservation quantity. According the idea, we can
obtain the sixth conservation quantity 𝑄

6
and the seventh

conservation quantity 𝑄
7
. . ., so we can guess that, similar to

the KdV equation, the rotational KdV-BO-Burgers equation
without dissipation also owns infinite conservation laws, but
it needs to be verified in the future.

4. Numerical Simulation and Discussion

In this section, we will take into account the generation and
evolution feature of Rossby solitarywaves under the influence
of topography and dissipation, so we need to seek the solu-
tions of forced rotational KdV-BO-Burgers equation. But we
know that there is no analytic solution for (27), and here we
consider the numerical solutions of (27) by employing the
pseudospectral method.

The pseudo-spectral method uses a Fourier transform
treatment of the space dependence together with a leap-forg
scheme in time. For ease of presentation the spatial period is
normalized to [0, 2𝜋]. This interval is divided into 2𝑁 points,
and then Δ𝑇 = 𝜋/𝑁. The function 𝐴(𝑋, 𝑇) can be trans-
formed to the Fourier space by

𝐴 (V, 𝑇) = 𝐹𝐴 =

1

√2𝑁

2𝑁−1

∑

𝑗=0

𝐴 (𝑗Δ𝑋, 𝑇) 𝑒
−𝜋𝑖𝑗V/𝑁

,

V = 0, ±1, . . . , ±𝑁.

(36)

The inversion formula is

𝐴 (𝑗Δ𝑋, 𝑇) = 𝐹
−1
𝐴 =

1

√2𝑁

∑

V
𝐴 (V, 𝑇) 𝑒

𝜋𝑖𝑗V/𝑁
. (37)

These transformations can use Fast Fourier Transform algo-
rithm to efficiently perform.With this scheme, 𝜕𝐴/𝜕𝑋 can be
evaluated as 𝐹−1{𝑖V𝐹𝐴}, 𝜕3𝐴/𝜕𝑋

3 as −𝑖𝐹−1{V3𝐹𝐴}, 𝜕𝐻/𝜕𝑋 as

𝐹
−1
{𝑖V𝐹𝐻}, and so on. Combined with a leap-frog time step,

(27) would be approximated by

𝐴 (𝑋, 𝑇 + Δ𝑇) − 𝐴 (𝑋, 𝑇 − Δ𝑇) + 𝑖𝛼𝐹
−1

{V𝐹𝐴}Δ𝑇

+ 𝑖𝑎
1
𝐴𝐹
−1

{V𝐹𝐴}Δ𝑇 − 𝑎
2
𝑖𝐹
−1

{V3𝐹𝐴}Δ𝑇

− 𝑎
3
𝐹
−1

{V2𝐹H (𝐴)} Δ𝑇 + 𝜆𝐴 = 𝑖𝐹
−1

{V𝐹𝐺}Δ𝑇.

(38)

The computational cost for (38) is six fast Fourier transforms
per time step.

Once the zonal flow Ω(𝑟) and the topography function
𝐻(𝑟, Θ) as well as dissipative coefficient 𝜆 are given, it is easy
to get the coefficients of (27) by employing (13). In order to
simplify the calculation and to focus attention on the time
evolution of the solitary waves with topography effect and
dissipation effect and to show the difference among the KdV
model, BO model, and rotational KdV-BO model, we take
𝑎
1
= 1, 𝑎

2
= −1, and 𝑎

3
= −1. As an initial condition, we take

𝐴(𝑋, 0) = 0. In the present numerical computation, the
topography forcing is taken as 𝐺 = 𝑒

−[30(Θ−𝜋)]
2
/4.

4.1. Effect of Detuning Parameter 𝛼 and Dissipation. In
Figure 1, we consider the effect of detuning parameter 𝛼 on
solitary waves. The evolution features of solitary waves gen-
erated by topography are shown in the absence of dissipation
with different detuning parameter 𝛼. It is easy to find from
these waterfall plots that the detuning parameter 𝛼 plays an
important role for the evolution features of solitary waves
generated by topography.

When 𝛼 > 0 (Figure 1(a)), a positive stationary solitary
wave is generated in the topographic forcing region, and
a modulated cnoidal wave-train occupies the downstream
region. There is no wave in the upstream region. A flat buffer
region exists between the solitary wave in the forcing region
and modulated cnoidal wave-train in the downstream. With
the detuning parameter 𝛼 decreasing, the amplitudes of both
solitary wave in the forcing region and modulated cnoidal
wave-train in the downstream region increase and themodu-
lated cnoidal wave-train closes to the forcing region gradually
and the flat buffer region disappears slowly.

Up to 𝛼 = 0 (Figure 1(b)), the resonant case forms. In
this case, a large amplitude nonstationary disturbance is gen-
erated in the forcing region. To some degree, this condition
may explain the blocking phenomenon which exists in the
atmosphere and ocean and generated by topographic forcing.

As 𝛼 < 0, from Figure 1(c) we can easy to find that a
negative stationary solitary wave is generated in the forcing
region, and this is great difference with the former two condi-
tions. Meanwhile, there are both wave-trains in the upstream
and downstream region. The amplitude and wavelength of
wave-train in the upstream region are larger than those in
the downstream regions. Similar to Figure 1(b) and unlike
Figure 1(a), the wave-trains in the upstream and downstream
regions connect to the forcing region and the flat buffer region
disappears.

Figure 2 shows the solitary waves generated by topogra-
phy in the presence of dissipation with dissipative coefficient
𝜆 = 0.3 and detuning parameter 𝛼 = 2.5. The conditions of
𝛼 = 0 and𝛼 < 0 are omitted. Compared to Figure 1(a), wewill
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(b) 𝛼 = 0
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(c) 𝛼 = −2.5

Figure 1: Solitary waves generated by topography in the absence of dissipation.
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Figure 2: Solitary waves generated by topography in the presence of
dissipation (𝜆 = 0.3, 𝛼 = 2.5).

find that there is also a solitary wave generated in the forcing
region, but because of dissipation effect the amplitude of soli-
tary wave in the forcing region decreases as the dissipative
coefficient 𝜆 increases (Figures omitted) and time evolution.
Meanwhile, the modulated cnoidal wave-train in the down-
stream region is dissipated. When 𝜆 is big enough, the mod-
ulated cnoidal wave-train in the downstream region disap-
pears.

4.2. Comparison of KdV Model, BO Model, and KdV-BO
Model. We know that the rotation KdV-BO equation reduces
to the KdV equation as 𝑎

3
= 0 and to the BO equation as

𝑎
2
= 0, so, in this subsection by comparing Figure 1(a) with

Figure 3, we will look for the difference of solitary waves
which is described by KdV-BO model, KdV model, and BO
model. The role of detuning parameter 𝛼 and dissipation
effect has been studied in the former subsection, so here we
only consider the condition of 𝜆 = 0, 𝛼 = 2.5.

At first, we can find that a positive solitary wave is all gen-
erated in the forcing region in Figures 1(a), 3(a) and 3(b), but
it is stationary in Figures 1(a) and 3(a), and is nonstationary in
Figure 3(b). By surveying carefully we find that the amplitude
of stationary wave in the forcing region in Figure 1(a) is larger
than that in Figure 3(a). Additionally, a modulated cnoidal
wave-train is excited in the downstream region in Figures 1(a)
and 3(a), and in both downstream and upstream region in
Figure 3(b). The amplitude of modulated cnoidal wave-train
in downstream region in Figure 3(b) is the largest and in
Figure 1(a) is the smallest among the three models. Further-
more, in Figure 3(a) the wave number of modulated cnoidal
wave-train is more than that in Figures 1(a) and 3(b). In
a word, by the above analysis and comparison, it is easy
to find that Figure 1(a) is similar to Figure 3(a) and has
great difference with Figure 3(b). This indicates that the
term 𝑎

2
(𝜕
3
𝐴/𝜕Θ

3
) plays more important role than the term

𝑎
3
(𝜕
2
/𝜕Θ
2
)H(𝐴) in rotational KdV-BO equation.
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(a) KdV model (𝑎3 = 0, 𝛼 = 2.5, 𝜆 = 0)
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(b) BO model (𝑎2 = 0, 𝛼 = 2.5, 𝜆 = 0)

Figure 3: Comparison of KdV model, Bo model, and KdV-BO model.

5. Conclusions

In this paper, we presented a newmodel: rotational KdV-BO-
Burgers model to describe the Rossby solitary waves gener-
ated by topography with the effect of dissipation in deep rota-
tional fluids. By analysis and computation, five conservation
quantities of KdV-BO-Burgers model were derived and cor-
responding four conservation laws of Rossby solitary waves
were obtained; that is, mass, momentum, energy, and velocity
of the center of gravity of Rossby solitary waves are conserved
without dissipation effect. Further, we presented that the
rotational KdV-BO-Burgers equation owns infinite conserva-
tion quantities in the absence of dissipation effect. Detailed
numerical results obtained using pseudospectral method are
presented to demonstrate the effect of detuning parame-
ter 𝛼 and dissipation. By comparing the KdV model, BO
model, and KdV-BO model, we drew the conclusion that
the term 𝑎

2
(𝜕
3
𝐴/𝜕Θ

3
) plays more important role than the

term 𝑎
3
(𝜕
2
/𝜕Θ
2
)H(𝐴) in rotational KdV-BO equation. More

problems onKdV-BO-Burgers equation such as the analytical
solutions, integrability, and infinite conservation quantities
are not studied in the paper due to limited space. In fact, there
are many methods carried out to solve some equations with
special nonhomogenous terms [28] as well asmultiwave solu-
tions and other form solution [29, 30] of homogenous equa-
tion. These researches have important value for understand-
ing and realizing the physical phenomenon described by the
equation and deserve to carry out in the future.
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