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The present paper is divided into two parts. First, we introduce implicit and explicit iterative schemes based on the regularization
for solving equilibrium and constrained convex minimization problems. We establish results on the strong convergence of the
sequences generated by the proposed schemes to a common solution of minimization and equilibrium problem. Such a point is
also a solution of a variational inequality. In the second part, as applications, we apply the algorithm to solve split feasibility problem
and equilibrium problem.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖. Let 𝐶 be a nonempty closed convex subset of 𝐻.
Let 𝜙 be a bifunction of 𝐶 × 𝐶 into R, where R is the set of
real numbers. Consider the equilibrium problem (EP) which
is to find 𝑧 ∈ 𝐶 such that

𝜙 (𝑧, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

We denoted the set of solutions of EP by EP(𝜙). Given a
mapping𝑇 : 𝐶 → 𝐻, let𝜙(𝑥, 𝑦) = ⟨𝑇𝑥, 𝑦−𝑥⟩ for all𝑥, 𝑦 ∈ 𝐶;
then 𝑧 ∈ EP(𝜙) if and only if ⟨𝑇𝑧, 𝑦 − 𝑧⟩ ≥ 0 for all 𝑦 ∈ 𝐶;
that is, 𝑧 is a solution of the variational inequality. Numerous
problems in physics, optimizations and economics reduce to
find a solution of (1). Some methods have been proposed to
solve the equilibrium problem; see for instance see [1–8] and
the references therein.

Some composite iterative algorithms were proposed by
many authors for finding the common solution of equilib-
rium problem and fixed point problem. Next, we list some
main results as follows.

With some appropriate assumptions, Ceng et al. [9]
established the following iterative scheme: 𝑥

1
∈ 𝐻 and

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢
𝑛
+ (1 − 𝛼

𝑛
) 𝑆𝑢
𝑛
, ∀𝑛 ∈ N.

(2)

Under certain conditions, the sequences {𝑥
𝑛
} and {𝑢

𝑛
} con-

verge weakly to an element of EP(𝜙) ∩ 𝐹(𝑆).
For finding an element of EP(𝜙) ∩ 𝐹(𝑆), S. Takahashi and

W. Takahashi [10] introduced the following iterative scheme
by the viscosity approximation method in a Hilbert space:
𝑥
1
∈ 𝐻 and

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
ℎ (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆𝑢
𝑛
, ∀𝑛 ∈ N.

(3)

Under suitable conditions, some strong convergence theo-
rems are obtained.

In 2009, Liu [11] introduced two iterative schemes by the
general iterative method for finding an element of EP(𝜙) ∩
𝐹(𝑆), where 𝑆 : 𝐶 → 𝐻 is a 𝑘-strictly pseudocontraction
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nonself mapping in the setting of a real Hilbert space. Let {𝑥
𝑛
}

be a sequence generated by

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝜆
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝛽
𝑛
𝑢
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑢
𝑛
,

𝑥
𝑛
= 𝛼
𝑛
𝛾ℎ (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐵) 𝑦
𝑛
, ∀𝑛 ∈ N,

(4)

and 𝑥
1
∈ 𝐻 arbitrarily,

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝜆
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝛽
𝑛
𝑢
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑢
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾ℎ (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐵) 𝑦
𝑛
, ∀𝑛 ∈ N,

(5)

where 𝐵 is a strongly positive bounded linear operator on𝐻.
Under some assumptions, the strong convergence theorems
are obtained.

In 2012, based on the concept of the shrinking projection
method, Reich and Sabach [12] consider the following algo-
rithm for finding the common solution of finite equilibrium
problems in a reflexive Banach space

𝑥
0
∈ 𝑋,

𝑄
𝑖

0
= 𝑋, 𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖

𝑛
= Res𝑓

𝜆
𝑖

𝑛
𝑔𝑖

(𝑥
𝑛
+ 𝑒
𝑖

𝑛
) ,

𝑄
𝑖

𝑛+1
= {𝑧 ∈ 𝑄

𝑖

𝑛
: ⟨∇𝑓 (𝑥

𝑛
+ 𝑒
𝑖

𝑛
) − ∇𝑓 (𝑦

𝑖

𝑛
) , 𝑧 − 𝑦

𝑖

𝑛
⟩ ≤ 0} ,

𝑄
𝑛+1

:= ∩
𝑁

𝑖=1
𝑄
𝑖

𝑛+1
,

𝑥
𝑛+1

= proj
𝑄
𝑓

𝑛+1

(𝑥
0
) , 𝑛 = 0, 1, 2, . . . .

(6)

Under some consumption, the sequence {𝑥
𝑛
}
𝑛∈N converges

strongly to Proj𝑓
𝐸
(𝑥
0
).

The gradient-projection algorithm is a classical power
method for solving constrained convex optimization prob-
lems and has been studied by many authors (see [13–26] and
the reference therein). The method has recently been applied
to solve split feasibility problems which find applications in
image reconstructions and the intensity modulated radiation
therapy (see [27–34]).

Consider the problem of minimizing 𝑓 over the con-
straint set 𝐶 (assuming 𝐶 is a nonempty closed and convex
subset of a realHilbert space𝐻).Themain results we all know
about the gradient projection are that if 𝑓 : 𝐻 → R is a con-
vex and continuously Fréchet differentiable functional, the
gradient-projection algorithm generates a sequence {𝑥

𝑛
}
∞

𝑛=0

determined by the gradient of 𝑓 and the metric projection
onto𝐶. Under the condition that𝑓has a Lipschitz continuous
and strongly monotone gradient, the sequence {𝑥

𝑛
}
∞

𝑛=0
can be

strongly convergent to a minimizer of 𝑓 in 𝐶. If the gradient
of 𝑓 is only assumed to be inverse strongly monotone,

then {𝑥
𝑛
}
∞

𝑛=0
can only be weakly convergent if 𝐻 is infinite-

dimensional.
Recently, Xu [35] gave an operator-oriented approach as

an alternative to the gradient-projection method and to the
relaxed gradient-projection algorithm, namely, an averaged
mapping approach. He also presented two modifications
of gradient-projection algorithms which are shown to have
strong convergence.

On the other hand, regularization, in particular the
traditional Tikhonov regularization, is usually used to solve
ill-posed optimization problems [36].The disadvantage is the
weak convergence of themethod RGPA for the regularization
problem under some conditions.

The purpose of the paper is to study the iterative method
for finding the common solution of an equilibrium problem
and a constrained convex minimization problem. Based on
the Viscosity method [18], we combine the RGPA and aver-
aged mapping approaches to propose implicit and explicit
composite iterativemethods for finding the common element
of the set of solutions of an equilibrium problem and the
solution set of a constrained convex minimization problem
and also to prove some strong convergence theorems.

2. Preliminaries

Throughout the paper, we assume that 𝐻 is a real Hilbert
space whose inner product and norm are denoted by ⟨⋅, ⋅⟩ and
‖ ⋅ ‖, respectively, and 𝐶 is a nonempty closed convex subset
of 𝐻. The set of fixed points of a mapping 𝑇 is denoted by
Fix(𝑇); that is, Fix(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}. We write 𝑥

𝑛
⇀ 𝑥

to indicate that the sequence {𝑥
𝑛
} converges weakly to 𝑥. The

fact that the sequence {𝑥
𝑛
} converges strongly to 𝑥 is denoted

by 𝑥
𝑛
→ 𝑥. The following definition and results are needed

in the subsequent sections.
Recall that a mapping 𝑉 : 𝐻 → 𝐻 is said to be 𝐿-

Lipschitzian if
󵄩󵄩󵄩󵄩𝑉𝑥 − 𝑉𝑦

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻, (7)

where 𝐿 > 0 is a constant. In particular, if 𝐿 ∈ [0, 1),
then 𝑉 is called a contraction on 𝐻; if 𝐿 = 1, then 𝑉

is called a nonexpansive mapping on 𝐻. 𝑉 is called firmly
nonexpansive if 2𝑉 − 𝐼 is nonexpansive, or equivalently, ⟨𝑥 −
𝑦, 𝑉𝑥 − 𝑉𝑦⟩ ≥ ‖𝑉𝑥 − 𝑉𝑦‖

2
, for all 𝑥, 𝑦 ∈ 𝐻. Alternatively, 𝑇

is firmly nonexpansive if and only if 𝑇 can be expressed as
𝑇 = (1/2)(𝐼 + 𝑆), where 𝑆 : 𝐻 → 𝐻 is nonexpansive.

In 1978, Baillon et al. [37] defined the concept of averaged
mapping which is used very frequently now.

Definition 1 (see [37]). A mapping 𝑇 : 𝐻 → 𝐻 is said to be
an averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping; that is,

𝑇 = (1 − 𝛼) 𝐼 + 𝛼𝑆, (8)

where 𝛼 is a number in (0, 1) and 𝑆 : 𝐻 → 𝐻 is
nonexpansive. More precisely, when (8) holds, we say that
𝑇 is 𝛼-averaged. Clearly, a firmly nonexpansive mapping (in
particular, projection) is a (1/2)-averaged map.
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Proposition 2 (see [28, 38]). For given operators 𝑆, 𝑇, 𝑉 :

𝐻 → 𝐻 one has the following.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if S is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

Recall that the metric (or nearest point) projection from
𝐻 onto 𝐶 is the mapping 𝑃

𝐶
: 𝐻 → 𝐶 which assigns to each

point 𝑥 ∈ 𝐻 the unique point𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐶
𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 =: 𝑑 (𝑥, 𝐶) . (9)

In 1984, Goebel and Reich [39] discussed the properties
of the nearest point projection.

Lemma 3 (see [39]). For given 𝑥 ∈ 𝐻 one has the following:

(i) 𝑧 = 𝑃
𝐶
𝑥 if and only if

⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶; (10)

(ii) 𝑧 = 𝑃
𝐶
𝑥 if and only if

‖𝑥 − 𝑧‖
2
≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩

2

, ∀𝑦 ∈ 𝐶; (11)

(iii)

⟨𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝑃𝐶𝑥 − 𝑃
𝐶
𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐻. (12)

Consequently, 𝑃
𝐶
is nonexpansive and monotone.

Lemma 4. The following inequality holds in a Hilbert space𝑋

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2
+ 2⟨𝑦, 𝑥 + 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝑋. (13)

Lemma 5 (see [40]). In a Hilbert space𝐻, one has

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2

= 𝜆 ‖𝑥‖
2
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

∀𝑥, 𝑦∈ 𝐻, 𝜆∈ [0, 1] .

(14)

Lemma 6 (Demiclosedness Principle [40]). Let 𝐻 be a
Hilbert space,𝐾 a closed convex subset of𝐻, and𝑇 : 𝐾 → 𝐾 a
nonexpansive mapping with Fix(𝑇) ̸= 0; if {𝑥

𝑛
} is a sequence in

𝐾 weakly converging to 𝑥 and if {(𝐼 − 𝑇)𝑥
𝑛
} converges strongly

to 𝑦, then (𝐼 − 𝑇)𝑥 = 𝑦; in particular if 𝑦 = 0 then 𝑥 ∈ Fix(𝑇).

Definition 7. A nonlinear operator 𝑇 whose domain 𝐷(𝑇) ⊆

𝐻 and range 𝑅(𝑇) ⊆ 𝐻 is said to be

(i) monotone if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) ; (15)

(ii) 𝛽-strongly monotone if there exists 𝛽 > 0 such that

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) ; (16)

(iii) ]-inverse strongly monotone (for short, ]-ism) if
there exists ] > 0 such that

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ ]󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (17)

Proposition 8 (see [28]). Let 𝑇 : 𝐻 → 𝐻 be an operator
from𝐻 to itself.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇

is (1/2)-ism.
(ii) If 𝑇 is ]-ism, then for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼−𝑇 is ]-ism

for some ] > 1/2. Indeed, for𝛼 ∈ (0, 1),𝑇 is𝛼-averaged
if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

Lemma 9 (see [18]). Assume that {𝑎
𝑛
} is a sequence of

nonnegative real numbers such that
𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (18)

where {𝛾
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence in R

such that
(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑

∞

𝑛=1
𝛾
𝑛
|𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

In order to solve the equilibriumproblem for a bifunction
𝜙 : 𝐶 × 𝐶 → R, let us assume that 𝜙 satisfies the following
conditions:

(A1) 𝜙(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(A2) 𝜙 is monotone; that is, 𝜙(𝑥, 𝑦) + 𝜙(𝑦, 𝑥) ≤ 0, for all

𝑥, 𝑦 ∈ 𝐶;
(A3) For all 𝑥, 𝑦, 𝑧 ∈ 𝐶,

lim
𝑡↓0

𝜙 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝜙 (𝑥, 𝑦) ; (19)

(A4) for each fixed 𝑥 ∈ 𝐶, the function 𝑦 󳨃→ 𝜙(𝑥, 𝑦) is
convex and lower semicontinuous.

Let us recall the following lemmaswhichwill be useful for
our paper.

Lemma 10 (see [28]). Let 𝜙 be a bifunction from 𝐶×𝐶 intoR
satisfying (A1), (A2), (A3), and (A4). Then, for any 𝑟 > 0 and
𝑥 ∈ 𝐻, there exists 𝑧 ∈ 𝐶 such that

𝜙 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (20)

Further, if 𝑇
𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝜙(𝑧, 𝑦) + (1/𝑟)⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥

0, ∀𝑦 ∈ 𝐶}, then the following holds:
(1) 𝑇
𝑟
is single-valued;

(2) 𝑇
𝑟
is firmly nonexpansive; that is,

󵄩󵄩󵄩󵄩𝑇𝑟𝑥 − 𝑇
𝑟
𝑦
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻; (21)

(3) 𝐹(𝑇
𝑟
) = 𝐸𝑃(𝜙);

(4) 𝐸𝑃(𝜙) is closed and convex.
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3. Main Results

We now look at the constrained convex minimization prob-
lem:

min
𝑥∈𝐶

𝑓 (𝑥) , (22)

where 𝐶 is a closed and convex subset of a Hilbert space 𝐻
and 𝑓 : 𝐶 → R is a real-valued convex function. If 𝑓 is
Fréchet differentiable, then the gradient-projection algorithm
(GPA) generates a sequence {𝑥

𝑛
}
∞

𝑛=0
according to the recursive

formula

𝑥
𝑛+1

= Proj
𝐶
(𝐼 − 𝛾∇𝑓) (𝑥

𝑛
) , 𝑛 ≥ 0, (23)

or more generally,

𝑥
𝑛+1

= Proj
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) (𝑥

𝑛
) , 𝑛 ≥ 0, (24)

where, in both (23) and (24), the initial guess 𝑥
0
is taken

from𝐶 arbitrarily and the parameters 𝛾 or 𝛾
𝑛
are positive real

numbers.
As a matter of fact, it is known that, if ∇𝑓 fails to be

strongly monotone and is only 1/𝐿-ism; namely, there is
constant 𝐿 > 0 such that

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑥 − 𝑦⟩ ≥
1

𝐿

󵄩󵄩󵄩󵄩∇𝑓(𝑥) − ∇𝑓(𝑦)
󵄩󵄩󵄩󵄩

2

, 𝑥, 𝑦 ∈ 𝐶,

(25)

under some assumption for 𝛾 or 𝛾
𝑛
, then algorithms (23) and

(24) can still converge in the weak topology.
Now, consider the regularized minimization problem

min
𝑥∈𝐶

𝑓
𝛼
(𝑥) := 𝑓 (𝑥) +

𝛼

2
‖𝑥‖
2
, (26)

where 𝛼 > 0 is the regularization parameter, and again 𝑓 is
convex with 1/𝐿-ism continuous gradient ∇𝑓.

It is obvious that there exists a unique point 𝑥
𝛼
∈ 𝐶 such

that 𝑥
𝛼
is the unique fixed point of the mapping

𝑉
𝛼
:= Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
) = Proj

𝐶
(𝐼 − 𝛾 (∇𝑓 + 𝛼𝐼)) . (27)

We can prove that {𝑥
𝛼
} ⇀ 𝑥

∗, where 𝑥∗ is a solution of
the constrained convex minimization problem.

Throughout the rest of this paper, assume that the
minimization problem (22) is consistent and let 𝑈 denote its
solution set; we always assume that ℎ is a contraction of 𝐶
into 𝐻 with coefficient 𝜌 ∈ (0, 1); let {𝐺

𝛽𝑛
} be a sequence

of mappings defined as Lemma 3 and define a mapping 𝑇
𝑛
:

𝐶 → 𝐶 by

𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) = 𝜆
𝑛
𝐼 + (1 − 𝜆

𝑛
) 𝑇
𝑛

𝜆
𝑛
:=

2 − 𝛾 (𝐿 + 𝛼
𝑛
)

4

(28)

Consider the following mapping 𝑄
𝑛
on𝐻 defined by

𝑄
𝑛
𝑥 = 𝜃
𝑛
ℎ (𝑥) + (1 − 𝜃

𝑛
) 𝑇
𝑛
𝐺
𝛽𝑛
𝑥, 𝑥 ∈ 𝐻, 𝑛 ∈ 𝑁, (29)

where 𝜃
𝑛
∈ (0, 1); then by Lemmas 3 and 10

󵄩󵄩󵄩󵄩𝑄𝑛𝑥 − 𝑄
𝑛
𝑦
󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + (1 − 𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 = (1 − (1 − 𝜌) 𝜃
𝑛
) .

(30)

Since 0 < 1 − (1 − 𝜌)𝜃
𝑛

< 1, it follows that 𝑄
𝑛
is a

contraction. Therefore, by the Banach contraction principle,
𝑄
𝑛
has a unique fixed point 𝑥ℎ

𝑛
∈ 𝐻 such that

𝑥
ℎ

𝑛
= 𝜃
𝑛
ℎ (𝑥
ℎ

𝑛
) + (1 − 𝜃

𝑛
) 𝑇
𝑛
𝐺
𝛽𝑛
𝑥
ℎ

𝑛
. (31)

For simplicity, we will write 𝑥
𝑛
for 𝑥ℎ
𝑛
provided that no

confusion occurs. Next, we prove the convergence of {𝑥
𝑛
}

while we claim the existence of the 𝑞 ∈ 𝑈⋂EP(𝜙) which
solves the variational inequality

⟨(𝐼 − ℎ) 𝑞, 𝑝 − 𝑞⟩ ≥ 0, ∀𝑝 ∈ 𝑈⋂EP (𝜙) . (32)

3.1. Convergence of the Implicit Scheme
Proposition 11. If 0 < 𝛾 < 2/𝐿, 0 < 𝛼 < 2/𝛾 − 𝐿, ∇𝑓 is
(1/𝐿)-ism, for all 𝑥 ∈ 𝐶,

Proj
𝐶
(𝐼 − 𝛾∇𝑓

𝛼
) = (1 − 𝜇

𝛼
) 𝐼 + 𝜇

𝛼
𝑇
𝛼
,

Proj
𝐶
(𝐼 − 𝛾∇𝑓) = (1 − 𝜇) 𝐼 + 𝜇𝑇,

(33)

where 𝜇
𝛼
= (2 + 𝛾(𝐿 + 𝛼))/4, 𝜇 = (2 + 𝛾L)/4, then

󵄩󵄩󵄩󵄩𝑇𝛼𝑥 − 𝑇𝑥
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑀 (𝑥) , (34)

where

𝑀(𝑥) = 𝛾 (5 ‖𝑥‖ + ‖𝑇𝑥‖) . (35)

Proof. One here
󵄩󵄩󵄩󵄩Proj𝐶 (𝐼 − 𝛾∇𝑓

𝛼
) 𝑥 − Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
) 𝑥

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝜇 − 𝜇

𝛼
) 𝑥 + 𝜇

𝛼
𝑇
𝛼
𝑥 − 𝜇𝑇𝑥

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛾∇𝑓

𝛼
) 𝑥 − (𝐼 − 𝛾∇𝑓) 𝑥

󵄩󵄩󵄩󵄩

= 𝛾
󵄩󵄩󵄩󵄩∇𝑓𝛼 (𝑥) − ∇𝑓 (𝑥)

󵄩󵄩󵄩󵄩 = 𝛼𝛾 ‖𝑥‖ ,

(36)

then
󵄩󵄩󵄩󵄩𝜇𝛼 (𝑇𝛼𝑥) − 𝜇𝑇𝑥

󵄩󵄩󵄩󵄩 ≤
󵄨󵄨󵄨󵄨𝜇 − 𝜇

𝛼

󵄨󵄨󵄨󵄨 ‖𝑥‖ + 𝛼𝛾 ‖𝑥‖ ,

󵄩󵄩󵄩󵄩𝑇𝛼𝑥 − 𝑇𝑥
󵄩󵄩󵄩󵄩 ≤

𝛼𝛾 (5 ‖𝑥‖ + ‖𝑇𝑥‖)

2 + 𝛾 (𝐿 + 𝛼)
≤ 𝛼𝑀 (𝑥) ,

(37)

where,𝑀(𝑥) = 𝛾(5‖𝑥‖ + ‖𝑇𝑥‖).

Theorem 12. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻 and ℎ : 𝐶 → 𝐻 a contraction with
𝜌 ∈ (0, 1), 𝑈 ∩ 𝐸𝑃(𝜙) ̸= 0, and 𝜙 a bifunction from 𝐶 × 𝐶 into
R satisfying (𝐴1), (𝐴2), (𝐴3), and (𝐴4). Let {𝑥

𝑛
} be sequence

generated by

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛
= 𝜃
𝑛
ℎ (𝑥
𝑛
) + (1 − 𝜃

𝑛
) 𝑇
𝑛
(𝑢
𝑛
) ,

(38)



Abstract and Applied Analysis 5

where, 𝑃
𝑐
[𝐼 − 𝛾∇𝑓

𝛼𝑛
] = 𝜆

𝑛
𝐼 + (1 − 𝜆

𝑛
)𝑇
𝑛
, 0 < 𝛾 < 2/𝐿 and

𝜆
𝑛
= (2 − 𝛾(𝐿 + 𝛼

𝑛
))/4.

(i) {𝛽
𝑛
} ⊂ (0, +∞) lim inf

𝑛→∞
𝛽
𝑛
> 0;

(ii) {𝜃
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝜃
𝑛
= 0;

(iii) 𝛼
𝑛
= 𝑜(𝜃
𝑛
).

Then, {𝑥
𝑛
} converges strongly to a point 𝑞 ∈ 𝑈 ∩ 𝐸𝑃(𝜙)

which solves the variational inequality (32).

Proof. Pick any 𝑝 ∈ 𝑈 ∩ EP(𝜙), 𝑢
𝑛
= 𝐺
𝛽𝑛
𝑥
𝑛
, 𝑝 = 𝐺

𝛽𝑛
𝑝; then

we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 , (39)

(noting 𝑇𝑝 = 𝑝)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜃𝑛ℎ (𝑥𝑛) + (1 − 𝜃

𝑛
) 𝑇
𝑛
(𝑢
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜃𝑛 (ℎ (𝑥𝑛) − ℎ (𝑝)) + 𝜃

𝑛
(ℎ (𝑝) − 𝑝)

+ (1 − 𝜃
𝑛
) (𝑇
𝑛
(𝑢
𝑛
) − 𝑝)

󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜃
𝑛

󵄩󵄩󵄩󵄩ℎ (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜃
𝑛
) [
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛 (𝑝) − 𝑇 (𝑝)

󵄩󵄩󵄩󵄩]

≤ (1 − (1 − 𝜌) 𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜃
𝑛

󵄩󵄩󵄩󵄩ℎ (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛
𝑀
1
;

(40)

hence,
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤
1

1 − 𝜌
[
󵄩󵄩󵄩󵄩ℎ (𝑝) − 𝑝

󵄩󵄩󵄩󵄩 +𝑀
1
] . (41)

So, {𝑥
𝑛
} is bounded. Next, we claim that ‖𝑥

𝑛
− 𝑢
𝑛
‖ → 0.

Take 𝑝 ∈ 𝑈 ∩ EP(𝜙); by Lemma 3, we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝛽𝑛
𝑥
𝑛
− 𝑇
𝛽𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥
𝑛
− 𝑝, 𝑢

𝑛
− 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

) .

(42)

It follows that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜃𝑛 (ℎ(𝑥𝑛) − 𝑝) + (1 − 𝜃

𝑛
) (𝑇
𝑛
𝑢
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜃
𝑛
)
2

[
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑇

𝑛
𝑝 + 𝑇
𝑛
𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩

2

]

+ 2𝜃
𝑛
⟨ℎ (𝑥
𝑛
) − 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝜃
𝑛
)
2

× [
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩

2

]

+ 2𝜃
𝑛
⟨ℎ (𝑥
𝑛
) − 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝜃
𝑛
)
2

× ([
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

]

+ 2
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩

2

) + 2𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜃
𝑛
⟨ℎ (𝑝) − 𝑝, 𝑥

𝑛
− 𝑝⟩ .

(43)

So, ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0. Next, we show that ‖𝑥

𝑛
− 𝑇
𝑛
𝑥
𝑛
‖ → 0,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑢
𝑛
+ 𝑇
𝑛
𝑢
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛

󵄩󵄩󵄩󵄩ℎ (𝑥𝑛) − 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛
+ 𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
+ 𝑇
𝑛
𝑥
𝑛
− 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(44)

Observe that
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜆𝑛𝑢𝑛 + (1 − 𝜆

𝑛
) 𝑇
𝑛
𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 .

(45)

Hence,
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝛾∇𝑓) 𝑢

𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓) 𝑢

𝑛
− 𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛾𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(46)

So,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝛾∇𝑓) 𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (47)

Since {𝑢
𝑛
} is bounded, there exists {𝑢

𝑛𝑖
} such that {𝑢

𝑛𝑖
} ⇀

𝑞. Since 𝐶 is closed and convex, 𝐶 is weakly closed. So, we
have 𝑞 ∈ 𝐶. Let us show that 𝑞 ∈ 𝑈. Assume that 𝑞 ∈𝑈. Since
𝑢
𝑛𝑖
⇀ 𝑞 and 𝑞 ̸= 𝑇𝑞, it follows from the Opial’s condition that

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑞

󵄩󵄩󵄩󵄩󵄩

< lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑇𝑞

󵄩󵄩󵄩󵄩󵄩

≤ lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑇𝑢
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇𝑢
𝑛𝑖
− 𝑇𝑞

󵄩󵄩󵄩󵄩󵄩
)

≤ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑞

󵄩󵄩󵄩󵄩󵄩
.

(48)

This is a contradiction. So, we get 𝑞 ∈ 𝑈.
Next, we show that 𝑞 ∈ EP(𝜙). Since 𝑢

𝑛
= 𝐺
𝛽𝑛
𝑥
𝑛
, for any

𝑦 ∈ 𝐶, we obtain

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0. (49)



6 Abstract and Applied Analysis

From (𝐴2), we have
1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 𝜙 (𝑦, 𝑢

𝑛
) . (50)

Replacing 𝑛 with 𝑛
𝑖
, we have

⟨𝑦 − 𝑢
𝑛𝑖
,

𝑢
𝑛𝑖
− 𝑥
𝑛𝑖

𝛽
𝑛𝑖

⟩ ≥ 𝜙 (𝑦, 𝑢
𝑛𝑖
) . (51)

Since (𝑢
𝑛𝑖
− 𝑥
𝑛𝑖
)/𝛽
𝑛𝑖

→ 0 and 𝑢
𝑛𝑖
⇀ 𝑞, it follows from (𝐴

4
)

that 0 ≥ 𝜙(𝑦, 𝑞), for all 𝑦 ∈ 𝐶. Let 𝑧
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑞 for

all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then, we have 𝑧
𝑡
∈ 𝐶 and hence

𝜙(𝑧
𝑡
, 𝑞) ≤ 0. Thus, from (𝐴1) and (𝐴4) we have
0 = 𝜙 (𝑧

𝑡
, 𝑧
𝑡
) ≤ 𝑡𝜙 (𝑧

𝑡
, 𝑦) + (1 − 𝑡) 𝜙 (𝑧

𝑡
, 𝑞) ≤ 𝑡𝜙 (𝑧

𝑡
, 𝑦)

(52)
and hence 0 ≤ 𝜙(𝑧

𝑡
, 𝑦). From (𝐴

3
), we have 0 ≤ 𝜙(𝑞, 𝑦) for

all 𝑦 ∈ 𝐶 and hence 𝑞 ∈ EP(𝜙). Therefore, 𝑞 ∈ 𝑈 ∩ EP(𝜙).
On the other hand,
𝑥
𝑛
− 𝑞 = 𝜃

𝑛
(ℎ (𝑥
𝑛
) − 𝑞) + (1 − 𝜃

𝑛
) (𝑇
𝑛
𝑢
𝑛
− 𝑞) , (53)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

= 𝜃
𝑛
⟨ℎ (𝑥
𝑛
) − 𝑞, 𝑥

𝑛
− 𝑞⟩ + (1 − 𝜃

𝑛
) ⟨𝑇
𝑛
𝑢
𝑛
− 𝑞, 𝑥

𝑛
− 𝑞⟩

= 𝜃
𝑛
⟨ℎ (𝑥
𝑛
) − ℎ (𝑞) , 𝑥

𝑛
− 𝑞⟩

+ (1 − 𝜃
𝑛
) ⟨𝑇
𝑛
𝑢
𝑛
− 𝑇
𝑛
𝑞, 𝑥
𝑛
− 𝑞⟩

+ (1 − 𝜃
𝑛
) ⟨𝑇
𝑛
𝑞 − 𝑇𝑞, 𝑥

𝑛
− 𝑞⟩ + 𝜃

𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛
− 𝑞⟩

≤ 𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛
− 𝑞⟩ + (1 − 𝜃

𝑛
) 𝛼
𝑛
𝑀
2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ;

(54)
then 𝑥

𝑛𝑗
→ 𝑞 if 𝑥

𝑛𝑗
⇀𝑞.

Next, we prove that 𝑞 solves the VI (problem):

(𝐼 − ℎ) (𝑥
𝑛
) = −

1

𝜃
𝑛

(𝐼 − 𝑇
𝑛
𝑄
𝛽𝑛
) 𝑥
𝑛
+ (𝐼 − 𝑇

𝑛
𝑄
𝛽𝑛
) 𝑥
𝑛
. (55)

Note that
⟨(𝐼 − ℎ) 𝑞, 𝑞 − 𝑝⟩

= lim
𝑗→∞

⟨(𝐼 − ℎ) (𝑥
𝑛𝑗
) , 𝑥
𝑛𝑗
− 𝑝⟩

= lim
𝑗→∞

[−
1

𝜃
𝑛𝑗

⟨(𝐼 − 𝑇
𝑛
𝑄
𝛽𝑛𝑗

) 𝑥
𝑛𝑗

− (𝐼 − 𝑇
𝑛𝑗
𝑄
𝛽𝑛𝑗

) 𝑝, 𝑥
𝑛𝑗
− 𝑝⟩

−
1

𝜃
𝑛𝑗

⟨(𝐼 − 𝑇
𝑛𝑗
𝑄
𝛽𝑛𝑗

) 𝑝, 𝑥
𝑛𝑗
− 𝑝⟩

+⟨(𝐼 − 𝑇
𝑛𝑗
𝑄
𝛽𝑛𝑗

) 𝑥
𝑛𝑗
, 𝑥
𝑛𝑗
− 𝑝⟩]

≤ 0.

(56)

3.2. Convergence of the Explicit Scheme

Theorem 13. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻, ℎ : 𝐶 → 𝐻 a contractionwith 𝜌 ∈ (0, 1),
𝑈∩𝐸𝑃(𝜙) ̸= 0, and 𝜙 a bifunction from 𝐶×𝐶 intoR satisfying
(𝐴1), (𝐴2), (𝐴3), and (𝐴4). Let {𝑥

𝑛
} be sequence generated by

𝑥
1
∈ 𝐻 and

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝜃
𝑛
ℎ (𝑥
𝑛
) + (1 − 𝜃

𝑛
) 𝑇
𝑛
𝑢
𝑛
,

(57)

where 𝑃
𝑐
[𝐼 − 𝛾∇𝑓

𝛼𝑛
] = 𝜆

𝑛
𝐼 + (1 − 𝜆

𝑛
)𝑇
𝑛
, 0 < 𝛾 < 2/𝐿 and

𝜆
𝑛
= (2 − 𝛾(𝐿 + 𝛼

𝑛
))/4, 𝑢

𝑛
= 𝐺
𝛽𝑛
𝑥
𝑛
. Let {𝛼

𝑛
} and {𝜃

𝑛
} satisfy

the following conditions:

(i) {𝜃n} ⊂ (0, 1), lim
𝑛→∞

𝜃
𝑛

= 0, ∑∞
𝑛=1

𝜃
𝑛

= ∞,
∑
∞

𝑛=1
|𝜃n+1 − 𝜃n| < ∞;

(ii) 𝛼
𝑛
= 𝑜(𝜃
𝑛
) ∑
∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞;

(iii) {𝛽
𝑛
} ∈ (0, +∞), lim

𝑛→∞
𝛽
𝑛
> 0 and∑∞

𝑛=1
|𝛽
𝑛+1

−𝛽
𝑛
| <

∞.

Then, {𝑥
𝑛
} and {𝑢

𝑛
} converge strongly to a point 𝑞 ∈ 𝑈 ∩

𝐸𝑃(𝜙) which solves the variational inequality (32).

Proof. First we prove that {𝑥
𝑛
} is bounded.

Taking any 𝑝 ∈ 𝑈 ∩ EP(𝜙), we have

𝑢
𝑛
= 𝐺
𝛽𝑛
𝑥
𝑛
, 𝑝 = 𝐺

𝛽𝑛
𝑝. (58)

So, ‖𝑢
𝑛
− 𝑝‖ ≤ ‖𝑥

𝑛
− 𝑝‖,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜃𝑛ℎ (𝑥𝑛) + (1 − 𝜃

𝑛
) 𝑇
𝑛
(𝑢
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜃𝑛 (ℎ (𝑥𝑛) − ℎ (𝑝)) + 𝜃

𝑛
(ℎ (𝑝) − 𝑝)

+ (1 − 𝜃
𝑛
) (𝑇
𝑛
(𝑢
𝑛
) − 𝑝)

󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜃
𝑛

󵄩󵄩󵄩󵄩ℎ (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜃
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛 (𝑝) − 𝑇 (𝑝)

󵄩󵄩󵄩󵄩]

≤ (1 − (1 − 𝜌) 𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜃
𝑛

󵄩󵄩󵄩󵄩ℎ (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛
𝑀
3

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ;

1

1 − 𝜌
[
󵄩󵄩󵄩󵄩ℎ (𝑝) − 𝑝

󵄩󵄩󵄩󵄩 +𝑀
3
]} .

(59)

So, {𝑥
𝑛
} is bounded.
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Next we prove that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩[𝜃𝑛ℎ (𝑥𝑛) + (1 − 𝜃

𝑛
) 𝑇
𝑛
𝑢
𝑛
]

− [𝜃
𝑛−1

ℎ (𝑥
𝑛−1

) + (1 − 𝜃
𝑛−1

) 𝑇
𝑛−1

𝑢
𝑛−1

]
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜃𝑛 (ℎ (𝑥𝑛) − ℎ (𝑥

𝑛−1
)) + (1 − 𝜃

𝑛
) (𝑇
𝑛
𝑢
𝑛
− 𝑇
𝑛
𝑢
𝑛−1

)

+ (𝜃
𝑛
− 𝜃
𝑛−1

) (ℎ (𝑥
𝑛−1

) − 𝑇
𝑛
𝑢
𝑛−1

)

+ (1 − 𝜃
𝑛−1

) (𝑇
𝑛
𝑢
𝑛−1

− 𝑇
𝑛−1

𝑢
𝑛−1

)
󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜃𝑛 − 𝜃

𝑛−1

󵄨󵄨󵄨󵄨 [
󵄩󵄩󵄩󵄩ℎ (𝑥𝑛−1)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛−1

󵄩󵄩󵄩󵄩]

+ (1 − 𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛−1

󵄩󵄩󵄩󵄩

+ (1 − 𝜃
𝑛−1

)
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛−1 − 𝑇

𝑛−1
𝑢
𝑛−1

󵄩󵄩󵄩󵄩 .

(60)

From 𝑢
𝑛+1

= 𝐺
𝛽𝑛+1

𝑥
𝑛+1

and 𝑢
𝑛
= 𝐺
𝛽𝑛
𝑥
𝑛
, we note that

𝜙 (𝑢
𝑛+1

, 𝑦) +
1

𝛽
𝑛+1

⟨𝑦 − 𝑢
𝑛+1

, 𝑢
𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(61)

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (62)

Putting 𝑦 = 𝑢
𝑛
in (61) and 𝑦 = 𝑢

𝑛+1
in (62), we have

𝜙 (𝑢
𝑛+1

, 𝑢
𝑛
) +

1

𝛽
𝑛+1

⟨𝑢
𝑛
− 𝑢
𝑛+1

, 𝑢
𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝜙 (𝑢
𝑛
, 𝑢
𝑛+1

) +
1

𝛽
𝑛

⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(63)

So, from (A2), we have

⟨𝑢
𝑛+1

− 𝑢
𝑛
,
𝑢
𝑛
− 𝑥
𝑛

𝛽
𝑛

−
𝑢
𝑛+1

− 𝑥
𝑛+1

𝛽
𝑛+1

⟩ ≥ 0, (64)

and hence

⟨𝑢
𝑛+1

−𝑢
𝑛
, 𝑢
𝑛
−𝑢
𝑛+1

+𝑢
𝑛+1

−𝑥
𝑛
−

𝛽
𝑛

𝛽
𝑛+1

(𝑢
𝑛+1

− 𝑥
𝑛+1

)⟩ ≥ 0.

(65)

Since lim
𝑛→∞

𝛽
𝑛
> 0, without loss of generality, let us

assume that there exists a real number 𝑎 such that 𝛽
𝑛
> 𝑎 > 0

for all 𝑛 ∈ N. Thus, we have

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑥
𝑛+1

− 𝑥
𝑛
+ (1 −

𝛽
𝑛

𝛽
𝑛+1

) (𝑢
𝑛+1

− 𝑥
𝑛+1

)⟩

≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

× {
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝛽
𝑛

𝛽
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩} ;

(66)

thus,

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
1

𝑎

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽
𝑛

󵄨󵄨󵄨󵄨𝑀4,
(67)

where𝑀
4
= sup{‖𝑢

𝑛
− 𝑥
𝑛
‖ : 𝑛 ∈ N},

󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛−1 − 𝑇
𝑛−1

𝑢
𝑛−1

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) − [2 − 𝛾 (𝐿 + 𝛼

𝑛
)] 𝐼

2 + 𝛾 (𝐿 + 𝛼
𝑛
)

𝑢
𝑛−1

−

4𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛−1
) − [2 − 𝛾 (𝐿 + 𝛼

𝑛−1
)] 𝐼

2 + 𝛾 (𝐿 + 𝛼
𝑛−1

)
𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
)

2 + 𝛾 (𝐿 + 𝛼
𝑛
)
𝑢
𝑛−1

−

4𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛−1
)

2 + 𝛾 (𝐿 + 𝛼
𝑛−1

)
𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

− [2 − 𝛾 (𝐿 + 𝛼
𝑛
)]

2 + 𝛾 (𝐿 + 𝛼
𝑛
)

𝑢
𝑛−1

+
[2 − 𝛾 (𝐿 + 𝛼

𝑛−1
)]

2 + 𝛾 (𝐿 + 𝛼
𝑛−1

)
𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(4 [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)] 𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛−1

− 4 [2 + 𝛾 (𝐿 + 𝛼
𝑛
)] 𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛−1
) 𝑢
𝑛−1

)

× ([2 + 𝛾(𝐿 + 𝛼
𝑛
)][2 + 𝛾(𝐿 + 𝛼

𝑛−1
)])
−1󵄩󵄩󵄩󵄩󵄩

+
4𝛾

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

[2 + 𝛾 (𝐿 + 𝛼
𝑛
)] [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)]

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4𝛾 (𝛼
𝑛−1

− 𝛼
𝑛
) 𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛−1

[2 + 𝛾 (𝐿 + 𝛼
𝑛
)] [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)]

+ (4 (2 + 𝛾 (𝐿 + 𝛼
𝑛
))

× [𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛−1

− 𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛−1
) 𝑢
𝑛−1

])

× ([2 + 𝛾(𝐿 + 𝛼
𝑛
)][2 + 𝛾(𝐿 + 𝛼

𝑛−1
)])
−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
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+
4𝛾

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

[2 + 𝛾 (𝐿 + 𝛼
𝑛
)] [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)]

≤

4𝛾
󵄨󵄨󵄨󵄨𝛼𝑛−1 − 𝛼

𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩

[2 + 𝛾 (𝐿 + 𝛼
𝑛
)] [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)]

+
4𝛾

󵄨󵄨󵄨󵄨𝛼𝑛−1 − 𝛼
𝑛

󵄨󵄨󵄨󵄨 [2 + 𝛾 (𝐿 + 𝛼
𝑛
)]
󵄩󵄩󵄩󵄩𝑢𝑛−1

󵄩󵄩󵄩󵄩

[2 + 𝛾 (𝐿 + 𝛼
𝑛
)] [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)]

+
4𝛾

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

[2 + 𝛾 (𝐿 + 𝛼
𝑛
)] [2 + 𝛾 (𝐿 + 𝛼

𝑛−1
)]

≤
󵄨󵄨󵄨󵄨𝛼𝑛−1 − 𝛼

𝑛

󵄨󵄨󵄨󵄨 [𝛾
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩
+ 5𝛾

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩]

≤ 𝑀
5

󵄨󵄨󵄨󵄨𝛼𝑛−1 − 𝛼
𝑛

󵄨󵄨󵄨󵄨 .

(68)

So

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ [1 − (1 − 𝜌) 𝜃
𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
6
[
󵄨󵄨󵄨󵄨𝜃𝑛 − 𝜃

𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨] .

(69)

So

lim 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0,

lim 󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0.

(70)

Next, we prove that ‖𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
‖ → 0,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜃𝑛 (ℎ (𝑥𝑛) − 𝑝) + (1 − 𝜃

𝑛
) (𝑇
𝑛
𝑢
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜃
𝑛
)
2

[
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑇

𝑛
𝑝 + 𝑇
𝑛
𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩

2

]

+ 2𝜃
𝑛
⟨ℎ (𝑥
𝑛
) − 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝜃
𝑛
)
2

× [
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩

2

]

+ 2𝜃
𝑛
⟨ℎ (𝑥
𝑛
) − 𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝜃
𝑛
)
2

× ([
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

]

+ 2
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇𝑛𝑝 − 𝑇𝑝
󵄩󵄩󵄩󵄩

2

)

+ 2𝜃
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜃
𝑛
⟨ℎ (𝑝) − 𝑝, 𝑥

𝑛
− 𝑝⟩ .

(71)

So, ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1
+ 𝑥
𝑛+1

− 𝑇
𝑛
𝑢
𝑛
+ 𝑇
𝑛
𝑢
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛

󵄩󵄩󵄩󵄩ℎ (𝑥𝑛) − 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛
+ 𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
+ 𝑇
𝑛
𝑥
𝑛
− 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(72)

Observe that
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜆𝑛𝑢𝑛 + (1 − 𝜆

𝑛
) 𝑇
𝑛
𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 .

(73)

Hence,
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝛾∇𝑓) 𝑢

𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓) 𝑢

𝑛
− 𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝛾∇𝑓

𝛼𝑛
) 𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛾𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇𝑛𝑢𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(74)

So,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝛾∇𝑓) 𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (75)

Since {𝑢
𝑛
} is bounded, there exists {𝑢

𝑛𝑖
} such that {𝑢

𝑛𝑖
} ⇀

𝑞. Since 𝐶 is closed and convex, 𝐶 is weakly closed. So, we
have 𝑞 ∈ 𝐶. Let us show that 𝑞 ∈ 𝑈. Assume that 𝑞 ∈𝑈. Since
𝑢
𝑛𝑖
⇀ 𝑞 and 𝑞 ̸= 𝑇𝑞, it follows from the Opial’s condition that

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑞

󵄩󵄩󵄩󵄩󵄩

< lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑇𝑞

󵄩󵄩󵄩󵄩󵄩

≤ lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑇𝑢
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇𝑢
𝑛𝑖
− 𝑇𝑞

󵄩󵄩󵄩󵄩󵄩
)

≤ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑞

󵄩󵄩󵄩󵄩󵄩
.

(76)

This is a contradiction. So, we get 𝑞 ∈ 𝑈.
Next We show that 𝑞 ∈ EP(𝜙). Since 𝑢

𝑛
= 𝐺
𝛽𝑛
𝑥
𝑛
, for any

𝑦 ∈ 𝐶, we obtain

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0. (77)

From (𝐴2), we have
1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 𝜙 (𝑦, 𝑢

𝑛
) . (78)

Replacing 𝑛 with 𝑛
𝑖
, we have

⟨𝑦 − 𝑢
𝑛𝑖
,

𝑢
𝑛𝑖
− 𝑥
𝑛𝑖

𝛽
𝑛𝑖

⟩ ≥ 𝜙 (𝑦, 𝑢
𝑛𝑖
) . (79)
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Since (𝑢
𝑛𝑖
− 𝑥
𝑛𝑖
)/𝛽
𝑛𝑖

→ 0 and 𝑢
𝑛𝑖
⇀ 𝑞, it follows from (𝐴

4
)

that 0 ≥ 𝜙(𝑦, 𝑞), for all 𝑦 ∈ 𝐶. Let 𝑧
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑞 for

all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then, we have 𝑧
𝑡
∈ 𝐶 and hence

𝜙(𝑧
𝑡
, 𝑞) ≤ 0. Thus, from (𝐴1) and (𝐴4), we have

0 = 𝜙 (𝑧
𝑡
, 𝑧
𝑡
) ≤ 𝑡𝜙 (𝑧

𝑡
, 𝑦) + (1 − 𝑡) 𝜙 (𝑧

𝑡
, 𝑞) ≤ 𝑡𝜙 (𝑧

𝑡
, 𝑦)

(80)

and hence 0 ≤ 𝜙(𝑧
𝑡
, 𝑦). From (𝐴

3
), we have 0 ≤ 𝜙(𝑞, 𝑦) for

all 𝑦 ∈ 𝐶 and hence 𝑞 ∈ EP(𝜙). Therefore, 𝑞 ∈ 𝑈 ∩ EP(𝜙).
We assume that; 𝑥

𝑛𝑖
⇀ 𝑥, then 𝑥 ∈ EP(𝜙) ∩ 𝑈,

lim sup
𝑛→∞

⟨(𝐼 − ℎ) 𝑞, 𝑞 − 𝑥
𝑛
⟩ = ⟨(𝐼 − ℎ) 𝑞, 𝑞 − 𝑥⟩ ≤ 0. (81)

Finally, we prove that 𝑥
𝑛
→ 𝑞,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜃𝑛(ℎ(𝑥𝑛) − 𝑞) + (1 − 𝜃

𝑛
)(𝑇
𝑛
𝑢
𝑛
− 𝑇𝑞)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜃𝑛 (ℎ (𝑥𝑛) − ℎ (𝑞))

+ (1 − 𝜃
𝑛
)(𝑇
𝑛
𝑢
𝑛
− 𝑇𝑞) + 𝜃

𝑛
(ℎ(𝑞) − 𝑞)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝜃𝑛(ℎ(𝑥𝑛) − ℎ(𝑞)) + (1 − 𝜃

𝑛
)(𝑇
𝑛
𝑢
𝑛
− 𝑇𝑞)

󵄩󵄩󵄩󵄩

2

+ 2𝜃
𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ 𝜃
𝑛

󵄩󵄩󵄩󵄩(ℎ(𝑥𝑛) − ℎ(𝑞))
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜃
𝑛
)

×
󵄩󵄩󵄩󵄩(𝑇𝑛𝑢𝑛 − 𝑇𝑞)

󵄩󵄩󵄩󵄩

2

+ 2𝜃
𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ 𝜃
𝑛
𝜌
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜃
𝑛
)

×
󵄩󵄩󵄩󵄩(𝑇𝑛𝑢𝑛 − 𝑇

𝑛
𝑞 + 𝑇
𝑛
𝑞 − 𝑇𝑞)

󵄩󵄩󵄩󵄩

2

+ 2𝜃
𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ 𝜃
𝑛
𝜌
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜃
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼
𝑛
𝑀
7
]
2

+ 2𝜃
𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ [1 − (1 − 𝜌) 𝜃
𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜃
𝑛
) [2𝛼
𝑛
𝑀
7

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝛼
2

𝑛
𝑀
2

7
]

+ 2𝜃
𝑛
⟨ℎ (𝑞) − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

2

= (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
𝛿
𝑛
.

𝛽
𝑛
= (1 − 𝜌) 𝜃

𝑛
,

𝛿
𝑛
=

1

1 − 𝜌
[
𝛼
𝑛

𝜃
𝑛

(1 − 𝜃
𝑛
) 2𝑀
7

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (1 − 𝜃

𝑛
)𝑀
2

7

𝛼
2

𝑛

𝜃
𝑛

+2 ⟨ℎ (𝑞) − 𝑞, 𝑥
𝑛+1

− 𝑞⟩ ] ,

(82)

by Lemma 9 and lim
𝑛→∞

𝛽
𝑛

= 0,∑
∞

𝑛=0
𝛽
𝑛

= ∞;
lim sup

𝑛→∞
𝛿
𝑛
≤ 0, then 𝑥

𝑛
→ 𝑞.

4. Application of the Iterative Method

Next, we give an application of Theorem 13 to the split
feasibility problem (say SFP, for short) which was introduced
by Censor and Elfving [27],

find 𝑥 ∈ 𝐶, such that 𝐴𝑥 ∈ 𝑄, (83)

where𝐶 and𝑄 are nonempty closed convex subsets ofHilbert
space 𝐻

1
and 𝐻

2
, respectively. 𝐴 : 𝐻

1
→ 𝐻

2
is a bounded

linear operator.
It is clear that 𝑥

∗ is a solution to the split feasibility
problem (83) if and only if 𝑥∗ ∈ 𝐶 and 𝐴𝑥

∗
− 𝑃
𝑄
𝐴𝑥
∗
= 0.

We define the proximity function 𝑓 by

𝑓 (𝑥) =
1

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑃
𝑄
𝐴𝑥

󵄩󵄩󵄩󵄩

2

, (84)

and consider the convex optimization problem

min
𝑥∈𝐶

𝑓 (𝑥) = min
𝑥∈𝐶

1

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑃
𝑄
𝐴𝑥

󵄩󵄩󵄩󵄩

2

. (85)

Then, 𝑥∗ solves the split feasibility problem (83) if and
only if 𝑥∗ solves theminimization (85) with theminimization
equal to 0. Byrne [28] introduced the so-called 𝐶𝑄 algorithm
to solve the (SFP),

𝑥
𝑛+1

= 𝑃
𝐶
(𝐼 − 𝜇𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

𝑛
, 𝑛 ≥ 0, (86)

where 0 < 𝜇 < 2/‖𝐴
∗
𝐴‖ = 2/‖𝐴‖

2 .
He obtained that the sequence {𝑥

𝑛
} generated by (86)

converges weakly to a solution of the (SFP).
Now we consider the regularization technique; let

𝑓
𝛼
(𝑥) =

1

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑃
𝑄
𝐴𝑥

󵄩󵄩󵄩󵄩

2

+
𝛼

2
‖𝑥‖
2
. (87)

ApplyingTheorem 13, we obtain the following result.

Theorem 14. Assume that the split problem (83) is consistent.
Let𝐶 be a nonempty closed convex subset of a real Hilbert space
𝐻, ℎ : 𝐶 → 𝐻 a contraction with 𝜌 ∈ (0, 1), 𝑈 ∩ 𝐸𝑃(𝜙) ̸= 0,
and 𝜙 be a bifunction from 𝐶×𝐶 intoR satisfying (𝐴1), (𝐴2),
(𝐴3), and (𝐴4). Let {𝑥

𝑛
} be sequence generated by 𝑥

1
∈ 𝐻 and

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝛽
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝜃
𝑛
ℎ (𝑥
𝑛
) + (1 − 𝜃

𝑛
) 𝑇
𝑛
𝑢
𝑛
,

(88)

where

𝑃
𝐶
[𝐼 − 𝜇 (𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴 + 𝛼

𝑛
𝐼)] = 𝜆

𝑛
𝐼 + (1 − 𝜆

𝑛
) 𝑇
𝑛
,

𝜆
𝑛
=

2 − 𝜇 (‖𝐴‖
2
+ 𝛼
𝑛
)

4
,

(89)

where 𝑢
𝑛

= 𝐺
𝛽𝑛
𝑥
𝑛
; let {𝛼

𝑛
}, {𝜃
𝑛
} satisfy the following con-

ditions:

(i) {𝜃
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝜃
𝑛

= 0,∑
∞

𝑛=1
𝜃
𝑛

=

∞, ∑
∞

𝑛=1
|𝜃
𝑛+1

− 𝜃
𝑛
| < ∞, 0 < 𝜇 < 2/‖𝐴

∗
𝐴‖ =

2/‖𝐴‖
2;
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(ii) 𝛼
𝑛
= 𝑜(𝜃
𝑛
) ∑
∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞;

(iii) {𝛽
𝑛
} ∈ (0, +∞), lim

𝑛→∞
𝛽
𝑛
> 0 and∑∞

𝑛=1
|𝛽
𝑛+1

−𝛽
𝑛
| <

∞.

Then, {𝑥
𝑛
} and {𝑢

𝑛
} converge strongly to a point 𝑞 ∈ 𝑈 ∩

𝐸𝑃(𝜙) which solves the variational inequality (32).

Proof. By the definition of the function 𝑓
𝛼
, we have

∇𝑓
𝛼
(𝑥) = 𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴𝑥 + 𝛼𝑥, (90)

and ∇𝑓
𝛼
is 1/(‖𝐴‖2 + 𝛼)-ism,

󵄩󵄩󵄩󵄩∇𝑓𝛼 (𝑥) − ∇𝑓
𝛼
(𝑦)

󵄩󵄩󵄩󵄩 ≤ ‖A‖2 + 𝛼; (91)

then, due toTheorem 13, we have the conclusion immediately.
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