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A twisted sum in the category of topological Abelian groups is a short exact sequence 0 → 𝑌 → 𝑋 → 𝑍 → 0where all maps are
assumed to be continuous and open onto their images. The twisted sum splits if it is equivalent to 0 → 𝑌 → 𝑌 × 𝑍 → 𝑍 → 0.
We study the class 𝑆TG(T) of topological groups G for which every twisted sum 0 → T → 𝑋 → 𝐺 → 0 splits. We prove
that this class contains Hausdorff locally precompact groups, sequential direct limits of locally compact groups, and topological
groups with L

∞
topologies. We also prove that it is closed by taking open and dense subgroups, quotients by dually embedded

subgroups, and coproducts. As means to find further subclasses of 𝑆TG(T), we use the connection between extensions of the form
0 → T → 𝑋 → 𝐺 → 0 and quasi-characters onG, as well as three-space problems for topological groups.The subject is inspired
on some concepts known in the framework of topological vector spaces such as the notion ofK-space, which were interpreted for
topological groups by Cabello.

1. Introduction and Preliminaries

In the theory of topological vector spaces (topological
groups) a property 𝑃 is said to be a 3-space property if
whenever a closed subspace (subgroup) 𝑌 of a space (group)
𝑋 and the corresponding quotient 𝑋/𝑌 both have property
𝑃,𝑋 also has property 𝑃.

A short exact sequence of topological vector spaces
(topological groups) 0 → 𝑌

𝚤

→ 𝑋
𝜋

→ 𝑍 → 0 will be
called a twisted sum, and the space (group) 𝑋 will be called
an extension of 𝑍 by 𝑌 when both 𝚤 and 𝜋 are continuous
and open onto their images. Using this language, 3-space
properties can be described as those which are preserved by
forming extensions.

An example of a 3-space property in the category of
Banach spaces is reflexivity. However, the point-separating
property (i.e., having a dual space which separates points) is
not a 3-space property. (Consider the space 𝑙

𝑝
for 0 < 𝑝 < 1,

and a weakly closed subspace 𝑀 of 𝑙
𝑝
without the Hahn-

Banach extension property. If we take as𝑁 the kernel of some
continuous linear functional on 𝑀 which does not extend
to 𝑙
𝑝
, then 𝑋 = 𝑙

𝑝
/𝑁 does not have the point-separating

property but both 𝐿 := 𝑀/𝑁 and𝑋/𝐿 have this property (see
[1])).

In the category of topological Abelian groups, local com-
pactness, precompactness, metrizability, and completeness
are 3-space properties. However, 𝜎-compactness, sequential
completeness, realcompactness, and a number of other prop-
erties are not (see [2] for more examples).

The twisted sum 0 → 𝑌
𝚤

→ 𝑋
𝜋

→ 𝑍 → 0 splits if there
exists a continuous linear map (continuous homomorphism)
𝑇 : 𝑋 → 𝑌 × 𝑍making the following diagram commutative
(𝚤
𝑌
is the canonical inclusion of 𝑌 into the product, and 𝜋

𝑍
is

the canonical projection onto 𝑍):

0 0

X

Y ZT

𝜋
𝚤

𝑌 × 𝑍

𝜋Z
𝚤Y

(1)

It is known that if such a 𝑇 exists, it must actually be a
topological isomorphism.
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If the twisted sum 0 → 𝑌
𝚤

→ 𝑋
𝜋

→ 𝑍 → 0 splits
and both 𝑌 and 𝑍 have a productive property 𝑃, then 𝑋 has
property 𝑃, too.

Kalton et al. provided in [1] the first formal and extensive
study of splitting twisted sums in the framework of 𝐹-spaces
(completemetric linear spaces).They devote Chapter 5 of this
monograph to the following problem: is local convexity a 3-
space property?

On the path to answering (in the negative) this question,
the authors mention a useful result by Dierolf (1973) which
asserts that there exists a non-locally-convex extension of
the 𝐹-space 𝑍 by the 𝐹-space 𝑌 if and only if there exists
a non-locally-convex extension of 𝑍 by R. The analogue
of this result for topological groups, which involves the
notion of local quasi-convexity, was obtained by Castillo in
[3].

At this point the following definition, originally intro-
duced in [4], comes across as natural: a 𝐹-space 𝑋 is said
to be a K-space if, whenever 𝑌 is an 𝐹-space and 𝐿 is a
subspace of 𝑌 with dimension one such that 𝑌/𝐿 ≅ 𝑋, the
corresponding twisted sum splits. The negative answer to the
3-space problem for local convexity is obtained in [1] as a
corollary of the fact that ℓ

1
is not aK-space.

The notion of K-space is relevant on its own, regardless
of 3-space properties. Many classical spaces such as 𝐿

𝑝
(0 <

𝑝 < ∞), 𝑙
𝑝
(𝑝 ̸= 1), or 𝑐

0
areK-spaces.

In this paper we will study the natural counterpart of the
notion ofK-space for topological groups and its connections
with 3-space problems, following the work started by Cabello
in [5–7].

For simplicity, and because our methods are applicable
for the most part only to Abelian groups, we use additive
notation, and denote by 0 the neutral element. We denote by
N the set of all positive natural numbers, by Z the integers,
by R the reals, by C the set of complex numbers, and by T

the unit circle of C, with the topology induced by C. In T we
will use multiplicative notation and we will denote by 𝑝 the
canonical projection from R to T given by 𝑝(𝑡) = exp(2𝜋𝑖𝑡).
We will useN

0
(𝐺) to denote the system of neighborhoods of

0 in a topological Abelian group 𝐺.
Recall that a topological Abelian group 𝐺 is precompact

if for every neighborhood of zero𝑉 there exists a finite subset
𝐹 of 𝐺 such that 𝐺 = 𝐹 + 𝑉. Precompact groups are the
subgroups of compact groups. In the same way a group 𝐺 is
locally precompact if and only if it is a subgroup of a locally
compact group.

The dual group 𝐺
∧ of a given topological Abelian group𝐺

is formed from the continuous group homomorphisms from
𝐺 into T , usually called characters. The polar set of a subset
𝐴 of G is defined by 𝐴

0

:= {𝜒 ∈ 𝐺
∧

: 𝜒(𝐴) ⊆ T
+
}, where

T
+
:= 𝑝([−1/4, 1/4]) = {𝑧 ∈ T : Re(𝑧) ≥ 0}. A subset 𝐴 of a

topological group𝐺 is called quasi-convex if for every 𝑥 ∈ 𝐺\

𝐴 there is a 𝜒 ∈ 𝐴
0 such that 𝜒(𝑥) ∉ T

+
. A topological group

is called locally quasi-convex if it has a neighborhood basis of
0 consisting of quasi-convex sets. It is well known (see [8])
that a topological vector space is locally convex if and only
if it is a locally quasi-convex topological group in its additive
structure.

If𝐺∧ separates the points of𝐺we say that𝐺 is maximally
almost periodic (MAP). Every locally quasi–convex group is a
MAP group.

The analogous notion to theHBEP (Hahn-Banach Exten-
sion Property) for topological groups is the following. A
subgroup 𝐻 ≤ 𝑋 is dually embedded in 𝑋 if each character
of𝐻 can be extended to a character of𝑋.

When endowed with the compact-open topology 𝜏co,
𝐺
∧ becomes a Hausdorff topological group. A basis of

neighborhoods of the neutral element for the compact open
topology 𝜏co is given by the sets 𝐾0 = {𝜒 ∈ 𝐺

∧

: 𝜒(𝐾) ⊆ T
+
},

where𝐾 is a compact subset of 𝐺.

Remark 1. Observe that a necessary condition for the splitting
of the twisted sum of topological Abelian groups 0 → 𝐻

𝚤

→

𝑋
𝜋

→ 𝐺 → 0 is that 𝑖(𝐻) be a dually embedded subgroup of
𝑋.

The following known characterization is essential when
dealing with twisted sums in different categories (see [3,
Lemma 3.1] for a proof).

Theorem 2. Let 0 → 𝐻
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 be a twisted sum of
topological Abelian groups. The following are equivalent:

(1) 0 → 𝐻
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 𝑠𝑝𝑙𝑖𝑡𝑠;
(2) there exists a continuous homomorphism 𝑆 : 𝐺 → 𝑋

with 𝜋 ∘ 𝑆 = id
𝐺
, i.e., a right inverse for 𝜋;

(3) there exists a continuous homomorphism 𝑃 : 𝑋 → 𝐻

with 𝑃 ∘ 𝚤 = id
𝐻
, i.e., a left inverse for 𝚤.

We will use the notions of pull-back and push-out in the
category of topological Abelian groups, followingCastillo [3].
Given topological Abelian groups𝐴,𝐵, and𝐶 and continuous
homomorphisms 𝑢 : 𝐴 → 𝐵 and V : 𝐴 → 𝐶,
the push-out of 𝑢 and V is a topological group PO and
two continuous homomorphisms 𝑟 and 𝑠 making the square
diagram commutative

A B

C
r

s

𝜙

u

v

𝑟

s



PO

PO

(2)

and such that for every topological Abelian group PO and
continuous homomorphisms 𝑟 : 𝐶 → PO and 𝑠



: 𝐵 →

PO with 𝑠


∘ 𝑢 = 𝑟


∘ V, there is a unique continuous
homomorphism 𝜙 from PO to PO making the two triangles
commutative. The topological group PO exits and is unique
up to topological isomorphism.

Given any twisted sum 0 → 𝐻
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 of
topological Abelian groups, any topological Abelian group𝑌,
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and any continuous homomorphism 𝑡 : 𝐻 → 𝑌, if PO is the
push-out of 𝚤 and 𝑡, there is a commutative diagram

H

Y

X

G

G

pr

𝜋0

0

0

0

t s

𝚤

PO

(3)

where both squares are commutative and the bottom
sequence is a twisted sum [3].

An analogous result for the dual construction (the pull-
back) can be obtained (see [3]).

Lemma 3. Let 𝐾 be a compact subgroup of a topological
Abelian group 𝑋. 𝑋∧ separates points of 𝐾 if and only if 𝐾 is
dually embedded in𝑋.

Proof. Suppose that 𝑋∧ separates points of 𝐾. It is known
that for any locally compact Abelian group 𝐺, a subgroup
𝐿 ≤ 𝐺

∧ is dense in 𝐺
∧ if and only if it separates points of

𝐺 (see [9, Proposition 31]). The subgroup 𝐿 of 𝐾∧ formed
by all restrictions of characters of 𝑋 separates points of 𝐾 by
hypothesis. Hence 𝐿 is dense in 𝐾

∧ and, as 𝐾∧ is discrete, 𝐿
coincides with𝐾

∧.
Suppose that𝐾 is dually embedded in𝑋. As𝐾 is compact,

it is a MAP group. Fix a nonzero 𝑥 ∈ 𝐾. There exists 𝜒 ∈ 𝐾
∧

such that 𝜒(𝑥) ̸= 1. Since 𝐾 is dually embedded in 𝑋, there
exists an extension 𝜒 ∈ 𝐺

∧ of 𝜒 with 𝜒(𝑥) = 𝜒(𝑥) ̸= 1.

Corollary 4 ([10, Proposition 1.4]). Let 𝐾 be a compact
subgroup of a topological Abelian group 𝑋. If 𝑋 is maximally
almost periodic, then 𝐾 is dually embedded in𝑋.

2. The Class 𝑆
TG
(T)

Next we consider the particular case in which the compact
subgroup𝐾 is T . (The proofs of Theorems 5 and 7 below can
be extracted from that of [3, Theorem 4.1], but we prefer the
present formulation.)

Theorem 5. Let 0 → T
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 be a twisted sum of
topological Abelian groups. The following are equivalent:

(1) the twisted sum 0 → T
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 splits;
(2) 𝑋∧ separates points of 𝚤(T);
(3) 𝚤(T) is dually embedded in𝑋.

Proof. 2 ⇔ 3 is a corollary of Lemma 3.
3 ⇒ 1: suppose that 𝚤(T) is dually embedded in𝑋. Hence

there exists a continuous character𝜒 : 𝑋 → T which extends
the isomorphism 𝜑 : 𝚤(T) → T defined by 𝜑(𝚤(𝑡)) = 𝑡. Since
𝜒 ∘ 𝚤 = idT , the assertion follows fromTheorem 2.

1 ⇒ 2: fix 𝑥 ∈ 𝚤(T), 𝑥 = 𝚤(𝑧) with 𝑧 ̸= 1. By Theorem 2,
there exists a continuous homomorphism 𝑃 : 𝑋 → T with
𝑃 ∘ 𝚤 = idT ; hence 𝑃(𝚤(𝑧)) = idT (𝑧) = 𝑧 ̸= 1.

Now we will complete the previous Theorem under the
assumption that 𝐺 is locally quasi-convex. We will use the

following result due to Castillo, concerning the 3-space
problem in locally quasi-convex groups.

Lemma 6 ([3, Theorem 2.1]). Let𝐻 be a locally quasi-convex
subgroup of a topological Abelian group 𝑋 such that 𝑋/𝐻 is
locally quasi-convex.Then𝑋 is locally quasi-convex if and only
if𝐻 is dually embedded in𝑋.

Theorem 7. Let 0 → T
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 be a twisted sum
of topological Abelian groups. Suppose that 𝐺 is locally quasi-
convex.Then conditions (1), (2), (3) ofTheorem 5 are equivalent
to

(4) 𝑋 is locally quasi-convex.

Proof. 1 ⇒ 4: if the twisted sum splits,𝑋 is topologically iso-
morphic to the product of two locally quasi-convex groups;
hence it is locally quasi-convex.

4 ⇒ 3: given a twisted sum 0 → T
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 with
𝑋 and𝐺 locally quasi-convex, since𝐺 ≅ 𝑋/𝚤(T), by Lemma 6,
we deduce that 𝚤(T) is dually embedded in𝑋.

Following the notation used by Domański [11] in the
framework of topological vector spaces, we introduce the
class 𝑆 TG (T) which is the analogue of that of K-spaces for
topological Abelian groups.

Definition 8. We say that a topological Abelian group 𝐺 is in
the class 𝑆 TG (T) if every twisted sum of topological Abelian
groups 0 → T → 𝑋 → 𝐺 → 0 splits.

Theorem 9. Let 𝐺 be a topological vector space such that 𝐺 ∈

𝑆 TG (T) as a topological group. Then 𝐺 is aK-space.

Proof. Suppose that 𝐺 ∈ 𝑆 TG (T). Fix a twisted sum of
topological vector spaces 0 → R

𝚤

→ 𝑋
𝜋

→ 𝐺 → 0. Recall
that we denote by 𝑝 : R → T the canonical projection, given
by 𝑝(𝑟) = exp(2𝜋𝑖𝑟). If we consider the push-out PO of 𝑝 and
𝚤, we obtain a commutative diagram

X

PO G

G

p

r

𝜋0

0

0

0

s

𝜑

R

T

𝚤

(4)

where the bottom sequence is a twisted sum. Since 𝐺 ∈

𝑆 TG (T), this sequence splits. Hence there exists a left inverse
𝜑 for 𝑟.Then 𝜑∘𝑠∘𝚤 = 𝑝. Since𝑋 is a topological vector space,
𝜑∘𝑠 is of the form𝑥 → exp(2𝜋𝑖𝑓(𝑥)) for some continuous lin-
ear functional 𝑓 ∈ 𝑋

∗. This clearly implies 𝑓∘ 𝚤 = idR; that is,
𝑓 is a left inverse for 𝚤; hence the top sequence splits, too.

Theorem 10 ([4, 12, 13]). There is a short exact sequence of
topological vector spaces and continuous, relatively open linear
maps 0 → R

𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 which does not split. In other
words, ℓ

1
is not aK-space.

UsingTheorem 9 we deduce the following.
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Corollary 11. ℓ
1
∉ 𝑆 TG (T).

Remark 12. The above corollary gives an example of a quo-
tient𝑋/T which is locally quasi-convex as a topological group
but such that 𝑋 does not even separate points of T : a strong
failure of the 3-space property for local quasi-convexity and
for the property of being a MAP group.

From Theorem 5 it follows that a topological Abelian
group 𝐺 is in 𝑆 TG (T) iff for every twisted sum of topological
Abelian groups of the form 0 → T

𝚤

→ 𝑋
𝜋

→ 𝐺 → 0, the
subgroup 𝚤(T) is dually embedded in𝑋. Note that in any such
twisted sum, for an arbitrary 𝐴 ≤ 𝐺 the subgroup 𝜋

−1

(𝐴)

contains 𝚤(T). This yields the following criterion;

Proposition 13. Let𝐺 be a topological Abelian group. Suppose
that there exists a subgroup 𝐴 ≤ 𝐺 which is in 𝑆TG(T)
and satisfies the following property. For every twisted sum of
topological Abelian groups of the form 0 → T

𝚤

→ 𝑋
𝜋

→

𝐺 → 0, the subgroup 𝜋
−1

(𝐴) is dually embedded in 𝑋. Then
𝐺 ∈ 𝑆TG(T).

Corollary 14. Let 𝐺 be a topological Abelian group. Suppose
that there exists an open subgroup 𝐴 ≤ 𝐺 such that 𝐴 ∈

𝑆TG(T). Then 𝐺 ∈ 𝑆TG(T).

Proof. If 𝐴 is an open subgroup of 𝐺, with the notation of
Proposition 13, 𝜋−1(𝐴) is an open subgroup of 𝑋 and hence
dually embedded.

Corollary 15. Let 𝐺 be a topological Abelian group. Suppose
that there exists a dense subgroup𝐴 ≤ 𝐺 such that𝐴 ∈ 𝑆TG(T).
Then 𝐺 ∈ 𝑆TG(T).

Proof. If 𝐴 is a dense subgroup of 𝐺, with the notation of
Proposition 13, 𝜋−1(𝐴) is a dense subgroup of 𝑋 because 𝜋
is continuous and onto. In particular it is dually embedded in
𝑋.

We next see that the converse of Corollary 15 is true in
the case of 𝐺 metrizable. For any topological Abelian group
𝐺, we denote by 𝐺 the Răıkov completion of 𝐺. See [14] for
more information about this subject.

Lemma 16 ([14, Theorem 6.11]). If 𝐺 is a metrizable topologi-
cal group that has a completion 𝐺 and if𝐻 is a closed normal
subgroup of𝐺, then𝐺/𝐻 has a completion that is topologically
isomorphic to 𝐺/�̃�, where �̃� is the closure of𝐻 in 𝐺.

Proposition 17. Let 𝐺 be a metrizable topological Abelian
group which is in 𝑆TG(T). Suppose that 𝐴 is a dense subgroup
of 𝐺. Then 𝐴 is in 𝑆TG(T), too.

Proof. Let 𝑋 be a topological Abelian group, and let T ≅ 𝐿 ≤

𝑋 be a subgroup such that 𝐴 ≅ 𝑋/𝐿. Since metrizability is a
3-space property ([15, 5.38(e)]), 𝑋 is a metrizable group. By
Lemma 16, 𝐺 = 𝐴 ≅ 𝑋/𝐿. By Corollary 15, 𝐺 ∈ 𝑆TG(T).
It follows that 𝐿 is dually embedded in 𝑋; hence it is dually
embedded in𝑋, too.

Our next aim is to prove thatHausdoff locally precompact
groups are in 𝑆 TG (T). Note first that if 𝐺 is a topological
Abelian group and 𝐻 ≤ 𝐺 is a precompact subgroup such
that the quotient𝐺/𝐻 is locally precompact, then𝐺 is locally
precompact, too. (Indeed, let 𝜋 : 𝐺 → 𝐺/𝐻 be the canonical
projection. Choose𝑈 ∈ N

0
(𝐺) such that𝜋(𝑈) is precompact.

Let us see that 𝑈 is precompact. Given 𝑉 ∈ N
0
(𝐺) we need

to find a finite subset 𝐹 ⊂ 𝐺 with𝑈 ⊂ 𝐹 +𝑉. Fix 𝑉 ∈ N
0
(𝐺)

with 𝑉


+ 𝑉


⊂ 𝑉 and find a finite 𝐹
1
⊂ 𝐺 with𝐻 ⊂ 𝐹

1
+ 𝑉
.

Since𝜋(𝑈) is precompact there exists a finite subset𝐹
2
of𝐺/𝐻

with𝜋(𝑈) ⊂ 𝐹


2
+𝜋(𝑉



).Wemay suppose that𝐹
2
= 𝜋(𝐹

2
)with

𝐹
2
being a finite subset of 𝐺. Hence 𝜋(𝑈) ⊂ 𝜋(𝐹

2
) + 𝜋(𝑉



) =

𝜋(𝐹
2
+𝑉


), which implies𝑈 ⊂ 𝜋
−1

𝜋(𝑈) ⊂ 𝜋
−1

𝜋(𝐹
2
+𝑉


) = 𝐹
2
+

𝑉


+ 𝐻 ⊂ 𝐹
1
+ 𝐹
2
+ 𝑉


+ 𝑉


⊂ 𝐹 + 𝑉 if we put 𝐹 = 𝐹
1
+ 𝐹
2
.)

Theorem 18. Locally precompact Hausdorff Abelian groups
are in 𝑆TG(T).

Proof. Let 𝐺 be a locally precompact Hausdorff Abelian
group. Given a twisted sum 0 → T

𝚤

→ 𝑋
𝜋

→ 𝐺 → 0,
as T is in particular precompact, by the above argument 𝑋
is locally precompact, too. But every subgroup of a locally
compact group is dually embedded [15, 24.12], so 𝚤(T) is dually
embedded in𝑋, the completion of𝑋. Then 𝚤(T) is also dually
embedded in𝑋 and byTheorem 5, the twisted sum splits.

Corollary 19. Locally compact Hausdorff Abelian groups and
precompact Hausdorff Abelian groups are in 𝑆TG(T).

Remark 20. It is proved in [11] that every topological vector
space endowed with its weak topology is a K-space. The
above corollary shows that a similar result is true for topo-
logical Abelian groups, since a topological group endowed
with the topology induced by its characters is precompact (see
[16]).

Theorem 21. Let 𝐺 be a topological Abelian group.

(1) If a closed subgroup𝐻 ≤ 𝐺 is such that𝐺/𝐻 ∈ 𝑆TG(T),
then𝐻 is dually embedded.

(2) If𝐺 is in 𝑆TG(T) and𝐻 ≤ 𝐺 is a closed dually embedded
subgroup, then 𝐺/𝐻 ∈ 𝑆TG(T).

Proof. (1) Suppose that 𝐺/𝐻 ∈ 𝑆 TG (T). Let 𝜒 : 𝐻 → T be
a character, and consider the natural twisted sum 0 → 𝐻

𝚤

→

𝐺
𝜋

→ 𝐺/𝐻 → 0. By taking the corresponding push out, we
obtain the following commutative diagram:

PO

GH

G/H

G/H

r

𝜋0

0

0

0

s

T

T

𝜒

𝚤

(5)

where both rows are twisted sums of topological Abelian
groups. Since 𝐺/𝐻 ∈ 𝑆 TG (T), the bottom sequence splits;
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hence by Theorem 2, there exists a continuous homomor-
phism 𝑇 : PO → T such that 𝑇 ∘ 𝑟 = idT . The
homomorphism 𝑇 ∘ 𝑠 is an extension of 𝜒.

(2) Suppose that𝐻 is dually embedded in𝐺. Fix a twisted
sum 0 → T

𝚤

→ 𝑋
𝜋

→ 𝐺/𝐻 → 0. Let 𝑞 : 𝐺 → 𝐺/𝐻

be the canonical projection, and let PB = {(𝑔, 𝑥) ∈ 𝐺 × 𝑋 :

𝑞(𝑔) = 𝜋(𝑥)} be the pull-back of 𝑞 and 𝜋. Define 𝑟 : PB → 𝐺

and 𝑠 : PB → 𝑋, as the restrictions of the corresponding
projections. Note that

ker 𝑟 = {(𝑔, 𝑥) ∈ PB : 𝑟 (𝑔, 𝑥) = 0} = {(𝑔, 𝑥) ∈ PB : 𝑔 = 0}

= {(0, 𝑥) ∈ 𝐺 × 𝑋 : 𝐻 = 𝜋 (𝑥)}

= {0} × 𝚤 (T) ,

ker 𝑠 = {(𝑔, 𝑥) ∈ PB : 𝑠 (𝑔, 𝑥) = 0} = {(𝑔, 𝑥) ∈ PB : 𝑥 = 0}

= {(𝑔, 0) ∈ 𝐺 × 𝑋 : 𝑞 (𝑔) = 𝐻}

= 𝐻 × {0} .

(6)

We thus obtain the following diagram:

0

0

0

0G

G/HX
𝜋

r

s q

{0} × 𝚤(T)

𝐻 × {0}

PB

(7)

Note that since 𝑞 and𝜋 are onto, the definition of PByields
𝑟((𝑈 × 𝑋) ∩ PB) ⊃ 𝑈 and 𝑠((𝐺 × 𝑉) ∩ PB) ⊃ 𝑉 for every
𝑈 ∈ N

0
(𝐺) and𝑉 ∈ N

0
(𝑋); hence 𝑟 and 𝑠 are onto and open.

Thus both short sequences are twisted sums of topological
Abelian groups.

Fix 𝜑 ∈ 𝚤(T)
∧; we will find an extension of 𝜑 to the whole

𝑋. We can regard 𝜑 as a character of {0} × 𝚤(T) by defining
𝜑(0, 𝑥) = 𝜑(𝑥). Since {0} × 𝚤(T) ≅ T and 𝐺 ∈ 𝑆 TG (T), by
Theorem 5, {0} × 𝚤(T) is dually embedded in PB. Thus there
exists 𝜓 ∈ PB∧ with 𝜓|

{0}×𝚤(T) = 𝜑; that is, 𝜓(0, 𝑥) = 𝜑(𝑥) for
every 𝑥 ∈ 𝚤(T). Define, for every ℎ ∈ 𝐻, �̃�(ℎ) = 𝜓(ℎ, 0) (note
that if ℎ ∈ 𝐻 then (ℎ, 0) ∈ PB).

Since𝐻 is dually embedded in𝐺 there exists 𝜎 ∈ 𝐺
∧ with

𝜎
|𝐻

= �̃� i.e. 𝜎(ℎ) = 𝜓(ℎ, 0) for every ℎ ∈ 𝐻. Now define
𝜌 ∈ PB∧ as follows: 𝜌(𝑔, 𝑥) = 𝜓(𝑔, 𝑥)𝜎(𝑔). This is clearly
continuous. Note that ker 𝜌 ≥ ker 𝑠 = 𝐻×{0} since if ℎ ∈ 𝐻,

we have that 𝜌(ℎ, 0) = 𝜓(ℎ, 0)𝜎(ℎ) = 1. As𝑋 ≅ PB/(𝐻 × {0}),
the character 𝜌 in 𝑋

∧ given by 𝜌(𝑥) = 𝜌(𝑔, 𝑥) for every
(𝑔, 𝑥) ∈ PB is well defined and continuous.

Now 𝜌 is the desired extension of 𝜑: if 𝑥 ∈ 𝚤(T), we have
𝜌(𝑥) = 𝜌(0, 𝑥) = 𝜓(0, 𝑥)𝜎(0) = 𝜓(0, 𝑥) = 𝜑(𝑥).

Remark 22. An analogous result in the framework of 𝐹-
spaces is [1, Theorem 5.2] (cf. also [11, Lemma 4.1]).

The following corollary is a generalization of Theorems
5.2 and 5.3 in [4] and appears as Theorem 4.1 in [3].

Corollary 23. A topological Abelian group 𝐺 is in 𝑆 TG (T) if
and only if whenever 𝑋 is a topological Abelian group and 𝐻

is a closed subgroup of 𝑋 with 𝑋/𝐻 ≅ 𝐺, then 𝐻 is dually
embedded.

Proof. This follows fromTheorems 21(1) and 5.

Let (𝐺
𝛼
)
𝛼∈𝐼

be a family of topological Abelian groups.
The coproduct of (𝐺

𝛼
)
𝛼∈𝐼

is the direct sum⨁
𝛼∈𝐼

𝐺
𝛼
endowed

with the finest group topology making the inclusion maps
𝑖
𝛽
: 𝐺
𝛽
→ ⨁

𝛼∈𝐼
𝐺
𝛼
continuous, for every 𝛽 ∈ 𝐼. If (𝐺

𝑛
)
∞

𝑛=1

is a countable family of groups, this topology coincides with
the box topology on⨁

𝑛∈N𝐺𝑛.
Recall that the coproduct ⨁

𝛼∈𝐼
𝐺
𝛼
has the following

universal property. Given an arbitrary topological Abelian
group 𝐺 and a homomorphism 𝑓 : ⨁

𝛼∈𝐼
𝐺
𝛼

→ 𝐺, 𝑓 is
continuous if and only if 𝑓 ∘ 𝑖

𝛽
is continuous ∀𝛽 ∈ 𝐼.

Proposition 24. Let (𝐺
𝛼
)
𝛼∈𝐼

be a family of topological Abelian
groups in 𝑆 TG (T). The coproduct⨁

𝛼∈𝐼
𝐺
𝛼
is in 𝑆 TG (T).

Proof. Let 0 → T
𝚤

→ 𝑋
𝜋

→ ⨁
𝛼∈𝐼

𝐺
𝛼

→ 0 be a twisted
sum. Consider, for each 𝛽 ∈ 𝐼, the pull-back PB

𝛽
of 𝜋 and

𝑖
𝛽
: 𝐺
𝛽
→ ⨁

𝛼∈𝐼
𝐺
𝛼
; for every 𝛽 ∈ 𝐼 there is a commutative

diagram

0

0

0

0

T

T X
𝜋
S

𝛽

v𝛽 𝑖𝛽

𝐺𝛽

𝜋𝛽PB

𝐺𝛼⨁
𝛼𝜖I

(8)

whose rows are twisted sums. As𝐺
𝛽
∈ 𝑆 TG (T), byTheorem2,

there exists a homomorphism 𝑆
𝛽

: 𝐺
𝛽

→ PB
𝛽
such that

𝜋
𝛽
∘ 𝑆
𝛽
= id
𝐺𝛽
. Consider the map

𝑆 : ⨁

𝛼∈𝐼

𝐺
𝛼
→ 𝑋

(𝑔
𝛼
)
𝛼∈𝐼

→ ∑

𝛼∈𝐼

V
𝛼
∘ 𝑆
𝛼
(𝑔
𝛼
) .

(9)
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As V
𝛼
∘ 𝑆
𝛼
is a continuous homomorphism, by the universal

property of the coproduct, 𝑆 is a continuous homomorphism.
For every 𝑔 = (𝑔

𝛼
)
𝛼∈𝐼

∈ ⨁
𝛼∈𝐼

𝐺
𝛼
, we have

𝜋 (𝑆 (𝑔)) = 𝜋(∑

𝛼∈𝐼

V
𝛼
∘ 𝑆
𝛼
(𝑔
𝛼
))

= ∑

𝛼∈𝐼

(𝜋 ∘ V
𝛼
∘ 𝑆
𝛼
) (𝑔
𝛼
) = ∑

𝛼∈𝐼

𝑖
𝛼
(𝑔
𝛼
) = 𝑔,

(10)

so 𝑆 is a right inverse for𝜋, and again byTheorem 2, the initial
twisted sum splits.

The class of nuclear groups was formally introduced by
Banaszczyk in [8]. His aim was to find a class of topo-
logical groups enclosing both nuclear spaces and locally
compact Abelian groups (as natural generalizations of finite-
dimensional vector spaces). The original definition is rather
technical, as could be expected from its success in gathering
objects from such different classes into the same framework.
Next we collect some facts concerning the class of nuclear
groups which are relevant to this paper.

(i) Nuclear groups are locally quasi-convex [8, 8.5].
(ii) Subgroups of nuclear groups are dually embedded [8,

8.3].
(iii) Products, countable coproducts, subgroups, and

Hausdorff quotients of nuclear groups are nuclear [8,
7.6, 7.8, 7.5].

(iv) Every locally compact Abelian group is nuclear [8,
7.10].

(v) A nuclear locally convex space is a nuclear group [8,
7.4]. Furthermore, if a topological vector space is a
nuclear group, then it is a locally convex nuclear space
[8, 8.9].

Theorem 25. Let {𝐺
𝑛
, 𝑓
𝑚

𝑛
} (𝑛 ≤ 𝑚) be a countable direct

system of nuclear Abelian groups in 𝑆 TG (T). Then the direct
limit lim

→
𝐺
𝑛
is in 𝑆 TG (T). In particular, sequential direct

limits of locally compact groups are in 𝑆 TG (T).

Proof. The direct sum ⨁
∞

𝑛=1
𝐺
𝑛
with the coproduct topology

is in 𝑆 TG (T) by Proposition 24. Let 𝑖
𝑚

: 𝐺
𝑚

→ ⨁𝐺
𝑛
be

the inclusionmap, for every𝑚 ∈ N. It is known (see [17]) that
lim
→
𝐺
𝑛
≅ (⨁𝐺

𝑛
)/𝐻, where𝐻 is the closure of the subgroup

𝐻 generated by {𝑖
𝑚
∘𝑓
𝑚

𝑛
(𝑔
𝑛
)− 𝑖
𝑛
(𝑔
𝑛
) : 𝑛 ≤ 𝑚; 𝑔

𝑛
∈ 𝐺
𝑛
}. Since

countable coproducts of nuclear groups are nuclear groups,
𝐻 is dually embedded. ByTheorem 21, lim

→
𝐺
𝑛
∈ 𝑆 TG (T).

Varopoulos introduced in [18] the class L
∞

of all
topological groups whose topologies are the intersection of
a decreasing sequence of locally compact Hausdorff group
topologies. He succeeded in his aim of extending known
results about locally compact groups and established the
basis for the development of the harmonic analysis on
L
∞

groups. Subsequently many other authors investigated
different properties of this class ([19–23]).

The following is a relevant fact concerning the structure
ofL
∞

groups proved by Sulley.

Proposition 26 ([22]). Let 𝐺 be any Abelian group endowed
with anL

∞
topology.Then𝐺 has an open subgroup which is a

strict inductive limit of a sequence of Hausdorff locally compact
Abelian groups.

Corollary 27. Let 𝐺 be any Abelian group endowed with an
L
∞

topology. Then 𝐺 is in 𝑆 TG (T).

Proof. By the above proposition and Theorem 25, 𝐺 has an
open subgroup in 𝑆 TG (T). Hence Corollary 14 implies that𝐺
is in 𝑆 TG (T).

3. Quasi-Homomorphisms

In his study of the stability of homomorphisms between
topological Abelian groups [7], Cabello defined the notion of
quasi-homomorphism, which is inspired by the technique of
quasi-linear maps introduced by Kalton and others (see [1]).

Definition 28 ([7]). Let 𝐺 and 𝐻 be topological Abelian
groups and 𝜔 : 𝐺 → 𝐻 a map with 𝜔(0) = 0. We say that 𝜔
is a quasi-homomorphism if the map Δ

𝜔
: (𝑥, 𝑦) ∈ 𝐺 × 𝐺 →

𝜔(𝑥 + 𝑦) − 𝜔(𝑥) − 𝜔(𝑦) ∈ 𝐻 is continuous at (0, 0).
A quasi-homomorphism 𝜔 : 𝐺 → 𝐻 is approximable if

there exists a homomorphism 𝑎 : 𝐺 → 𝐻 such that 𝜔 − 𝑎 is
continuous at 0.

Our aim is to use the notion of approximable quasi-
homomorphisms to obtain new examples of groups in
𝑆 TG (T).

We start with some facts about quasi-homomorphism
taken from [7].

Proposition 29. Let 𝐺 and 𝐻 be topological Abelian groups
and 𝜔 : 𝐺 → 𝐻 a quasi-homomorphism.

(1) The sets
𝑊(𝑉,𝑈) = {(ℎ, 𝑔) ∈ 𝐻 × 𝐺 : 𝑔 ∈ 𝑈, ℎ ∈ 𝜔 (𝑔) + 𝑉}

(𝑈 ∈ N
0
(𝐺) , 𝑉 ∈ N

0
(𝐻))

(11)

form a basis of neighborhoods of zero for a group
topology on𝐻 × 𝐺.

(2) If 𝐻⨁
𝜔
𝐺 denotes the group 𝐻 × 𝐺 endowed with

the topology induced by the quasi-homomorphism 𝜔

and 𝚤
𝐻

and 𝜋
𝐺
denote the canonical inclusion and

projection, respectively, 0 → 𝐻
𝚤𝐻
→ 𝐻⨁

𝜔
𝐺
𝜋𝐺
→ 𝐺 →

0 is a twisted sum of topological Abelian groups.
(3) A quasi-homomorphism is approximable if and only if

the induced twisted sum splits.

(4) The twisted sum 0 → 𝐻
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 is equivalent
to one induced by a quasi-homomorphism if and only if
it splits algebraically and there exists amap 𝜌 : 𝐺 → 𝑋

such that 𝜋 ∘ 𝜌 = id
𝐺
, 𝜌(0) = 0 and 𝜌 is continuous at

the origin.

Lemma 30. Let 𝐺 and 𝐻 be topological Abelian groups and
𝜔 : 𝐺 → 𝐻 a quasi-homomorphism. Then the map 𝑔 ∈ 𝐺 →

(𝜔(𝑔), 𝑔) ∈ 𝐻⨁
𝜔
𝐺 is continuous at 0.
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Proof. Note that for every 𝑈 ∈ N
0
(𝐺) and 𝑉 ∈ N

0
(𝐻) we

have [𝑔 ∈ 𝑈 ⇒ (𝜔(𝑔), 𝑔) ∈ 𝑊(𝑉,𝑈)].

The following result is [7, Lemma 11].We give here a proof
for the sake of completeness.

Proposition 31. Let 𝜋 : 𝑋 → 𝐺 be a continuous and open
surjective homomorphism between topological Abelian groups.
Suppose that 𝑋 is metrizable. Then there exists 𝜌 : 𝐺 → 𝑋

such that 𝜋 ∘ 𝜌 = id
𝐺
and 𝜌 is continuous at 0 ∈ 𝐺.

Proof. Note that in order to define 𝜌 with 𝜋 ∘ 𝜌 = id
𝐺
, we

simply must choose for every 𝑔 ∈ 𝐺 an element 𝑥 ∈ 𝜋
−1

(𝑔),
which is a nonempty set since 𝜋 is onto. Let us see that it
can be done in such a way that the map thus obtained is
continuous at zero.

Let {𝑈
𝑛

: 𝑛 ∈ N} be a decreasing basic sequence of
neighborhoods of zero in 𝑋, where 𝑈

1
= 𝑋. Due to the

continuity of 𝜋, we have ⋂
𝑛∈N 𝜋(𝑈𝑛) = {0}. Let 𝜌 take the

value 0 on 𝑔 = 0. For any 𝑔 ̸= 0, by the previous paragraph,
we can choose 𝑛 and 𝑥 with 𝜋(𝑥) = 𝑔, 𝑥 ∈ 𝑈

𝑛
, 𝑔 ∉ 𝜋(𝑈

𝑛+1
),

and define 𝜌(𝑔) = 𝑥. Nowfix𝑚 ∈ N; wemust find𝑉 ∈ N
0
(𝐺)

with 𝜌(𝑉) ⊆ 𝑈
𝑚
. Since 𝜋 is open there exists𝑉 ∈ N

0
(𝐺)with

𝜋(𝑈
𝑚
) ⊇ 𝑉. Fix 𝑔 ∈ 𝑉, and let us show that 𝜌(𝑔) ∈ 𝑈

𝑚
.

If 𝜌(𝑔) = 0 this is trivial. Otherwise 𝜌(𝑔) = 𝑥 with 𝜋(𝑥) =

𝑔, 𝑥 ∈ 𝑈
𝑛
, 𝑔 ∉ 𝜋(𝑈

𝑛+1
) for some 𝑛. Then 𝑔 ∈ 𝑉 ⊆ 𝜋(𝑈

𝑚
);

hence𝑚 ≤ 𝑛 and 𝑥 ∈ 𝑈
𝑛
⊆ 𝑈
𝑚
.

Corollary 32. Let 𝐺 be a metrizable topological Abelian
group.

(1) If𝐻 is metrizable and divisible, every twisted sum 0 →

𝐻
𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 is equivalent to one induced by a
quasi-homomorphism.

(2) 𝐺 is in 𝑆 TG (T) if and only if every quasi-character 𝜔 :

𝐺 → T is approximable.

Proof. Metrizability is a 3-space property (see [15, 5.38(e)]).
If 0 → 𝐻

𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 is a twisted sum where both
𝐺 and 𝐻 are metrizable, so is 𝑋, and thus the hypotheses
of Proposition 31 hold. Therefore, there exists a section of
𝜋 continuous at the origin. As 𝐻 is a divisible group, the
twisted sum 0 → 𝐻

𝚤

→ 𝑋
𝜋

→ 𝐺 → 0 splits algebraically.
By Proposition 29(4), this twisted sum is equivalent to one
induced by a quasi-homomorphism.

The second part is a consequence of the first one and
Proposition 29(3).

We call a norm on an Abelian group 𝐺 any subadditive,
symmetric functional ‖ ⋅ ‖ : 𝐺 → [0,∞) such that ‖𝑥‖ = 0 if
and only if 𝑥 = 0.

Definition 33. For any 𝑡 ∈ T let us call ⟨𝑡⟩ the only real
number 𝛼 ∈ ] − 1/2, 1/2] such that exp(2𝜋𝑖𝛼) = 𝑡. Then
[𝑡 → |⟨𝑡⟩|] is a norm on T . (Note that ⟨𝑡𝑠⟩ ∈ ⟨𝑡⟩ + ⟨𝑠⟩ + Z;
hence |⟨𝑡𝑠⟩| ≤ |⟨𝑡⟩ + ⟨𝑠⟩| ≤ |⟨𝑡⟩| + |⟨𝑠⟩.) Put 𝜃(𝑡) = |⟨𝑡⟩|. For
every 𝛽 > 0 let us define 𝑇

𝛽
= {𝑡 ∈ T : 𝜃(𝑡) ≤ 𝛽}. Note that

T
+
= 𝑇
1/4

with this notation.

Definition 34. For every Abelian group 𝐺, every 𝑉 ⊆ 𝐺 with
0 ∈ 𝑉, and every 𝑛 ∈ N we define (1/2𝑛)𝑉 = {𝑥 ∈ 𝑉 : 2

𝑘

𝑥 ∈

𝑉 ∀𝑘 ∈ {0, 1, . . . , 𝑛}}.

Proposition 35 ([24, Corollary 2]). For every 𝑛 ∈ N∪ {0} and
𝛽 ∈ [0, 1/3), we have (1/2𝑛)(𝑇

𝛽
) = 𝑇
𝛽/2
𝑛 .

Lemma 36. Let 𝐺 be a topological Abelian group, and let
𝜔 : 𝐺 → T be a quasi-character. Suppose that there exist
𝑈 ∈ N

0
(𝐺) and 𝛽 ∈ (0, 1/3) such that 𝜔(𝑈) ⊆ 𝑇

𝛽
. Then 𝜔 is

continuous at zero.

Proof. Since 𝜔 is a quasi-character, for every 𝜌 > 0, there
exists 𝑊

𝜌
∈ N
0
(𝐺) with 𝜔(𝑢)

2

𝜔(2𝑢) ∈ 𝑇
𝜌
for every 𝑢 ∈ 𝑊

𝜌
.

Fix any 𝜀 > 0. Let us find 𝑉 ∈ N
0
(𝐺) with 𝜔(𝑉) ⊆ 𝑇

𝜀
.

Fix any 𝛽 ∈ (𝛽, 1/3). Find 𝑁 ∈ N with 𝛽


/2
𝑁

≤ 𝜀. Put
𝑉 = (1/2

𝑁

)𝑈 ∩ (1/2
𝑁−1

)𝑊
(𝛽

−𝛽)/(𝑁2

𝑁−1
)
.

It is enough to prove that

∀V ∈ 𝑉 ∀𝑛 ∈ {0, 1, 2, . . . , 𝑁} , 𝜔(V)2
𝑛

∈ 𝑇
𝛽
 (12)

since by Proposition 35, this will imply 𝜔(V) ∈ 𝑇
𝛽

/2
𝑁 ⊆ 𝑇

𝜀
.

Now, for every 𝑛 ∈ {0, 1, 2, . . . , 𝑁}

𝜔(V)2
𝑛

= 𝜔(V)2
𝑛

𝜔 (2V)
2
𝑛−1

𝜔(2V)2
𝑛−1

= (𝜔(V)2𝜔 (2V))
2
𝑛−1

𝜔(2V)2
𝑛−1

= (𝜔(V)2𝜔 (2V))
2
𝑛−1

𝜔(2V)2
𝑛−1

𝜔 (2 ⋅ 2V)
2
𝑛−2

𝜔(2 ⋅ 2V)2
𝑛−2

= (𝜔(V)2𝜔 (2V))
2
𝑛−1

(𝜔(2V)2𝜔 (2 ⋅ 2V))
2
𝑛−2

𝜔 (2 ⋅ 2V)2
𝑛−2

= ⋅ ⋅ ⋅

= (

𝑛−1

∏

𝑗=0

(𝜔(2
𝑗V)
2

𝜔 (2 ⋅ 2𝑗V))
2
𝑛−𝑗−1

)𝜔 (2
𝑛V) .

(13)

Since V ∈ (1/2
𝑁

)𝑈, we have that 𝜔(2
𝑛V) ∈ 𝑇

𝛽
. Now,

for every 𝑗 ∈ {0, . . . , 𝑛 − 1} and every 𝑛 ∈ {0, . . . , 𝑁},
𝜔(2
𝑗V)2𝜔(2 ⋅ 2𝑗V) ∈ 𝑇

(𝛽

−𝛽)/(𝑁2

𝑁−1
)
, since 2𝑗V ∈ 𝑊

(𝛽

−𝛽)/(𝑁2

𝑁−1
)
.

Thus (𝜔(2
𝑗V)2𝜔(2 ⋅ 2𝑗V))2

𝑛−𝑗−1

∈ 𝑇
(𝛽

−𝛽)/𝑁

, and we deduce
∏
𝑛−1

𝑗=0
(𝜔(2
𝑗V)2𝜔(2 ⋅ 2𝑗V))2

𝑛−𝑗−1

∈ 𝑇
𝛽

−𝛽
. This implies that

𝜔(V)2
𝑛

∈ 𝑇
𝛽
 .

Corollary 37. A quasi-character 𝜔 : 𝐺 → T is approximable
if and only if there exist 𝑈 ∈ N

0
(𝐺), 𝛽 ∈ (0, 1/3) and an

algebraic character 𝜒 ∈ Hom (𝐺, T) such that (𝜔𝜒)(𝑈) ⊆ 𝑇
𝛽
.

Moreover any such 𝜒 approximates 𝜔.

Lemma 38 ([7, Lemma 6]). Let 𝐺 be an Abelian group (no
topology is assumed), and let 𝜔 : 𝐺 → T be any mapping
such that for some 𝛽 < 1/3, 𝜔(𝑥 + 𝑦)𝜔(𝑥)𝜔(𝑦) ∈ 𝑇

𝛽
∀𝑥, 𝑦 ∈

𝐺. Then there is a unique character 𝜒 : 𝐺 → T such that
𝜔(𝑥)𝜒(𝑥) ∈ 𝑇

𝛽
∀𝑥 ∈ 𝐺.
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Theorem 39. Let 𝜇 be a nonatomic 𝜎-finite measure on a set
Δ. Let 𝐿

0
:= 𝐿
0
(𝜇) be the space of all measurable functions on

Δ with the norm

𝑓
0

:= ∫

Δ

min {1, 𝑓 (𝑡)
} 𝑑𝜇 (𝑥) . (14)

Then every quasi-character 𝜔 : 𝐿
0
→ T is approximable.

Proof. We can assume, without loss of generality, that 𝜇 is
a probability (note that 𝐿

0
(𝜇) is topologically isomorphic to

𝐿
0
(]), where ] is a probability with the same null sets as 𝜇).
Let 𝜔 : 𝐿

0
→ T be a quasi-character, fix 𝛽 < 1/3, and

choose 𝛿
0
such that 𝜔(𝑓 + 𝑔)𝜔(𝑓)𝜔(𝑔) ∈ 𝑇

𝛽
for every 𝑓, 𝑔

with ‖𝑓‖
0
, ‖𝑔‖
0
≤ 𝛿
0
.

Let Δ = ⨁
𝑟

𝑖=1
Δ
𝑖
be a partition of Δ into measurable sets,

with 𝜇(Δ
𝑖
) ≤ 𝛿
0
for all 1 ≤ 𝑖 ≤ 𝑟. Then 𝐿

0
= ∏
𝑟

𝑖=1
𝐿
0
(Δ
𝑖
) as a

topological direct product. For all 𝑓 ∈ 𝐿
0
(Δ
𝑖
) we have that

𝑓
0

= ∫

Δ

min {1, 𝑓 (𝑡)
} 𝑑𝜇 (𝑥) ≤ ∫

{𝑡∈Δ:𝑓(𝑡) ̸= 0}

1𝑑𝜇 (𝑥)

= 𝜇 {𝑡 ∈ Δ : 𝑓 (𝑡) ̸= 0} ≤ 𝜇 (Δ
𝑖
) ≤ 𝛿
0
.

(15)

Call 𝜔
𝑖
the restriction of 𝜔 to each 𝐿

0
(Δ
𝑖
). As 𝜔

𝑖
(𝑓 +

𝑔)𝜔
𝑖
(𝑓)𝜔
𝑖
(𝑔) ∈ 𝑇

𝛽
for every 1 ≤ 𝑖 ≤ 𝑟 and 𝑓, 𝑔 ∈ 𝐿

0
(Δ
𝑖
),

we can apply Lemma 38 to obtain unique characters 𝜒
𝑖
:

𝐿
0
(Δ
𝑖
) → T such that𝜔

𝑖
(𝑓)𝜒
𝑖
(𝑓) ∈ 𝑇

𝛽
for every𝑓 ∈ 𝐿

0
(Δ
𝑖
).

By Lemma 36, we have that each 𝜔
𝑖
𝜒
𝑖
is continuous at the

origin of 𝐿
0
(Δ
𝑖
), and, thus, the character 𝜒 : 𝐿

0
→ T given

by 𝜒(𝑓) = ∏
𝑟

𝑖=1
𝜒
𝑖
(𝑓
𝑖
) (where 𝑓 = ∑

𝑟

𝑖=1
𝑓
𝑖
, 𝑓
𝑖
∈ 𝐿
0
(Δ
𝑖
))

approximates 𝜔 near the origin.

Corollary 40. 𝐿
0
is in 𝑆 TG (T).

Proof. This follows fromTheorem 39 and Corollary 32, since
𝐿
0
is a metrizable group.

Example 41. Let 𝐿
0
be as in Theorem 39. Fix a discrete,

nontrivial 𝐷 ≤ 𝐿
0
(e.g., a copy of Z). Note that 𝐿

0
does not

have any nontrivial continuous character, and in particular
𝐷 is not dually embedded in 𝐿

0
. Using Theorem 21 we

deduce that 𝐿
0
/𝐷 is not in 𝑆 TG (T). Since 𝐿

0
∈ 𝑆 TG (T), this

example shows that being in 𝑆 TG (T) is not preserved by local
isomorphisms (compare with Corollary 14).

Let (𝐺, 𝜏) be a topological group. We say that (𝐺, 𝜏) is a
protodiscrete group (or that the topology 𝜏 is linear) if it has a
basis of neighborhoods of 0 formed by open subgroups. Note
that protodiscreteHausdorff groups are exactly the subgroups
of products of discrete groups.

Proposition 42. Let 𝐺 be a protodiscrete topological Abelian
group. Every quasi-character of 𝐺 is approximable.

Proof. Let 𝜔 : 𝐺 → T be a quasi-character. There exists an
open subgroup 𝑈 ≤ 𝐺 such that 𝜔(𝑎 + 𝑏)𝜔(𝑎)𝜔(𝑏) ∈ T

+
for

every 𝑎, 𝑏 ∈ 𝑈. Using Lemma 38 we deduce that there exists
an algebraic character 𝜒 : 𝑈 → T with 𝜔(𝑢)𝜒(𝑢) ∈ T

+
for

every 𝑢 ∈ 𝑈. Now Corollary 37 implies that any algebraic
extension of 𝜒 approximates 𝜔.

Corollary 43. Every protodiscrete, metrizable group is in
𝑆 TG (T).

Proof. This follows from Proposition 42 and Corollary 32.

Example 44. Countable products of discrete Abelian groups
belong to 𝑆 TG (T).
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