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We consider the testing problem for the parameter and restricted estimator for the nonparametric component in the additive
partially linear errors-in-variables (EV)models under additional restricted condition.We propose a profile Lagrangemultiplier test
statistic based on modified profile least-squares method and two-stage restricted estimator for the nonparametric component. We
derive two important results. One is that, without requiring the undersmoothing of the nonparametric components, the proposed
test statistic is proved asymptotically to be a standard chi-square distribution under the null hypothesis and a noncentral chi-square
distribution under the alternative hypothesis. These results are the same as the results derived by Wei and Wang (2012) for their
adjusted test statistic. But ourmethoddoes not need an adjustment and is easier to implement especially for the unknown covariance
of measurement error. The other is that asymptotic distribution of proposed two-stage restricted estimator of the nonparametric
component is asymptotically normal and has an oracle property in the sense that, though the other component is unknown, the
estimator performs well as if it was known. Some simulation studies are carried out to illustrate relevant performances with a finite
sample. The asymptotic distribution of the restricted corrected-profile least-squares estimator, which has not been considered by
Wei and Wang (2012), is also investigated.

1. Introduction

To balance the modeling bias and the “curse of dimen-
sionality,” different kinds of semiparametric models, such
as partially linear model, partially linear varying coefficient
model, partially linear single-index model, and additive par-
tially linear model, have been proposed and investigated. In
this paper, we consider the semiparametric additive partially
linear model, which can be written as

𝑌 = 𝑋
󸀠
𝛽 +

𝐷

∑

𝑑=1

𝑓
𝑑
(𝑍
𝑑
) + 𝜀, (1)

where 𝑌 is the response, 𝑋 and 𝑍 = (𝑍
1
, . . . , 𝑍

𝐷
)
󸀠

are covariates on 𝑅
𝑝 and 𝑅

𝐷, respectively, 𝑓
1
, . . . , 𝑓

𝐷
are

unknown smooth functions, 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
󸀠 is a 𝑝-dim-

ensional vector of unknown parameters, and 𝜀 is the random
error with conditional mean zero given 𝑋 and 𝑍. Model
(1), inheriting the interpretability of the linear model and
flexibility of the additivemodel, has been studied byOpsomer
and Ruppert [1], Li [2], and Jiang et al. [3], among others. Two

important models, partially linear model, which is the case
when 𝐷 = 1 for model (1), and additive model, when 𝛽 = 0,
can be regarded as its special models.

However in many practical applications, it may be dif-
ficult or impossible to measure some explanatory variables
accurately, and people usually can only observe its surrogate.
For the literature about errors in variables (EV) the reader can
resort to Fuller [4], Cheng and Van Ness [5], Carroll et al. [6],
Liang et al. [7], You and Chen [8], Li and Greene [9], Wang et
al. [10], and the references therein. In this paper, we consider
model (1) with the case that only covariate 𝑋 is measured
with additive error; that is, 𝑋 cannot be observed, but an
unbiased measure of 𝑋, denoted by 𝑊, can be obtained such
that

𝑊 = 𝑋 + 𝑈, (2)

where 𝑈 is the measurement error with mean zero and inde-
pendent of (𝑋, 𝑍, 𝑌). Like Liang et al. [11], we only consider
the case of 𝐷 = 2 and assume that the covariance matrix
of measurement error 𝑈, say Σ

𝑢𝑢
, is known. Otherwise, we
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can estimate it by repeatedly measuring 𝑊 as mentioned by
Liang et al. [7, 11].

In many practical applications such as production and
consumption studies, in addition to the sample information,
people always have some prior information on regression
parametric vector which can be formed into some constraint
conditions and used to improve the parametric estimators.
For more detailed discussion see Jorgenson [12]. It is well
known that for general linear models and nonlinear regres-
sion models there are restricted estimation and correspond-
ing results, but for semi-parametric regression models, the
results of restricted estimation are very few. Recently,Wei and
Wang [13] considered the testing problemunder the following
linear hypothesis on the parametric component:

𝐻
0
: 𝐴𝛽 = b versus 𝐻

1
: 𝐴𝛽 ̸= b, (3)

where 𝐴 is a 𝑘 × 𝑝 matrix of known constants, rank(𝐴) = 𝑘,
and b is a 𝑘-vector of known constants. They first proposed
the restricted corrected-profile least-squares estimator 𝛽

𝑟
of

𝛽 under the restriction 𝐴𝛽 = b. Based on the difference
between the corrected residual sums of squares under the
null and alternative hypotheses, a test statistic is suggested,
but the limiting distribution is a weighted sum of inde-
pendent standard 𝜒

2
(1), so adjustment is needed, and the

adjusted test statistic is also suggested.Though they proposed
the restricted corrected-profile least-squares estimator 𝛽

𝑟
of

𝛽 under the condition 𝐴𝛽 = b, they did not investigate the
asymptotic property of 𝛽

𝑟
. In particular they did not give

the estimator of nonparametric component. So in this paper,
we will investigate the above problems. Once the asymptotic
distribution of 𝛽

𝑟
is obtained, for a different matrix 𝐴, we

can easily derive the asymptotic distribution of different con-
strained estimates 𝐴𝛽

𝑟
with different purposes. In addition

to the just-mentioned problems, our other aim is to suggest
the profile Lagrange multiplier test statistic for the unknown
parameter 𝛽 on testing problem and show that its limiting
distribution is a standard chi-squared distribution under
the null hypothesis and a noncentral chi-square distribution
under the alternative hypothesis. These results are the same
as the results derived byWei andWang [13] for their adjusted
test statistic, but ourmethoddoes not need an adjustment and
is easier to implement especially when the covariance Σ

𝑢𝑢
is

unknown. For the Lagrange multiplier test method, see Wei
and Wu [14] and Zhang et al. [15].

The rest of this paper is organized as follows. In Section 2,
we first review the restricted corrected-profile least-squares
estimator 𝛽

𝑟
of 𝛽 and then study the asymptotic distribution

of 𝛽
𝑟
. After that, we construct the modified profile Lagrange

multiplier test statistic and derive its asymptotic distribution
under the null and alternative hypotheses. In Section 3, two-
stage restricted estimators for the nonparametric compo-
nents are proposed and their asymptotic distribution are
presented. Some simulation studies are carried out to assess
the performance of the derived results in Section 4. Proofs of
the main results are given in Section 5.

2. Asymptotic Results of the Restricted-Profile
Least-Squares Estimator and Modified
Profile Lagrange Multiplier Test

2.1. The Restricted-Profile Least-Squares Estimator and Its
Asymptotic Property. For the case of 𝐷 = 2, like Liang
et al. [11] and Wang et al. [10], we assume 𝐸{𝑓

1
(𝑍
1
)} =

𝐸{𝑓
2
(𝑍
2
)} = 0 to ensure identifiability of the nonparametric

functions, and 𝑋 and 𝑌 are centered for simplicity. Suppose
the observable data {𝑌

𝑖
, 𝑍
𝑖1
, 𝑍
𝑖2
,𝑊
𝑖
= (𝑊
𝑖1
,𝑊
𝑖2
, . . . ,𝑊

𝑖𝑝
)
󸀠
, 𝑖 =

1, . . . , 𝑛} are independent and identically distributed (i.i.d.)
and are generated from the following model:

𝑌
𝑖
= 𝑋
󸀠

𝑖
𝛽 + 𝑓
1
(𝑍
𝑖1
) + 𝑓
2
(𝑍
𝑖2
) + 𝜀
𝑖
,

𝑊
𝑖
= 𝑋
𝑖
+ 𝑈
𝑖
,

(4)

where the model errors {𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛} are i.i.d. with

𝐸(𝜀
𝑖

| 𝑋
𝑖
, 𝑍
𝑖1
, 𝑍
𝑖2
) = 0 almost surely and the measure-

ment errors 𝑈
𝑖
are i.i.d. with mean zero and independent

of {𝑌
𝑖
, 𝑋
𝑖

= (𝑋
𝑖1
, 𝑋
𝑖2
, . . . , 𝑋

𝑖𝑝
)
󸀠
, 𝑍
𝑖1
, 𝑍
𝑖2
}. Besides, we also

have some prior information on regression parametric
vector 𝛽 that can be presented by the following restricted
condition:

𝐴𝛽 = b (5)

with 𝐴 being a 𝑘 × 𝑝 matrix of known constants and
rank(𝐴) = 𝑘 and b being a 𝑘-vector of known constants.

First, we need introduce the restricted-profile least-
squares estimator of Wei and Wang [13]. The notations are
like those of Wang et al. [10]. If 𝛽 is known, the first equation
of model (4) can be rewritten as

𝑌
𝑖
− 𝑋
󸀠

𝑖
𝛽 = 𝑓

1
(𝑍
𝑖1
) + 𝑓
2
(𝑍
𝑖2
) + 𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛. (6)

Denote

Y = (𝑌
1
, . . . , 𝑌

𝑛
)
󸀠

,

𝜀 = (𝜀
1
, . . . , 𝜀

𝑛
)
󸀠

,

X = (𝑋
1
, . . . , 𝑋

𝑛
)
󸀠

,

Z
1
= (𝑍
11
, . . . , 𝑍

𝑛1
)
󸀠

,

Z
2
= (𝑍
12
, . . . , 𝑍

𝑛2
)
󸀠

,

𝐹
1
= (𝑓
1
(𝑍
11
) , . . . , 𝑓

1
(𝑍
𝑛1
))
󸀠

,

𝐹
2
= (𝑓
2
(𝑍
12
) , . . . , 𝑓

2
(𝑍
𝑛2
))
󸀠

.

(7)

Hence, (6) can be written as

Y − X𝛽 = 𝐹
1
+ 𝐹
2
+ 𝜀. (8)

Let 𝑠󸀠
1,𝑧
1

, 𝑠
󸀠

2,𝑧
2

denote the equivalent kernels for the local linear
regression at 𝑧

1
, 𝑧
2
:

𝑠
󸀠

1,𝑧
1

= 𝑒
󸀠

1
(Z
󸀠

1
Ω
1
Z
1
)
−1

Z
󸀠

1
Ω
1
,

𝑠
󸀠

2,𝑧
2

= 𝑒
󸀠

1
(Z
󸀠

2
Ω
2
Z
2
)
−1

Z
󸀠

2
Ω
2
,

(9)
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where 𝑒
1
= (1, 0)

󸀠,

Ω
1
= diag( 1

ℎ
1

𝐾(
𝑍
11

− 𝑧
1

ℎ
1

) , . . . ,
1

ℎ
1

𝐾(
𝑍
𝑛1

− 𝑧
1

ℎ
1

)) ,

Ω
2
= diag( 1

ℎ
2

𝐾(
𝑍
12

− 𝑧
2

ℎ
2

) , . . . ,
1

ℎ
2

𝐾(
𝑍
𝑛2

− 𝑧
2

ℎ
2

)) ,

(10)

for a kernel function 𝐾(⋅) and bandwidths ℎ
1
, ℎ
2
, and

Z
1
= (

1 𝑍
11

− 𝑧
1

...
...

1 𝑍
𝑛1

− 𝑧
1

), Z
2
= (

1 𝑍
12

− 𝑧
2

...
...

1 𝑍
𝑛2

− 𝑧
2

) (11)

are 𝑛 × 2 design matrices. Let 𝑆
1
and 𝑆

2
represent the smo-

other matrices whose rows are the equivalent kernels at the
observations Z

1
and Z

2
, respectively:

𝑆
1
= (

𝑠
󸀠

1,𝑍
11

...
𝑠
󸀠

1,𝑍
𝑛1

), 𝑆
2
= (

𝑠
󸀠

1,𝑍
12

...
𝑠
󸀠

2,𝑍
𝑛2

). (12)

Using the backfitting algorithm, we get the backfitting esti-
mators of 𝐹

1
and 𝐹

2
, say 𝐹

1
and 𝐹

2
, which can be expressed

as

𝐹
1
= {𝐼 − (𝐼 − 𝑆

𝑐

1
𝑆
𝑐

2
)
−1

(𝐼 − 𝑆
𝑐

1
)} (Y − X𝛽) ,

𝐹
2
= {𝐼 − (𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
)} (Y − X𝛽) ,

(13)

where 𝑆
𝑐

𝑖
= (𝐼 − 11󸀠/𝑛)𝑆

𝑖
is the centered smoothing matrix

corresponding to 𝑆
𝑖
, 𝑖 = 1, 2. Substituting (13) into (8), we

have

(𝐼 − 𝑆)Y = (𝐼 − 𝑆)X𝛽 + 𝜀, (14)

where 𝑆 = {𝐼− (𝐼−𝑆
𝑐

1
𝑆
𝑐

2
)
−1
(𝐼−𝑆
𝑐

1
)}+ {𝐼− (𝐼−𝑆

𝑐

2
𝑆
𝑐

1
)
−1
(𝐼−𝑆
𝑐

2
)}.

Since 𝑋
𝑖
cannot be observed, the corrected-profile least-

squares estimator of 𝛽 is defined as

𝛽 = argmin
𝑛

[(Y −W𝛽)
󸀠

(𝐼 − 𝑆)
󸀠

(𝐼 − 𝑆) (Y −W𝛽)

− 𝑛𝛽
󸀠
Σ
𝑢𝑢
𝛽]

= [W̃󸀠W̃ − 𝑛Σ
𝑢𝑢
]
−1

W̃󸀠 (𝐼 − 𝑆)Y,

(15)

where W is defined similar to X and W̃ = (𝐼 − 𝑆)W.
When considering the restrictions 𝐴𝛽 = b, Wei and

Wang [13] defined the corrected Lagrange function as

𝐹 (𝛽, 𝜆) = [(Y −W𝛽)
󸀠

(𝐼 − 𝑆)
󸀠

(𝐼 − 𝑆) (Y −W𝛽) − 𝑛𝛽
󸀠
Σ
𝑢𝑢
𝛽]

+ 2𝜆
󸀠
(𝐴𝛽 − b) ,

(16)

where 𝜆 is a 𝑘 × 1 Lagrange multipliers vector. Differen-
tiating 𝐹(𝛽, 𝜆) with respect to 𝛽 and 𝜆 and setting them to
zero, we obtain

𝜕𝐹 (𝛽, 𝜆)

𝜕𝛽
= −2W̃󸀠 (𝐼 − 𝑆)Y + 2W̃󸀠W̃𝛽 − 2𝑛Σ

𝑢𝑢
𝛽

+ 2𝐴
󸀠
𝜆 = 0,

𝜕𝐹 (𝛽, 𝜆)

𝜕𝜆
= 2 (𝐴𝛽 − b) = 0.

(17)

Solving (17), we have

𝛽
𝑟
= 𝛽 − (W̃󸀠W̃ − 𝑛Σ

𝑢𝑢
)
−1

𝐴
󸀠
[𝐴(W̃󸀠W̃ − 𝑛Σ

𝑢𝑢
)
−1

𝐴
󸀠
]

−1

× (𝐴𝛽 − b) ,

𝜆̂ = [𝐴(W̃󸀠W̃ − 𝑛Σ
𝑢𝑢
)
−1

𝐴
󸀠
]

−1

(𝐴𝛽 − b) ,
(18)

where 𝛽 is given by (15).
According to Wei and Wang [13], 𝛽

𝑟
is called the mod-

ified restricted profile least-squares estimator of 𝛽, but the
asymptotic distribution of 𝛽

𝑟
is vacant. In the following, we

will give the asymptotic distribution of 𝛽
𝑟
. The following

assumptions will be required to derive themain results.These
assumptions are common and can be found in the works of
Liang et al. [11], Wang et al. [10], and Wei and Wang [13].

(A1) The density functions of 𝑍
1
and 𝑍

2
are bounded

away from 0 and have bounded continuous second
partial derivatives.

(A2) Let 𝑋̆
𝑖
= 𝑋
𝑖
− 𝐸(𝑋

𝑖
| 𝑍
𝑖1
) − 𝐸(𝑋

𝑖
| 𝑍
𝑖2
). The matrix

Γ
𝑋|𝑍

=̂𝐸(𝑋̆
1
𝑋̆
󸀠

1
) is positive-definite, 𝐸(𝜀

𝑖
| 𝑋
𝑖
, 𝑍
𝑖1
, 𝑍
𝑖2
)

= 0, and 𝐸(|𝜀
𝑖
|
3
| 𝑋
𝑖
, 𝑍
𝑖1
, 𝑍
𝑖2
) < ∞.

(A3) The bandwidths ℎ
1
and ℎ
2
are of order 𝑛−1/5.

(A4) The function 𝐾(⋅) is a symmetric density function
with compact support and satisfies ∫𝐾(𝑢)𝑑𝑢 = 1,

∫ 𝑢𝐾(𝑢)𝑑𝑢 = 0, ∫ 𝑢
2
𝐾(𝑢)𝑑𝑢 = 1, and ∫ 𝑢

4
𝐾(𝑢)𝑑𝑢 <

∞.

(A5) 𝐸𝑈
𝑖
= 0 and 𝐸(‖𝑈

𝑖
‖
3
) < ∞.

Under these assumptions, we give the following theorem
that states the asymptotic distribution of 𝛽

𝑟
.

Theorem 1. Suppose that conditions (A1)–(A5) hold and 𝜀
𝑖
is

homoscedastic with variance 𝜎
2 and independent of 𝑈

𝑖
. Then

the modified restricted profile least-squares estimator 𝛽
𝑟
is

asymptotically normal. Namely,

√𝑛 (𝛽
𝑟
− 𝛽)

D
󳨀→ 𝑁(0, Σ) , 𝑛 󳨀→ ∞, (19)
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where “ D
󳨀→” denotes the convergence in distribution and

Σ = Γ
−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍
− Γ
−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍
ΞΓ
−1

𝑋|𝑍
− Γ
−1

𝑋|𝑍
ΞΓ
−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍

+ Γ
−1

𝑋|𝑍
ΞΓ
−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍
ΞΓ
−1

𝑋|𝑍
,

Λ = 𝐸(𝜀
1
− 𝑈
󸀠

1
𝛽)
2

Γ
𝑋|𝑍

+ 𝐸{(𝑈
1
𝑈
󸀠

1
− Σ
𝑢𝑢
) 𝛽}
⊗2

+ Σ
𝑢𝑢
𝜎
2
, Ξ = 𝐴

󸀠
(𝐴Γ
−1

𝑋|𝑍
𝐴
󸀠
)
−1

𝐴, 𝑅
⊗2

= 𝑅𝑅
󸀠
.

(20)

Remark 2. From the previous theorem, it is easy to check
that when 𝑋 is observed exactly the asymptotic distribution
ofmodified restricted profile least-squares estimator 𝛽

𝑟
is the

same as the asymptotic distribution obtained byTheorem 3.1
which appeared in the works of Wei and Liu [16].

To apply Theorem 1 to inference, we need to
estimate Γ

𝑋|𝑍
and Λ. Using plug-in method, a consistent

estimator Σ̂ of Σ can be obtained. Wei and Wang [13]
proposed to estimate Γ

𝑋|𝑍
and Λ, respectively, by

Γ̂
𝑋|𝑍

=
1

𝑛

𝑛

∑

𝑖=1

𝑊̃
𝑖
𝑊̃
󸀠

𝑖
− Σ
𝑢𝑢
, (21)

Λ̂ =
1

𝑛

𝑛

∑

𝑖=1

{𝑊̃
𝑖
(𝑌̃
𝑖
− 𝑊̃
󸀠

𝑖
𝛽) + Σ

𝑢𝑢
𝛽}
⊗2

. (22)

The asymptotic distribution of 𝐵𝛽
𝑟
, where 𝐵 is an 𝑠 ×

𝑝 matrix with rank(𝐵) = 𝑠, can be given by the following
result.

Corollary 3. Suppose that conditions (A1)–(A5) hold and 𝜀
𝑖
is

homoscedastic with variance 𝜎
2 and independent of 𝑈

𝑖
. Then

as 𝑛 → ∞, one has

√𝑛 (𝐵𝛽
𝑟
− 𝐵𝛽)

D
󳨀→ 𝑁(0, 𝐵Σ𝐵

󸀠
) . (23)

Using Corollary 3, confidence regions of any linear com-
bination of the parameter components given in advance
can be constructed. In particular, for any 0 < 𝛼 < 1,
let 𝜒2
1−𝛼

(𝑝) denote the (1 − 𝛼)-quantile of 𝜒2(𝑝). Then

{𝐵𝛽 ∈ 𝑅
𝑠
: (𝐵𝛽 − 𝐵𝛽

𝑟
)
󸀠

(
1

𝑛
𝐵Σ̂𝐵
󸀠
)

−1

(𝐵𝛽 − 𝐵𝛽
𝑟
)

≤ 𝜒
2

1−𝛼
(𝑝) }

(24)

constitute a confidence region of 𝐵𝛽 with asymptotic
coverage 1 − 𝛼.

2.2. Modified Profile Lagrange Multiplier Test and Its Asymp-
totic Properties. Using the estimation method described in
Section 2.1, we now consider the following linear hypothesis:

𝐻
0
: 𝐴𝛽 = b, 𝐻

1
: 𝐴𝛽 = b + 𝛿, (25)

where 𝛿 is a 𝑘 × 1 positive constant vector. Wei and Wang
[13] constructed a test statistic based on the difference

between the corrected residual sums of squares under the null
and alternative hypotheses and showed that the asymptotic
null distribution of proposed statistic is a weighted sum of
independent standard 𝜒

2
(1), so adjustment is needed. Notice

that the statistics proposed in Wei and Wu [14] and Zhang
et al. [15] can achieve the standard chi-squared limit, so in
this paper, we use the similar idea to construct the profile
Lagrange multiplier test statistic.

Using the estimator of Lagrangemultiplier defined in (18),
the modified profile Lagrange multiplier test statistic can be
constructed by

𝑇
𝑛
=

1

𝑛
𝜆̂
󸀠
(𝐶
0
𝐿
0
𝐶
󸀠

0
)
−1

𝜆̂, (26)

where 𝐶
0

= (𝐴Γ̂
−1

𝑋|𝑍
𝐴
󸀠
)
−1
, 𝐿
0

= 𝐴Γ̂
−1

𝑋|𝑍
Λ̂Γ̂
−1

𝑋|𝑍
𝐴
󸀠, and Γ̂

𝑋|𝑍

and Λ̂ are estimators of Γ
𝑋|𝑍

and Λ defined by (21) and (22),
respectively.

The following theorem gives the asymptotic distribution
of the modified profile Lagrange multiplier test statistic 𝑇

𝑛
.

Theorem 4. Suppose that conditions (A1)–(A5) hold. Then

(1) under the null hypothesis𝐻
0
of testing problem (25),

𝑇
𝑛

D
󳨀→ 𝜒

2

(𝑘) , 𝑎𝑠 𝑛 󳨀→ ∞, (27)

(2) under the alternative hypothesis 𝐻
1
of testing problem

(25), 𝑇
𝑛
follows the asymptotic noncentral𝜒2(𝑘, 𝜁) dis-

tribution with k degrees of freedom, and the noncentral
parameter is

𝜁 = lim
𝑛󳨀→∞

𝑛(𝐴𝛽 − b)󸀠(𝐶𝐿𝐶󸀠)
−1

(𝐴𝛽 − b) , (28)

where 𝐶 = (𝐴Γ
−1

𝑋|𝑍
𝐴
󸀠
)
−1
, 𝐿 = 𝐴Γ

−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍
𝐴
󸀠.

Remark 5. From the above theorem, we known that our
results are the same to the results of adjusted test statistic
derived by Wei andWang [13], but our proposed test statistic
is more easier to perform, especially for the case when the
covariance matrix Σ

𝑢𝑢
of measurement error is unknown.

From Wei and Wang [13] we know that, when Σ
𝑢𝑢

is
unknown, it is difficult to estimate 𝑅𝑆𝑆(𝐻

0
) and 𝑅𝑆𝑆(𝐻

1
);

thus their proposed test statistic is unapplicable in this case.
So our proposed profile Lagrange multiplier test statistic is
more attractive.

3. Two-Stage Restricted Estimator for
the Nonparametric Component

According to𝛽
𝑟
, the corrected backfitting estimators, say𝐹

1
=

(𝑓
1
(𝑍
11
), . . . , 𝑓

1
(𝑍
𝑛1
))
󸀠 and 𝐹

2
= (𝑓
2
(𝑍
12
), . . . , 𝑓

2
(𝑍
𝑛2
))
󸀠, of

𝐹
1
and 𝐹

2
can be defined by

𝐹
1
= {𝐼 − (𝐼 − 𝑆

𝑐

1
𝑆
𝑐

2
)
−1

(𝐼 − 𝑆
𝑐

1
)} (Y −W𝛽

𝑟
) ,

𝐹
2
= {𝐼 − (𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
)} (Y −W𝛽

𝑟
) .

(29)
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From (29), we know that 𝐹
1
and 𝐹

2
are only the esti-

mators of 𝑓
1
(⋅) and 𝑓

2
(⋅) at the observations (𝑍

11
, . . . , 𝑍

𝑛1
)
󸀠

and (𝑍
12
, . . . , 𝑍

𝑛2
)
󸀠, respectively. We next give the two-stage

restricted estimator of 𝑓
1
(⋅).

Noting the fact that 𝑓
1
(𝑧
1
) = 𝐸[𝑌 − 𝑊

󸀠
𝛽 − 𝑓
2
(𝑍
2
) | 𝑍
1
=

𝑧
1
] and using the local linear expansion, we define a two-stage

restricted estimator of (𝑓
1
(𝑧
1
), 𝑓
󸀠

1
(𝑧
1
))
󸀠 by

(𝑓
𝑅

1
(𝑧
1
) , 𝑓
󸀠𝑅

1
(𝑧
1
))
󸀠

= argmin
𝑎
0
,𝑎
1

𝑛

∑

𝑖=1

[𝑌
𝑖
− 𝑊
󸀠

𝑖
𝛽
𝑟
− 𝑓
2
(𝑍
𝑖2
) − 𝑎
0

−𝑎
1
(𝑍
𝑖1
− 𝑧
1
) ]
2

𝐾
ℎ
(𝑍
𝑖1
− 𝑧
1
) ,

(30)

where 𝐾
ℎ
(𝑥) = (1/ℎ)𝐾(𝑥/ℎ) and ℎ is a bandwidth.Then the

two-stage restricted estimator𝑓𝑅
1
(𝑧
1
) of𝑓
1
(𝑧
1
) can be written

as

𝑓
𝑅

1
(𝑧
1
) = (1, 0) (Z

󸀠

1
ΩZ
1
)
−1

Z
󸀠

1
Ω(𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
)

× (Y −W𝛽
𝑟
) ,

(31)

where Ω = diag((1/ℎ)𝐾((𝑍
11

− 𝑧
1
)/ℎ), . . . , (1/ℎ)𝐾((𝑍

𝑛1
−

𝑧
1
)/ℎ)).
Let 𝑝
1
(𝑧
1
) denote the density function of 𝑍

1
, V
0

=

∫𝐾
2
(𝑢)𝑑𝑢, 𝜇

2
= ∫𝑢

2
𝐾(𝑢)𝑑𝑢. The following theorem gives

the asymptotic normality of the two-stage restricted estima-
tor.

Theorem 6. Suppose that conditions (A1)–(A5) hold and
𝑛ℎ
5

= 𝑂(1). If 𝜎2(𝑧
1
) = 𝐸(𝜀

2
| 𝑍
1

= 𝑧
1
) has continuous

derivative, then as 𝑛 → ∞, one has

√𝑛ℎ(𝑓
𝑅

1
(𝑧
1
) − 𝑓
1
(𝑧
1
) −

ℎ
2

2
𝜇
2
𝑓
󸀠󸀠

1
(𝑧
1
))

D
󳨀→ 𝑁(0, Σ (𝑧

1
)) ,

(32)

where Σ(𝑧
1
) = ((𝜎

2
(𝑧
1
) + 𝛽
󸀠
Σ
𝑢𝑢
𝛽)/𝑝
1
(𝑧
1
))V
0
.

Remark 7. From Theorem 6, we known that the two-stage
restricted estimator 𝑓𝑅

1
(𝑧
1
) is asymptotically normal and has

an oracle property; that is, the estimator performs as if the
other nonparametric component𝑓

2
(𝑧
2
)was known though it

was unknown. Simulation studies further confirm our theory
result. Similarly, the two-stage restricted estimator of 𝑓

2
(𝑧
2
)

and its asymptotic result can be obtained.

4. Simulation

In this section, some simulations are carried out to evaluate
the finite sample performance of the testing procedure and
the proposed two-stage restricted estimator for nonparamet-
ric components.

In our simulation studies, consider the following additive
partially linear EV model:

𝑌
𝑖
= 𝑋
𝑖1
𝛽
1
+ 𝑋
𝑖2
𝛽
2
+ 𝑓
1
(𝑍
𝑖1
) + 𝑓
2
(𝑍
𝑖2
) + 𝜀
𝑖
,

𝑊
𝑖𝑗
= 𝑋
𝑖𝑗
+ 𝑈
𝑖𝑗
, 𝑗 = 1, 2,

(33)

where𝑋
𝑖1
, 𝑋
𝑖2
, 𝑍
𝑖1
, and 𝑍

𝑖2
are mutually independent vari-

ables and 𝛽
1
= 3, 𝛽

2
= 2, 𝑋

𝑖1
∼ 𝑁(0, 1), and 𝑋

𝑖2
∼ 𝑁(2, 1).

𝑓
1
(𝑍
𝑖1
) = 𝑍
𝑖1
exp(−𝑍2

𝑖1
), 𝑓
2
(𝑍
𝑖2
) = 2 sin(𝑍

𝑖2
), and𝑍

𝑖1
, 𝑍
𝑖2
are

generated from a uniform distribution 𝑈[−1, 1]. The model
error 𝜀

𝑖
∼ 𝑁(0, 0.2

2
) and measure error 𝑈

𝑖𝑗
∼ 𝑁(0, 𝜎

2

𝑢
). The

kernel function is taken as the Epanechnikov kernel 𝐾(𝑡) =

(3/4)(1 − 𝑡
2
)𝐼
(|𝑡|≤1)

.
We first study the performance of the proposed testing

procedure. Consider that the null hypothesis is 𝐻
0
: 𝐴𝛽 = 5

with 𝐴 = (1, 1) and the corresponding alternative hypothesis
is 𝐻
1

: 𝐴𝛽 = 5 + 𝛿 with 𝛿 being a series of positive
constants. For 𝛿 = 0, the alternative hypothesis becomes the
null hypothesis. We take the bandwidths ℎ

1
= ℎ
2
= 0.8 ⋅ 𝑛

−1/5,
the sample sizes 𝑛 = 200, 300, and 𝜎

2

𝑢
= 0.25, 04. To illustrate

the effectiveness of the proposed test statistics, the estimated
power function curves with the significance level 𝛼 = 0.05 are
plotted for 𝜎2

𝑢
= 0.4 and 𝜎

2

𝑢
= 0.25. For each case, we repeat

1000 times. The results are given in Figure 1.
From Figure 1, we can see the following results.

(1) Our proposed test statistic is sensitive to the cor-
responding alternative hypothesis. This can be seen
from the fact that if we increase the constant 𝛿 a little,
the estimated power function increases rapidly.

(2) The measurement errors affect the power function.
For the same sample sizes, increasing the variance of
the measurement error results in the decrease of the
estimated power function. For the samemeasurement
error, when the observation sample sizes increase,
the estimated power function also increases. So our
proposed procedure is feasible and easy to perform.

Second, we give the finite sample performance of the two-
stage restricted estimator for nonparametric components
with the restricted condition that 𝐴𝛽 = 5. For saving space,
only the simulation results for estimators of 𝑓

1
are presented.

We compare two estimators: one is the proposed two-stage
restricted estimator for nonparametric component by (30)
and the other is the benchmark estimator, which has the same
form as the two-stage restricted estimator except that when
we estimate 𝑓

1
we assume that 𝑓

2
is known. We use ℎ

1
=

ℎ
2
= 𝑛
−1/5 to estimate𝛽

𝑟
and the optimal bandwidth ℎ chosen

by the leave-one-out cross-validation method to estimate the
nonparametric component𝑓

1
.Theperformance of estimators

is evaluated by the root averaged squared errors (RASEs):

RASE (𝑓
1
) = √𝑛−1

𝑛

∑

𝑖=1

[𝑓
1
(𝑍
𝑖1
) − 𝑓
1
(𝑍
𝑖1
)]
2

. (34)

We take 𝑛 = 200, 300, 500 and 𝜎
2

𝑢
= 0.25, 0.4, 0.6, respectively.

For a given sample size, the sample means (SMs) and
standard deviations (STDs) of RASEs are calculated. In each
simulation, the repeated number is 1000. The simulation
results are listed in Table 1.

From Table 1, it can be seen that, with the increase
of the sample size 𝑛, the finite sample performance of the
two estimators improves and the performance of the two-
stage restricted estimator is close to that of the benchmark
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Figure 1:The plot of the estimated power function for sample sizes 𝑛 = 200 and 𝑛 = 300, where the solid line denotes 𝑛 = 300 and the dotted
line denotes 𝑛 = 200. (a) shows the estimated power function curves with 𝜎

2

𝑢
= 0.4. (b) shows the estimated power function curves with

𝜎
2

𝑢
= 0.25.

Table 1: The finite sample performance of the estimators for 𝑓
1

under different sample sizes 𝑛 and Σ
𝑢𝑢
.

Σ
𝑢𝑢

𝑛 = 200 𝑛 = 300 𝑛 = 500

Σ
𝑢𝑢

= 0.25𝐼
2

Two-stage
SM 0.2249 0.1887 0.1530
STD 0.1152 0.0915 0.0552

Benchmark
SM 0.2239 0.1762 0.1494
STD 0.0958 0.0764 0.0533

Σ
𝑢𝑢

= 0.4𝐼
2

Two-stage
SM 0.2787 0.2298 0.1923
STD 0.1245 0.1077 0.0930

Benchmark
SM 0.2784 0.2284 0.1905
STD 0.1235 0.1043 0.0916

Σ
𝑢𝑢

= 0.6𝐼
2

Two-stage
SM 0.3253 0.2609 0.2162
STD 0.1728 0.1375 0.1038

Benchmark
SM 0.3200 0.2602 0.2153
STD 0.1707 0.1344 0.1008

estimator. So the proposed two-stage restricted estimator of
the nonparametric component has an oracle property.

5. Proofs

Firstly, some lemmas will be given.

Lemma 8. Let (𝑋
1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) be i.i.d random vectors,

where 𝑌
𝑖
is scalar random variable. Further assume that

𝐸|𝑌|
𝑠

< ∞ and sup
𝑥
∫ |𝑦|
𝑠
𝑝(𝑥, 𝑦)𝑑𝑦 < ∞, where 𝑝(𝑥, 𝑦)

denotes the joint density of (𝑋, 𝑌). Let 𝐾(⋅) be a bounded
positive function with a bounded support, satisfying a Lipschitz
condition. Given that 𝑛2𝛿−1ℎ → ∞ for some 𝛿 < 1 − 𝑠

−1, then

sup
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛

𝑛

∑

𝑖=1

{𝐾
ℎ
(𝑋
𝑖
− 𝑥)𝑌

𝑖
− 𝐸 [𝐾

ℎ
(𝑋
𝑖
− 𝑥)𝑌

𝑖
]}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂
𝑝
(
log (1/ℎ)

𝑛ℎ
)

1/2

.

(35)

This is Lemma 7.1 of Fan and Huang [17].

Lemma 9. Suppose that assumptions (A1)–(A5) hold. Then
the following asymptotic approximations hold uniformly over
all the elements of the matrices:

𝑆
𝑐

𝑑
= 𝑆
𝑑
−
11󸀠

𝑛
+ 𝑜
𝑝
(
11󸀠

𝑛
) ,

(𝐼 − 𝑆
𝑐

1
𝑆
𝑐

2
)
−1

= 𝐼 + 𝑜
𝑝
(
1

𝑛
) ,

(36)

where 𝑑 = 1, 2. Similarly, the second formula is true for (𝐼 −

𝑆
𝑐

2
𝑆
𝑐

1
)
−1.

This lemma is Lemma 3.1 and Lemma 3.2 of Opsomer and
Ruppert [1].
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Lemma 10. Suppose that assumptions (A1)–(A5) hold. Then
as 𝑛 → ∞, it holds that

1

𝑛
W󸀠(𝐼 − 𝑆)

󸀠

(𝐼 − 𝑆)W − Σ
𝑢𝑢

=
1

𝑛
W̃󸀠W̃ − Σ

𝑢𝑢

𝑃

󳨀→ Γ
𝑋|𝑍

,

(37)

where W̃ = (𝐼 − 𝑆)W.

The proof of this lemma can be found in the works of
Wang et al. [10].

Lemma 11. Suppose that assumptions (A1)–(A5) hold. Then
the corrected-profile least-squares estimator 𝛽 of 𝛽 is asymp-
totically normal. Namely,

√𝑛 (𝛽 − 𝛽)
D
󳨀→ 𝑁(0, Γ

−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍
) , 𝑛 󳨀→ ∞. (38)

This lemma is just Theorem 1 of Liang et al. [11] and is
same as Theorem 3.2 of Wang et al. [10].

Proof of Theorem 1. Let

𝐽
𝑛
= 𝐼 − (W̃󸀠W̃ − 𝑛Σ

𝑢𝑢
)
−1

𝐴
󸀠
[𝐴(W̃󸀠W̃ − 𝑛Σ

𝑢𝑢
)
−1

𝐴
󸀠
]

−1

𝐴

= 𝐼 − (
1

𝑛
W̃󸀠W̃ − Σ

𝑢𝑢
)

−1

𝐴
󸀠
[𝐴(

1

𝑛
W̃󸀠W̃ − Σ

𝑢𝑢
)

−1

𝐴
󸀠
]

−1

𝐴.

(39)

By Lemma 10, we can obtain

𝐽
𝑛

𝑃

󳨀→ 𝐽 = 𝐼 − Γ
−1

𝑋|𝑍
𝐴
󸀠
(𝐴Γ
−1

𝑋|𝑍
𝐴
󸀠
)
−1

𝐴. (40)

By the first equation of (18), we have

𝛽
𝑟
− 𝛽 = {𝐼 − (W̃󸀠W̃ − 𝑛Σ

𝑢𝑢
)
−1

𝐴
󸀠

× [𝐴(W̃󸀠W̃ − 𝑛Σ
𝑢𝑢
)
−1

𝐴
󸀠
]

−1

𝐴}

× (𝛽 − 𝛽) = 𝐽 (𝛽 − 𝛽) + (𝐽
𝑛
− 𝐽) (𝛽 − 𝛽) .

(41)

Using the results that 𝐽
𝑛
−𝐽 = 𝑜

𝑃
(1) and𝛽−𝛽 = 𝑂

𝑃
(𝑛
−1/2

),
we get

(𝐽
𝑛
− 𝐽) (𝛽 − 𝛽) = 𝑜

𝑃
(𝑛
−1/2

) . (42)

By the Slutsky theorem and Lemma 11, we can derive the
result after some calculations.

Proof of Theorem 4. (1) Using Lemma 10, we know that

𝐶
0
= (𝐴(

1

𝑛
W̃󸀠W̃ − Σ

𝑢𝑢
)

−1

𝐴
󸀠
)

−1

𝑃

󳨀→ (𝐴Γ
−1

𝑋|𝑍
𝐴
󸀠
)
−1

= 𝐶.

(43)

Similarly, we can prove that

𝐿
0
= 𝐴Γ̂
−1

𝑋|𝑍
Λ̂Γ̂
−1

𝑋|𝑍
𝐴
󸀠 𝑃

󳨀→ 𝐴Γ
−1

𝑋|𝑍
ΛΓ
−1

𝑋|𝑍
𝐴
󸀠
= 𝐿. (44)

Under the null hypothesis of testing problem (25) and by
applying Lemma 11, we can prove that

√𝑛 (𝐴𝛽 − b) D
󳨀→ 𝑁(0, 𝐿) . (45)

By the second equation of (18), we get

1

√𝑛
𝜆̂ = [𝐴(

1

𝑛
W̃󸀠W̃ − Σ

𝑢𝑢
)

−1

𝐴
󸀠
]

−1

√𝑛 (𝐴𝛽 − b) . (46)

Using (43), (31), and the Slutsky theorem, we derive that

1

√𝑛
𝜆̂

D
󳨀→ 𝑁(0, 𝐶𝐿𝐶

󸀠
) . (47)

By (43)–(45), it is easy to derive that, under the null
hypothesis of testing problem (25),

𝑇
𝑛
=

1

𝑛
𝜆̂
󸀠
(𝐶
0
𝐿
0
𝐶
󸀠

0
)
−1

𝜆̂
D
󳨀→ 𝜒

2

(𝑘) . (48)

(2) Under the alternative hypothesis and again by apply-
ing Lemma 11, we have

√𝑛 (𝐴𝛽 − b) = √𝑛𝐴 (𝛽 − 𝛽)

+ √𝑛 (𝐴𝛽 − b) D
󳨀→ 𝑁(√𝑛 (𝐴𝛽 − b) , 𝐿) .

(49)

Using the similar argument as in (47), we can prove that

1

√𝑛
𝜆̂ = [𝐴(

1

𝑛
W̃󸀠W̃ − Σ

𝑢𝑢
)

−1

𝐴
󸀠
]

−1

√𝑛 (𝐴𝛽 − b) D
󳨀→

𝑁(√𝑛 (𝐴𝛽 − b) , 𝐶𝐿𝐶󸀠) .

(50)

Then under the alternative hypothesis, we have

𝑇
𝑛
=

1

𝑛
𝜆̂
󸀠
(𝐶
0
𝐿
0
𝐶
󸀠

0
)
−1

𝜆̂
D
󳨀→ 𝜒

2

(𝑘, 𝜁) , (51)

where 𝜒
2
(𝑘, 𝜁) denotes the asymptotic noncentral chi-squa-

red distributionwith 𝑘 degrees of freedomand the noncentral
parameter is

𝜁 = lim
𝑛→∞

𝑛(𝐴𝛽 − b)󸀠(𝐶𝐿𝐶󸀠)
−1

(𝐴𝛽 − b) . (52)

Proof of Theorem 6. Using (31), by some simple calculations,
we get

𝑓
𝑅

1
(𝑧
1
) = (1, 0) (Z

󸀠

1
ΩZ
1
)
−1

Z
󸀠

1
Ω(𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

× (𝐼 − 𝑆
𝑐

2
) (Y −W𝛽

𝑟
)

= (1, 0) (Z
󸀠

1
ΩZ
1
)
−1

Z
󸀠

1
Ω(𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
)

× [(𝐹
1
+ 𝐹
2
) + (𝜀 − U𝛽) +W (𝛽 − 𝛽

𝑟
)]

= 𝑇
1
+ 𝑇
2
+ 𝑇
3
,

(53)
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where

𝑇
1
= (1, 0) (Z

󸀠

1
ΩZ
1
)
−1

Z
󸀠

1
Ω(𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

× (𝐼 − 𝑆
𝑐

2
) (𝐹
1
+ 𝐹
2
) ,

𝑇
2
= (1, 0) (Z

󸀠

1
ΩZ
1
)
−1

Z
󸀠

1
Ω(𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

× (𝐼 − 𝑆
𝑐

2
) (𝜀 − U𝛽) ,

𝑇
3
= (1, 0) (Z

󸀠

1
ΩZ
1
)
−1

Z
󸀠

1
Ω(𝐼 − 𝑆

𝑐

2
𝑆
𝑐

1
)
−1

× (𝐼 − 𝑆
𝑐

2
)W (𝛽 − 𝛽

𝑟
) .

(54)

Referring to the proof of Theorem 4.1 in Opsomer and
Ruppert [1] and using Lemma 9, we obtain that

(𝐼 − 𝑆
𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
) (𝐹
1
+ 𝐹
2
) = 𝐹
1
+ 𝑂
𝑝
(ℎ
2

1
+ ℎ
2

2
) ,

(𝐼 − 𝑆
𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
) (𝜀 − U𝛽) = (𝜀 − U𝛽) (𝐼 + 𝑜

𝑝
(1)) ,

(𝐼 − 𝑆
𝑐

2
𝑆
𝑐

1
)
−1

(𝐼 − 𝑆
𝑐

2
)W = (X + U − 𝐸 (X | 𝑍

2
)) (𝐼 + 𝑜

𝑝
(1)) .

(55)

For 𝑍
𝑖1
in a small neighborhood of 𝑧

1
and |𝑍

𝑖1
− 𝑧
1
| < ℎ, for

each 𝑓
1
(𝑍
𝑖1
), we use the following Taylor expansion:

𝑓
1
(𝑍
𝑖1
) = 𝑓
1
(𝑧
1
) + 𝑓
󸀠

1
(𝑧
1
) (𝑍
𝑖1
− 𝑧
1
) +

𝑓
󸀠󸀠

1
(𝑧
1
)

2
(𝑍
𝑖1
− 𝑧
1
)
2

+ 𝑜 (ℎ
2
) .

(56)

Then we derive that

𝐹
1
= (

𝑓
1
(𝑍
11
)

𝑓
1
(𝑍
21
)

...
𝑓
1
(𝑍
𝑛1
)

) = Z
1
(

𝑓
1
(𝑧
1
)

𝑓
󸀠

1
(𝑧
1
)

)

+ (

𝑓
󸀠󸀠

1
(𝑧
1
)

2
(𝑍
11

− 𝑧
1
)
2

+ 𝑜 (ℎ
2
)

...
𝑓
󸀠󸀠

1
(𝑧
1
)

2
(𝑍
𝑛1

− 𝑧
1
)
2

+ 𝑜 (ℎ
2
)

).

(57)

By Lemma 8 and the usual nonparametric regression results,
we can easily get

𝑇
1
= 𝑓
1
(𝑧
1
) +

𝑓
󸀠󸀠

1
(𝑧
1
)

2
𝜇
2
ℎ
2
+ 𝑜
𝑝
(ℎ
2
) . (58)

Using the result that

(Z
󸀠

1
ΩZ
1
)
−1

=
1

𝑛𝑝
1
(𝑧
1
)
𝐻
−1
(
1 0

0 𝜇
2

)

−1

𝐻
−1

(𝐼 + 𝑜
𝑝
(1))

(59)

with 𝐻 = diag(1, ℎ), after some simple calculations, we can
get

√𝑛ℎ𝑇
2
=

1

𝑛𝑝
1
(𝑧
1
)

√𝑛ℎ

𝑛

∑

𝑖=1

𝐾
ℎ
(𝑍
𝑖1
− 𝑧
1
) (𝜀
𝑖
− 𝑈
󸀠

𝑖
𝛽) + 𝑜

𝑝
(1) .

(60)

Note that√𝑛ℎ (1/𝑛)∑
𝑛

𝑖=1
𝐾
ℎ
(𝑍
𝑖1
− 𝑧
1
)(𝜀
𝑖
−𝑈
󸀠

𝑖
𝛽) is asymptot-

ically normal with mean 0 and variance

V
0
𝑝
1
(𝑧
1
) 𝐸 [(𝜀

1
− 𝑈
󸀠

1
𝛽)
2

| 𝑍
1
= 𝑧
1
]

= V
0
𝑝
1
(𝑧
1
) (𝜎
2
(𝑧
1
) + 𝛽
󸀠
Σ
𝑢𝑢
𝛽) .

(61)

By the Slutsky theorem, we can derive that

√𝑛ℎ𝑇
2

D
󳨀→ 𝑁(0,

𝜎
2
(𝑧
1
) + 𝛽
󸀠
Σ
𝑢𝑢
𝛽

𝑝
1
(𝑧
1
)

V
0
) . (62)

Using similar calculation to that of 𝑇
2
and the result

derived from Theorem 1 that 𝛽 − 𝛽
𝑟

= 𝑂
𝑝
(𝑛
−1/2

), then we
have

√𝑛ℎ𝑇
3
= √𝑛ℎ(𝑝

1
(𝑧
1
))
−1 1

𝑛

𝑛

∑

𝑖=1

𝐾
ℎ
(𝑍
𝑖1
− 𝑧
1
)

× (𝑋
𝑖
− 𝐸 (𝑋

𝑖
| 𝑍
2
)) 𝑂
𝑝
(𝑛
−1/2

)

+ 𝑜
𝑝
(1) = 𝑜

𝑝
(1) .

(63)

By using the Slutsky theorem again, we derive the desired
result.
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