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The motion of the viscous, incompressible fluid through a porous medium with heat and mass transfer over a shrinking sheet
is investigated. The cross-diffusion effect between temperature and concentration is considered. This phenomenon is modulated
mathematically by a set of partial differential equations which govern the continuity, momentum, heat, and mass. These equations
are transformed to a set of ordinary differential equations by using similarity solutions. The analytical solutions of these equations
are obtained. The velocity, temperature, and concentration of the fluid as well as the heat and mass transfer with shear stress at the
sheet are obtained as a function of the physical parameters of the problem.The effects of Prandtl number, mass transfer parameter,
the wall shrinking parameter, the permeability parameter, and Dufour and Soret numbers on temperature and concentration are
studied. Also, the effects of mass transfer parameter, permeability parameter, and shrinking strength on the velocity and shear stress
are discussed. These effects are illustrated graphically through a set of figures.

1. Introduction

The study of two-dimensional boundary layer flow of an
incompressible fluid over a stretching or shrinking sur-
face has assumed significance in recent years because of
its extensive applications in engineering disciplines. Some
applications are glass fiber production, hot rolling and wire
drawing, the aerodynamic extrusion of plastic sheets, paper
production, glass blowing, and drawing plastic films. The
flow over a continuously stretching surface with a constant
speed was initiated by Sakiadis [1, 2] and had been extended
to the different physical situations [3–5]. The effect of large
suction on the MHD forced and free convection flow past a
vertical porous plate was studied by Ferdows et al. [6]. Lin
et al. [7] studied the flow characteristics of an electrically
conducting second-order fluid over a stretching sheet with
suction velocity in the presence of a transverse magnetic
field. P. S. Gupta and A. S. Gupta [8] studied the heat and
mass transfer in a stretching surface with suction or injection.

Chen and Char [9] studied the effects of variable surface
temperature and variable surface heat flux on the heat transfer
characteristics of a linearly stretching sheet. The MHD effect
on a vertical stretching surface with suction and blowing was
studied by Gorla et al. [10]. Yao et al. [11] investigated heat
transfer problem with a convective boundary condition for
a viscous and incompressible fluid over a permeable (with
mass flux) stretching/shrinking sheet in a quiescent fluid.
Fang et al. [12] investigate the behavior of the steady boundary
layer flow and heat transfer of a viscous and incompressible
fluid towards a permeable stretching/shrinking sheet in a
quiescent fluid.

Recently, the flow over a shrinking sheet has attracted
the attention of many researchers. Fang [13], Fang et al. [14],
Fang and Zhang [15], and Fang et al. [16] studied problems
of boundary layer flow over shrinking sheets with mass
transfer.Theflow induced by a shrinking sheet shows physical
phenomena distinct from the forward stretching flow. A
steady flow over a shrinking sheet is not possible because
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Figure 1: The physical configuration of the problem.

the generated vorticity is not confined within the boundary
layer. So, to overcome this difficulty the flow needs a certain
amount of external opposite force at the sheet. The most
suitable external force is the suction at the sheet. Miklavčič
andWang [17] investigated the shrinking flow where velocity
of boundary layer moves toward a fixed point.They found an
exact solution of the Navier-Stokes equations and reported
that an adequate suction is necessary to maintain the flow
over a shrinking sheet. This phenomenon can be found, for
example, on a rising and shrinking balloon [18].

The heat and mass transfer that simultaneously affecting
each otherwill cause the cross-diffusion effect.Theheat trans-
fer caused by concentration gradient is called the diffusion-
thermo or Dufour effect. On the other hand mass transfer
caused by temperature gradient is called Soret or thermal-
diffusion effect. Alam and Rahman [19] investigated the
Dufour and Soret effects onmixed convection flow past a ver-
tical porous flat plate with variable suction. El-Arabawy [20]
investigated the heat and mass transfer by natural convection
from vertical surface embedded in a fluid-saturated porous
media considering Soret and Dufour effects with variable
surface temperature and constant concentration.

Motivated by the above-mentioned investigations, we
investigate in this present paper the behavior of flow of a
viscous and incompressible fluid through a porous medium
over a continuously shrinking sheet with heat andmass trans-
fer in a stationary fluid. The solutions for the momentum,
heat, and mass transfer equations are solved analytically,
and the solutions are presented in terms of algebraically
decaying function. The effects of various physical parame-
ters like the Prandtl number, the mass transfer parameter,
the wall shrinking parameter, the permeability parameter,
Dufour number, and Soret number on the temperature and
concentration profiles are obtained. Also, the effect of mass
suction, permeability of the porous medium, and shrinking
strength on the velocity and shear stress are studied.

2. Basic Equations and Exact Solutions

Consider the steady two-dimensional flow of a viscous
and incompressible fluid through a porous medium over a
continuously shrinking sheet with heat and mass transfer

in a stationary fluid. It is assumed that the velocity of the
shrinking sheet is 𝑢

𝑤
(𝑥) = −𝑏𝑥, where 𝑏 is a real number.

It is also assumed that constant mass transfer velocity is V
𝑤
.

In the present study, the effective viscosity 𝜇eff is considered
to be identical to the dynamic viscosity 𝜇. The ambient fluid
temperature and concentration are 𝑇

∞
and 𝐶

∞
, and these

at the sheet surface are 𝑇
𝑤

and 𝐶
𝑤
. The 𝑥-axis is along

the shrinking surface and 𝑦-axis is perpendicular to it (see
Figure 1).

With these assumptions the governing equations can be
written as

𝜕𝑢

𝜕𝑥

+

𝜕V

𝜕𝑦

= 0, (1)

𝑢

𝜕𝑢
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2
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2
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∇
2
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∇
2

𝐶 +

𝐷
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𝑇

𝑇
𝑚

∇
2
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where 𝑢 and V are the velocity components along the 𝑥-
and 𝑦-axes, respectively, 𝑃 is the pressure, 𝜌 is the density,
𝜐 is the fluid kinematic viscosity, 𝑘 is the permeability of
porous medium, 𝜎 is the fluid thermal diffusivity, 𝐷

𝑚
is the

coefficient ofmass diffusivity, 𝑐
𝑝
is the specific heat at constant

pressure, 𝑇
𝑚
is the mean fluid temperature, 𝑘

𝑇
is the thermal

diffusion ratio, 𝑐
𝑠
is the concentration susceptibility, 𝑇 is the

fluid temperature, and𝐶 is the concentration of the fluid.The
appropriate boundary conditions are

𝑢 = 𝑢
𝑤
(𝑥) = −𝑏𝑥, V = V

𝑤
, 𝑇 = 𝑇

𝑤
, 𝐶 = 𝐶

𝑤

at 𝑦 = 0,

𝑢 = 0, 𝑇 = 𝑇
∞
, 𝐶 = 𝐶

∞
as 𝑦 → ∞.

(6)

We assume that (1) to (5) subject to the boundary
conditions (6) admit the similarity solutions

𝑢 = 𝑎𝑥𝑓


(𝜂) , V = −√𝑎𝜐𝑓 (𝜂) ,

𝑇 − 𝑇
∞
= 𝜃 (𝜂) (𝑇

𝑤
− 𝑇
∞
) ,

𝐶 − 𝐶
∞
= 𝜙 (𝜂) (𝐶

𝑤
− 𝐶
∞
) ,

𝜂 = 𝑦√

𝑎

𝜐

,

(7)

where prime denotes differentiation with respect to 𝜂, and
𝑎 is a positive constant. Also we denote 𝑢

𝑟
(𝑥) = 𝑎𝑥 as a

reference velocity for this problem and 𝑢 = 𝑢
𝑟
(𝑥)𝑓


(𝜂). Using
(3) and the boundary conditions (6), we obtain the following
expression for the pressure 𝑃:

𝑃 = 𝑃
0
− 𝜌

V2

2

+ 𝜌𝜐

𝑑V

𝑑𝑦

−

𝜌𝜐

𝑘

∫ V 𝑑𝑦, (8)
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where 𝑃
0
is the stagnation pressure. Substituting (7) and

(8) into (2), (4), and (5), we obtain the following nonlinear
ordinary differential equations:

𝑓


+ 𝑓𝑓


− 𝑓
2

− 𝐾𝑓


= 0, (9)

𝜃


+ Pr𝑓𝜃 + Pr𝐷
𝑓
𝜙


= 0, (10)

𝜙


+ Sc𝑓𝜙 + Sc Sr 𝜃 = 0, (11)

subject to the boundary conditions

𝑓 (0) = 𝑠, 𝑓


(0) =

𝑏

𝑎

= 𝛼,

𝜃 (0) = 1, 𝜙 (0) = 1,

𝑓


(∞) = 0, 𝜃 (∞) = 0, 𝜙 (∞) = 0,

(12)

where 𝐾 = (𝜐/𝑘


𝑎) is the permeability parameter, Pr is the
Prandtl number of the fluidwith Pr = 𝜐/𝜎,𝐷

𝑓
= (𝐷
𝑚
𝑘
𝑇
(𝐶
𝑤
−

𝐶
∞
)/𝑐
𝑠
𝑐
𝑝
𝜐(𝑇
𝑤
− 𝑇
∞
)) is the Dufour number, Sc = (𝜐/𝐷

𝑚
) is

the Schmidt number, Sr = (𝐷
𝑚
𝑘
𝑇
(𝑇
𝑤
− 𝑇
∞
)/𝜐𝑇
𝑚
(𝐶
𝑤
−𝐶
∞
))

is the Soret number, and 𝑠 is the mass transfer parameter
showing the strength of the mass transfer at the sheet. Also
𝛼 > 0 is for wall stretching and 𝛼 < 0 is for shrinking,
respectively.

A physical quantity of interest is the skin friction coeffi-
cient 𝐶

𝑓
, which is defined as

𝐶
𝑓
=

𝜏
𝑤

𝜌𝑢
2

𝑟

, (13)

where 𝜏
𝑤
is the shear stress and is given by

𝜏
𝑤
= 𝜇(

𝜕𝑢

𝜕𝑦

)

𝑦=0

. (14)

Using the similarity variables (7), we obtain

Re1/2
𝑥
𝐶
𝑓
= 𝑓


(0) , (15)

where Re
𝑥
= 𝑢
𝑟
𝑥/𝜐 is the local Reynolds number.

Themomentum equation (9) together with the boundary
conditions (12) yields an algebraically decaying solution as
follows:

𝑓 (𝜂) =

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂

, (16a)

𝑓


(𝜂) =

6𝛼 (𝐾 − 𝛼)

(√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂)

2
. (16b)

The velocity fields become

𝑢 =

6𝑏𝑥 (𝐾 − 𝛼)

(√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂)

2
, (17a)

V =
6𝛼√𝑎𝜐

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂

. (17b)

It is seen that the algebraically decaying function exists only
for a shrinking sheet with𝛼 < 0.Themass suction at the sheet
is

𝑓 (0) = 𝑠 =

−6𝛼

√6 (𝐾 − 𝛼)

. (18)

There exists another exact solution for (9) with the boundary
conditions (12) as

𝑓 (𝜂) = 𝑠 +

𝛼

𝛿

(1 − 𝑒
−𝛿𝜂

) , (19a)

with

𝛿 =

𝑠 ± √𝑠
2
+ 4 (𝐾 + 𝛼)

2

. (19b)

Eliminating 𝜙 from (10) and (11), we obtain

(1 − Pr𝐷
𝑓
Sc Sr) 1

𝑓

𝜃


+ Pr 𝜃 − Pr𝐷
𝑓
Sc𝜙 = 0. (20)

Differentiating (20) with respect to 𝜂:

(1 − Pr𝐷
𝑓
Sc Sr) 1

𝑓

𝜃


+[

(1 − Pr𝐷
𝑓
Sc Sr)(𝐾 − 𝛼)
−6𝛼

+Pr]𝜃

− Pr𝐷
𝑓
Sc𝜙 = 0.

(21)

Eliminating 𝜙 between (10) and (21), we obtain the Euler-
Cauchy equation:

1

𝑓
3
𝜃


+ [
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−6𝛼

+

Pr + Sc
1 − Pr𝐷

𝑓
Sc Sr

]

1

𝑓
2
𝜃


+ (

Pr Sc
1 − Pr𝐷

𝑓
Sc Sr

)

1

𝑓
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(22)

Or,

(
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3
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(23)

The solution can be found as follows:

𝜃 (𝜂) = 𝑐
1
[

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂
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𝐴
1

+ 𝑐
2
[

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂
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𝐴
2

+ 𝑐
3
,

(24)
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Figure 2: (a) Temperature profiles for a shrinking sheet problem under different values of Prandtl number. (b) Effects of the mass transfer
parameter (mass suction) on the temperature profiles of a shrinking sheet. (c) Temperature profiles for different values of shrinking sheet
strength with mass suction. (d) Effects of the permeability parameter on the temperature profiles of a shrinking sheet with mass suction.
(e) Effects of Dufour number 𝐷

𝑓
on the temperature profiles of a shrinking sheet with mass suction. (f) Effects of Soret number Sr on the

temperature profiles of a shrinking sheet with mass suction.
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Figure 3: (a) Concentration profiles for a shrinking sheet under different values of Prandtl number. (b) Effects of the mass transfer parameter
(mass suction) on the concentration profiles of a shrinking sheet. (c) Concentration profiles for different values of shrinking sheet strength
withmass suction. (d) Effects of the permeability parameter on the concentration profiles of a shrinking sheet withmass suction. (e) Effects of
Dufour number𝐷

𝑓
on the concentration profiles of a shrinking sheet with mass suction. (f) Effects of Soret number Sr on the concentration

profiles of a shrinking sheet with mass suction.
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Figure 4: (a) Velocity profiles for a shrinking sheet under different values of mass suction parameter. (b) Velocity profiles under different
values of shrinking sheet strength with mass suction. (c) Velocity profiles for a shrinking sheet under different values of permeability
parameter.

where

𝐴
1
= (

−3𝛼

𝐾 − 𝛼

)(

Pr + Sc
1 − Pr𝐷

𝑓
Sc Sr

)

×(1 − √

(Pr − Sc)2 + 4Pr2Sc2𝐷
𝑓
Sr

(Pr + Sc)2
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𝐴
2
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𝑓
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)− 1.

(25)

In order tomatch the BC at 𝜂 → ∞, it is required that𝐴
1
> 0

and 𝐴
2
> 0, and 𝑐

3
= 0

𝜃 (𝜂) = 𝑐
1
[
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1
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1
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.

(26)
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Figure 5: (a) Shear stress profiles for a shrinking sheet under different values of mass suction parameter. (b) Shear stress profiles under
different values of shrinking sheet strength with mass suction. (c) Shear stress profiles for a shrinking sheet under different values of
permeability parameter.

Integrating (20) with respect to 𝜂:

𝜙 (𝜂) = (

1 − Pr𝐷
𝑓
Sc Sr

Pr𝐷
𝑓
Sc

)

1

𝑓

𝜃


+(

(1 − Pr𝐷
𝑓
Sc Sr)((𝐾 − 𝛼) /6𝛼) + Pr

Pr𝐷
𝑓
Sc

)𝜃−

𝑐
0

Pr𝐷
𝑓
Sc
,

(27)

where 𝑐
0
is a constant.

Substituting from (26) into (27), we obtain

𝜙 (𝜂) = 𝑐
1
𝐴
3
[

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂

]

𝐴
1

+ 𝑐
2
𝐴
4
[

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼) 𝜂

]

𝐴
2

−

𝑐
0

Pr𝐷
𝑓
Sc
,

(28)
where

𝐴
3
= (

1 − Pr𝐷
𝑓
Sc Sr

Pr𝐷
𝑓
Sc

)(

𝐾 − 𝛼

6𝛼

) (𝐴
1
+ 1) +

1

𝐷
𝑓
Sc
,

𝐴
4
= (

1 − Pr𝐷
𝑓
Sc Sr

Pr𝐷
𝑓
Sc

)(

𝐾 − 𝛼

6𝛼

) (𝐴
2
+ 1) +

1

𝐷
𝑓
Sc
.

(29)
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Figure 6: (a) Wall heat flux, −𝜃(0) with 𝑠 for various values of Pr. (b) Wall heat flux, −𝜃(0) with 𝛼 for various values of Pr.

In order to match the boundary conditions at 𝜂 → ∞, it is
required that𝐴

1
> 0 and𝐴

2
> 0, and 𝑐

0
= 0, so (28) becomes

𝜙 (𝜂) = 𝑐
1
𝐴
3
[

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼)𝜂

]

𝐴
1

+ 𝑐
2
𝐴
4
[

−6𝛼

√6 (𝐾 − 𝛼) + (𝐾 − 𝛼)𝜂

]

𝐴
2

.

(30)

Applying the boundary conditions at the wall yields

𝑐
1
(

−6𝛼

√6 (𝐾 − 𝛼)

)

𝐴
1

+ 𝑐
2
(

−6𝛼

√6 (𝐾 − 𝛼)

)

𝐴
2

= 1,

𝑐
1
𝐴
3
(

−6𝛼

√6 (𝐾 − 𝛼)

)

𝐴
1

+ 𝑐
2
𝐴
4
(

−6𝛼

√6 (𝐾 − 𝛼)

)

𝐴
2

= 1.

(31)

Solving (31), we obtain

𝑐
1
=

1 − 𝐴
4

𝐴
3
− 𝐴
4

(

√6 (𝐾 − 𝛼)

−6𝛼
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𝑐
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𝐴
4
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3

(
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)

𝐴
2

.

(32)

Then the temperature and concentration solutions become

𝜃 (𝜂) =

1 − 𝐴
4

𝐴
3
− 𝐴
4

1

(√((𝐾 − 𝛼) /6)𝜂 + 1)

𝐴
1

+

1 − 𝐴
3

𝐴
4
− 𝐴
3

1
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𝐴
2

,

𝜙 (𝜂) =

𝐴
3
(1 − 𝐴

4
)

𝐴
3
− 𝐴
4

1

(√((𝐾 − 𝛼) /6)𝜂 + 1)

𝐴
1

+

𝐴
4
(1 − 𝐴

3
)

𝐴
4
− 𝐴
3

1
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𝐴
2
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(33)

The heat and mass transfer rates at the wall are related to
the temperature and concentration gradients at the wall are,
respectively,

𝑞
𝑤
= −𝑘 (

𝜕𝑇

𝜕𝑦

)

𝑦=0

= −𝑘 (𝑇
𝑤
− 𝑇
∞
)√

𝑎

𝜐

𝜃


(0) , (34a)

𝑚
𝑤
= −𝐷
𝑚
(

𝜕𝐶

𝜕𝑦

)

𝑦=0

= −𝐷
𝑚
(𝐶
𝑤
− 𝐶
∞
)√

𝑎

𝜐

𝜙


(0) , (34b)

where 𝑘 is the thermal conductivity of the fluid.
The heat and mass fluxes at the wall read

−𝜃


(0) = √
𝐾 − 𝛼

6

[

𝐴
1
(1 − 𝐴

4
) − 𝐴
2
(1 − 𝐴

3
)

𝐴
3
− 𝐴
4

] , (35a)

−𝜙


(0) = √
𝐾 − 𝛼

6

[

𝐴
1
𝐴
3
(1 − 𝐴

4
) − 𝐴
2
𝐴
4
(1 − 𝐴

3
)

𝐴
3
− 𝐴
4

] .

(35b)
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Figure 7: (a) Wall mass flux, −𝜙(0) with 𝑠 for various values of Pr. (b) Wall mass flux, −𝜙(0) with 𝛼 for various values of Pr.
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Figure 8: (a) Wall shear stress, 𝑓(0) with 𝑠 for various values of 𝛼. (b) Wall shear stress, 𝑓(0) with 𝐾 for various values of 𝛼.

3. Results and Discussion

The nondimensional temperature profiles for a shrinking
sheet are shown in Figures 2(a)–2(f). The effect of the
Prandtl number on the temperature profile is shown in
Figure 2(a). It is observed that the temperature increases with
decreasing values of the Prandtl number. With the increase
of Prandtl number, the temperature drops faster and the
boundary layer becomes thinner. Figure 2(b) illustrates the
influence of the mass transfer parameter (mass suction) for
a shrinking sheet problem on the temperature profile. It is
found that the temperature increases with the decrease of

suction parameter. With the increase in mass suction, the
temperature drops faster and the boundary layer becomes
thinner. Figure 2(c) represents the temperature profile for
different values of shrinking sheet strength. It is noticed from
the figure that the temperature decreases with decreasing
the magnitude of shrinking sheet strength. The boundary
layer becomes thicker for a high magnitude of shrinking
strength. Figure 2(d) represents the temperature profile for
different values of Permeability parameter𝐾. From the graph
we observe that the increase of Permeability parameter leads
to the increase of the temperature profile. The temperature
distribution for different values of𝐷

𝑓
is plotted in Figure 2(e).
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It is observed from this figure that the temperature distribu-
tion is more for higher values of 𝐷

𝑓
which increases with an

increase in the value of 𝐷
𝑓
. Higher values of 𝐷

𝑓
gives rise

to the formation of peak near the sheet. Figure 2(f) shows
the variation of concentration profiles for various values of
Soret number Sr. We notice that for 𝜂 ≥ 0.5, the temperature
distribution increases with increasing Sr.

Figure 3(a) displays the effect of Prandtl number on the
concentration profile under certain shrinking strength, and
Permeability parameter. It can be seen that for 𝜂 ≥ 1.3, the
concentration increases when the Prandtl number decreases.
The concentration boundary layer thickness reduces with
the increase of the Prandtl number. The effect of the mass
transfer parameter (mass suction) on the dimensionless
concentration profile for sheet shrinking problem is shown in
Figure 3(b).We observe that the concentration increases with
the decrease of mass suction. The concentration boundary
layer thickness decreases with the increase of mass transfer
parameter (mass suction). Figure 3(c) represents the concen-
tration profile for different values of shrinking sheet strength.
From the graph we observe that the concentration decreases
with decreasing the magnitude of shrinking sheet strength
and the concentration boundary layer thickness becomes
thinner. Figure 3(d) displays the concentration profile for
different values of Permeability parameter. We notice from
the figure that the effect of increasing values of Perme-
ability parameter is to increase the concentration profile.
Figure 3(e) shows the concentration profiles for different
values of Dufour number 𝐷

𝑓
. It is observed that for 𝜂 ≥

0.8, the concentration distribution increases with increasing
the Dufour number 𝐷

𝑓
. The concentration distribution for

different values of Soret number Sr is plotted in Figure 3(f). It
is noticed from this figure that the temperature distribution is
more for higher values of Sr which increases with an increase
in the value of Sr and peaks appear near the sheet for higher
values of Sr.

The effect of mass suction parameter on the velocity
profile for shrinking sheet is displayed in Figure 4(a) which
shows that the velocity decreases with the increase of the
mass suction parameter. The boundary layer is sucked closer
to the wall for smaller mass suction parameters. Figure 4(b)
displays the velocity profile for various values of shrinking
sheet parameter. The velocity decreases and drops faster
with high magnitude of sheet shrinking parameter 𝛼. The
velocity at the sheet decreases with increasing the magnitude
of shrinking sheet parameter 𝛼. There exists cross-over
points among the velocity profiles for different values of 𝛼.
Figure 4(c) shows velocity profile for different values of the
permeability parameter for shrinking sheet. We remark that
as permeability parameter increases the velocity decreases.

Shear stress results for shrinking sheet are seen in
Figure 5(a) under the effect of mass suction. The shear stress
drops faster as themass suction becomes smaller.The increas-
ing effect of shear stress is found in the interval 0 ≤ 𝜂 ≤ 1with
decreasing 𝑠. The wall shear stress decreases with increasing
mass suction. There exists cross-over points among the
shear profiles for different values of 𝑠. In Figure 5(b) the
shear stress increases with increasingmagnitude of shrinking
sheet parameter. The shear drops faster when magnitude of

shrinking sheet parameter increases and the wall shear stress
decreases with decreasingmagnitude of shrinking parameter.
Figure 5(c) illustrates the shear stress profile for a shrinking
sheet with mass suction. The wall shear stress increases
permeability parameter. The increasing effect of shear stress
is found in the interval 0 ≤ 𝜂 ≤ 0.8 with increasing𝐾.

Figures 6(a) and 6(b) and Figures 7(a) and 7(b) show
the rate of heat and mass transfer at the sheet surface versus
mass transfer parameter 𝑠 and sheet shrinking parameter 𝛼,
respectively, with different values of Prandtl number Pr. We
observe that −𝜃(0) increase with increasing the values of Pr
whereas reverse effect is observed on −𝜙(0).

Figures 8(a) and 8(b) depict the effect of sheet shrinking
parameter 𝛼 on wall shear stress 𝑓(0) versus mass suction
𝑠 and permeability parameter 𝐾, respectively. We notice that
𝑓


(0) increase with increasing the magnitude of shrinking
sheet parameter 𝛼.

4. Conclusion

In this work, the solutions for themomentum, heat, andmass
transfer equations are obtained in a closed analytical form
and the solutions presented in terms of algebraically decaying
function.The effects of the Prandtl number, the mass transfer
parameter, the wall shrinking parameter, and the Permeabil-
ity parameter on the temperature and concentration profiles
were analyzed. Also, the effects of mass suction, Permeability
of the porousmedium, and shrinking strength on the velocity
and shear stress are studied. We found some of the important
results from the graphical representation which are listed
below.

(1) The effect of Prandtl number Pr is to reduce the thick-
ness of both the temperature and the concentration
boundary layer.

(2) The effect of mass transfer parameter 𝑠 (mass suction)
is seen to decrease both of the temperature and the
concentration distributions in the flow region.

(3) Increasingmagnitude of shrinking sheet strength is to
increase both of the temperature and the concentra-
tion distributions in the flow region

(4) The effect of Permeability parameter 𝐾 is seen to
increase both of the temperature and the concentra-
tion distributions in the flow region.

(5) Dufour effect is to increase both temperature and
concentration distributions with formation of peak
for higher values of Dufour parameter in the thermal
boundary layer.

(6) Soret effect is to increase both temperature and con-
centration distributions with formation of peak for
higher values of Soret parameter in the concentration
boundary layer.

(7) The velocity decreases with the increase of the mass
suction parameter 𝑠, themagnitude of shrinking sheet
strength 𝛼, and the Permeability parameter𝐾.

(8) The shear stress increases with the increase of the
mass suction parameter 𝑠, magnitude of shrinking
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sheet strength parameter 𝛼, and Permeability param-
eter 𝐾.

(9) −𝜃(0) versus 𝑠, increases with increasing the values of
Pr whereas reverse effect is observed on −𝜙(0). Also,
−𝜃


(0) versus 𝛼 increases with increasing the values of
Pr whereas reverse effect is observed on −𝜙(0).

(10) 𝑓(0) increases with increasing the magnitude of
shrinking sheet parameter 𝛼.
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