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Let C be the field of all complex numbers, M,, the space of all n x n matrices over C, and S,, the subspace of M,, consisting of all
symmetric matrices. The map ¢ : S, — M, satisfies that A — AB is k-potent in S, implying that ¢(A) — Ap(B) is k-potent in M,,
where A € C, then there exist an invertible matrix P € M, and € € C with e = € such that o(X) = eP Y (X)P for every X € §,.
Moreover, the inductive method used in this paper can be used to characterise similar maps from M,, to M,,.

1. Introduction

Let C be the field of all complex numbers, M,, the space of all
n x n matrices over C, T, the subspace of M,, consisting of
all triangular matrices, and S, the subspace of M,, consisting
of all symmetric matrices. For fixed integer k > 2, A €
M, is called a k-potent matrix if A¥ = A; especially,
A is an idempotent matrix when k = 2. The map ¢ :
S, — M, satisfies that A — AB is a k-potent matrix in
S, implying that ¢(A) — A¢(B) is a k-potent matrix in M,
where A € C, is a kind of the so-called weak preservers.
While replacing “implying that” with “if and only if] ¢ is
called strong preserver. Obviously, a strong preserver must be
a weak preserver, while a weak preserver may not be a strong
preserver.

The preserver problem in this paper is from LPPs but
without linear assumption (more details about LPP in [1-3]).
You and Wang characterized the strong k-potence preservers
from M,, to M,, in [4]; then Song and Cao extended the result
to weak preservers from M, to M, in [5]. In [6], Wang and
You characterized the strong k-potence preservers from T,
to M,,. In this paper, the authors characterized the weak k-
potence preservers from S, to M, and proved the following
theorem.

Theorem 1. Suppose ¢ : S, — M, satisfy that A— AB is a
k-potent matrix in S, implying that $(A) — A$(B) is a k-potent
matrix in M,,, where A € C. Then there exist invertible P € M,
and € € C with € = € such that $(X) = eP™' XP for every
XeS,.

Furthermore, we can derive the following corollary from
Theorem 1.

Corollary 2. Suppose ¢ : S, — S, satisfy that A — ABis a
k-potent matrix in S, implying that $(A) — A¢(B) is a k-potent
matrix in S,, where A € C. Then there exist invertible P € M,
and e € C with € = € such that $(X) = eP ' XP for every
X €S, where PP' = al, for some nonzero a € C.

In fact, the proof of Theorem 1 through some adjustments
is suitable for the weak k-potence preserver from M,, to M,,,
and more details can be seen in remarks.

2. Notations and Lemmas

I, denotes the set of all k-potent matrices in M,,, while ST, =
I, N S,. A denotes the set of all complex number e satistying

& =1,A=Au{0. E;; denotes matrices in M, with 1 in



(i, j) and 0 elsewhere, and I,, denotes the unit matrix in M,,.
(n) denotes the set of integer s satisfy 1 < s < n. GL,, denotes
the general linear group consisting of all invertible matrices
in M,,. D, denotes an arbitrary diagonal matrix in M,,. For
A, B € M,, A and B are orthogonal if AB = BA = 0. C"™!
denotes the space of all # x 1 matrices over C. ®,, denotes the
set of all maps ¢ : S, — M, satisfying that A — AB is a k-
potent matrix in S, implying that ¢(A) — A¢(B) is a k-potent
matrix in M,,, where A € C.

For an arbitrary matrix X € M,,, we denote by X[i, j] the
term in (i, j) position of X, by Xy; ;.. ., the s x t matrix
with the term in its (p, q) position equal to X[iy, j,], where
ip < -+ <igand j; < -+ < j,. Moreover, we denote by
Xiiyisjinj,) the m X n matrix with the term in its (i, jg)
position equal to X[i,, j,] and terms elsewhere equal to 0. We
especially simplify it with X; _;, when's = t, and i; = j; for
every | € (s). Naturally, X = X1, i]E;; for everyi € (n).

Without fixing X, Xy; _;.; ., also denotes a matrix in
M, with 0 in its (p,q) position, where p ¢ {i},...,i},q ¢
e jiband1<iy < <ig<n,1<j <+ <j,<n.

At first, we need the following Lemmas 3, 4, 5, and 7,
which are about k-potent matrices and orthogonal matrices.

Lemma 3 (see [2]). Suppose X,Y €I, and X + €Y € I, for
every € € A; then X andY are orthogonal.

Lemma 4 ([7, Lemma 1]). Suppose A, A,, ..., A, aren X
n mutually orthogonal nonzero k-potent matrices; then there
exists P € GL, such that P"'A,P = ¢E;; with ck Y= 1 for
everyi € (n).

Lemma 5. Suppose Z € M, |, p, ¢ g, h € CP with

gh' #0, 8 € C, for arbitrary nonzero a € C with ' g + a* 0
-1t
‘g+a)” ’T[qg]""[[:f gh z]el"n.ﬂ/len

Z =0,6 =0, and thereexist A\, A, € Cwith(A;+1)(A,+1) =
1 such that p = A,g and q = A, h.

andt = (" 'h

-1t
Proof. By the assumption of « and 7, 7 [ Zt gh z] is

idempotent. Denote this matrix by X, and then we can get
the following equation:

[In_l —a’'g L -talght alg ] B [0 0]
ht 1 -

In 1
—Toflhtg] X[ i 1 01}
@

Since the matrices on both sides of X satisfy the following
equation:

In—l
th' 1
then the following matrix is k-potent by the assumption of
lemma:
In—l _“_lg Z p
|:Tht 1- Toc_lh’g] <T [qt 5]t X

o | Tt -1 'gh' alg
—th’ 1 ’

—1a 'h'g

I, -ta'ght a'g] _
] [ —th 1 =L @

(3)
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We denote by A the following matrix:

Ly —o'g ([Z pl[ Lo —ra'gh a”lg]
th' 1-ta ' g]|q &|| -tH' 1

then the following equation is obvious:

(ras 3 ]) = a3 9], ®

Unfolding it, we get 78 AF + 771 (.- ), 44 2(---) +[99] =
TA+[90]; thatis, 78 AF + 7571 (- ) 4 T(0) —TA = 0,
where (- - -) ;is the coeflicient matrix of 7 for everyi € (k—1).

LetA = [ e ] then we calculate it and get the following
equations:

Zy=(z-a"9q") (L., - 1" gh') = (p - 8a”" g) T,
p=(Z-a'gq)a " g+p-da'g,
g = (th'Z+q —1a'q'H' g) (I, —1a”'gh')
—(th'p+8 - 8ta ' H' g) TH',
qhg)a'y

+Th'p+ 6 -8t 'H' g.

8= (th'Z+q -’

(6)
. 0 p .
It is easy to get 7(--+); = [q ks, ] and the following
equation:
AR T e ),
7)
-Z, 0
| e =0

Note that the highest degree of o in 7> A is 2; then the highest

degree of « in 7°%(...), , is less or equal to 3k — i for
every i with 2 < i < k -1, and the highest degree of « in

73k [_5‘ k=113, ] is 3k — 1, where Z is the coeflicient matrix

of a®* ' in Z, and & is the coefficient of «®* " in 8.
By the assumption of «, we have Z = 0 and § = 0. Then
the following equations are true:

Z,=-a gq(nl—‘roc ght) prh,

pr=-a'gda g+ p,

(8)
qtl = (qt B m—lqthtg) (In—l 3 m—1ght) T prit,
o, = (qt - T‘X_lqthtg) Oc_lg + Thtp
and 72 = v a7l gq' + a7 gq'ta gh' — prh'] =

2ol gq' + algg'gh' — ph'], where the highest
degree of a is 3k — 2 and —gq' — ph' is the coefficient matrix
of a®*2,
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Now, we calculate the upper left part of 7>¥*2(--.),.

When k = 2, 7%*2(...), = 77*A?, of which the upper
left partis 7*[ pq' (I, —ta "' gh') —q' pa ' gth'] = [ pq' -
1o pg' gh' — 1 q' pgh']. Then in the upper left part of
AT 170 [ _gl (kfi) 5, ], the highest degree of « is 4, and the
coefficient matrix is pq’ + gq* + ph'.

When k > 2,if [J¢] appears in the left (or right) end of
an additive item of 7-2¥*2(-..),, then the upper left part of
this item is 0. So, the upper left part of T2 ), is equal
to the upper left part of 7 *2A[ 9 91 A; that is, the upper
left part is 7% p g\ = v [t apq’ - (q'g + W' p)ph’ -
'a " gq' gq' +a>q' g(q' g+ 1 p)gh'], and the highest degree
of ais 3k — 2 with pg' as the coefficient matrix of a** 2,

By the assumption of &, we have pq’ + gq' + ph' = 0.

By gh' #0, we have g#0, h#0, and p = 0 if and only if
g =0.When p#0,wecanget p = A,gby p(¢' +h')+gq' =0,
and g = L,h by (p + g)q° + ph' = 0, where A, and A, satisfy
MAygh' + A,gh' + A gh’ = 0; thatis, A,A, + A, + A, = 0
by ght # 0, which is equivalent to (A; + 1)(A, + 1) = 1. When
p=g9g=0,A,=1,=0. O

Remark 6. Replacing gh' #0 with gh' = 0 in Lemma 5, we
have g = 0 implies p = O or g+ h = 0, and h = 0 implies
q = 0or p+ g = 0. These cases will not appear in the proof
of Theorem 1, but are necessary for the weak preservers from
M, to M,,.
0 Ala)-A(b))/(a—b

Lemma 7. Suppose A = [(A(a)—liA(b)—l)/(aib)( @ (1))/( )] €
T, forarbitrarya, b € Cwitha#b, where A : C — Cisamap
satisfying A(x) # 0 for every x € C. Then there exists nonzero
Ao € C such that AM(x) = A, for every x € C.

Proof. Since the trace of A is equal to 1, then (A(a) —
AB)A N a) = A7 (b)/(a - b)* = 0, or —1, especially, when
equal to -1,k — 1 = 6p with p € Z". Denote A(a)/A(b) by y,
and a — b by ¢; then we have (2 — y — y™")/c* = 0 or -1.

1) If(2—y—y’1)/c2 = 0, then y = 1, thatis, A(a) = A(b);

(2) if —y—y™")/c* = —1,then y = 2+c*+ V42 + c*)/2.
Whenc =1, A(b + 1)/A(b) = (3 + V/5)/2; when ¢ = 2,
Ab +2)/Mb) = (6 + V/32)/2 = 3 +2+2. But A(b +
1)/A(b) = (3 + \/5)/2 implies A(b + 2)/A(b) = (A(b +
2)/A( + 1)AD + 1)/AbB)) = 1, 0r (7 + 31/5)/2. 1t
is a contradiction! So it is impossible that (2 — y —
y*l)/x2 =-1.

Hence, there exists nonzero A, € C such that A(x) = A,
for every x € C. O

We can prove the following Lemmas 8 and 9 similar as
Lemmas 4 and 5 in [4].

Lemma 8 (see [4], Lemma 4). Suppose ¢ € O,, A and B are
n x n orthogonal k-potent matrices; then ¢(A) and ¢(B) are
orthogonal.

Lemma 9 (see [4], Lemma 5). Suppose ¢ € O,; then ¢ are
homogeneous; that is, p(AX) = AP(X) for every X € S, and
every A € C.

Corollary 10. Suppose ¢ € ®,, A+ B, C € ST, and for every
€€ N A+B+eC € ST, ¢(B+€C) = ¢(B) + ¢(eC). Then
¢(A) + ¢(B) and ¢(C) are orthogonal.

Proof. By the assumption and Lemma 9, we have ¢(A) +
¢B) € I, ¢(C) € I, ¢(A) + ¢(B + eC) = ¢(A) +
¢(B) + €¢(C) € I,. By Lemma 3, ¢(A) + ¢(B) and ¢(C) are
orthogonal. O

Corollary 11. Suppose ¢ € @, and ¢(D,) = D,, for arbitrary
diagonal matrix D,, € M,,. Then for every i, j € (n) withi# j,
@(E;+E;; +D,) = AjE; + /\i_lej,- +D,, where A;; € Cis only
decided by i and j.

Proof. Let A = (1/2)(Eij+Eji+Dn),B = (1/2)(Eii+Ejj—Dn),
andC=},,; j Ens then A, Band C satisfy the assumption of
Corollary 10, and ¢(A) + ¢(B) and ¢(C) are orthogonal; that
is, (/)((E,-j +Ej+ D,)) = o;E; + /BijEij +y;Eji + SjJ-Ejj +D,
for some ay;, B, yji» and §; € C.

Since (' +1) " [(E;j+Ej;+D,) — (D, —n 'E;—nE ;)] =
(1’/71 + r])_l(iflEii +Ej+ Ej; + ;1Ejj) € ST, for arbitrary
nonzero # € C with 1 + #* #0, after applying ¢, we have
(71_1 + ’7)71 [o; By + ﬁijEij +yEj + Sijjj + Tl_lEii + ’1Ejj] =
(1" + 1) oy + (B = DE;; + (yji = DEj; + 8 ;E ;] + (7' +
,7)‘1(;7*1Eii +E;+Ej; +77Ejj) €l,.ByLemma5,a; = 5”- =0,
Bij))ji =L

Let D, = Y|, x;Ey, where x; € C for every ! € (n); then
B;j is the function of i, j, and x; and denote by S;;(D,,) the
value of §;; on xy, ..., x,,, i, and j.

Fix i, j, and D,, and add a free variable x to x; for some
I € (n); then f,;(D,, + xE;;) becomes into a map of x. Since
(1/(a=b)E; + Ej; + D, + aEj;) = (1/(a - b))(E;; + Ej; +
D, +bE;;) € SI, for arbitrarya and b € C witha—-b+#0, then
an]-)Eﬁ +D, +akE; and ¢>(E,-j +E;+D,+ bE]-j) = ﬁ,-j(Dn +
bE;))E; + B (D, + bE;))E; + D, + bE;;, we can derive that
((Bij(D,, + aEj;) — Bj(D,, + bE;)))/(a — b))E;; + ((ﬂ;jl(Dn +
ak;;) - B (D, + bE;;))/(a - b))E;; + Ej; € T,,. By Lemma 7,
Bij(D, + aE;;) = B;;(D, + bE;)) for fixed i, j, and D,,; that is,
Bij(D, + xE;;) = B;;(D,) for arbitrary x € C. Similarly, we
can prove 3;;(D, + xE;;) = B;;(D,,) for arbitrary x € C.

In fact, we have proved that (D, + xE;;) = f;;(D,,) and
Bij(D, + yE;;) = B;;(D,) for arbitrary x, y € C and arbitrary
D,; then ﬁij(Dn + xE; + ijj) = ﬁ,-j(Dn + xE;)(= ﬁ,-j(Dn +
YE;) = ,Bij(Dn) follows.

Since (D, + xE;; + yEy) = (D, + yEy) for fixed i, j,
and [ with [ #1, j, and arbitrary x, y € C, then (1/(a—b))(E,-j+
E;;+D,+(a~b)E ;+aE;)~(1/(a~b))(E;+E;+D,+bEy) € ST,
implies ((/31.]-(Dn+aEll)—/3,.].(Dn+bEll))/(a—b))Eij+((/::’i;1 (D,+
aEy) - B (D, +bEy))/(a—b))E;;+E;;+Ey € T,. By Lemma 7,
we can get 3;(D, + aEy) = B;;(D, + bEy) for arbitrary a and



b € Cwith a - b#0; that is, B;(D, + xEy) = B;(D,) for
arbitrary x € C.

Until now, we have proved that 8,,(D,,) = B;(¥, x,Ey) =
ﬁij(ZE xEy) = -+ = B(x,Eyy) = f;;(0) for arbitrary D,;
that is, 3;; is only decided by i and j. O

Remark 12. The proof of Corollary1l presents the basic
procedure of proof of Theorem 1. In order to decide the image
of matrix A, we use Corollary 10 and the images of B and C,
which usually are diagonal matrices or some matrices with
images already decided.

If ¢ is a weak preserver from M, to M,,, then Corollary 11
is also true. Let A = E;; + D,,, B = —(E;; + Ej; + D,) + Ej;,
and C= Zl;&:; Ej;; then we can prove (/S(A) = a”E” +a;Ej +

a;E; +a;E;; + D, similarly as proving ¢((E +E;+ D )) =
o E; + ﬁl El] + yﬂE +98;E;; + D,, and (a; + l)E + (a,-]- -

,])E,J +(a; - )tlj )Eji+aj;E;; €L, Since o™ 1A+oc"1(—(Eij +
E;+ D,) + aE;) = - 71E], + E;; € I, for arbitrary nonzero
«, then the following matrix is k-potent:

-1 | G aj = Ajj ] a1 [oc 0]
o 1 +a . 9)
[ @i = Aji aj; 00
Remark6tellsusthata =aj;=0,a;-A;=0,0ra;- )tljl =
0; that is, ¢(A) = A;;E;; + D,,, or ¢(A) = )tij E;i+D,, ¢$(A) =
AyiEi + Ay 1E + D,,. Similarly, we can prove §(E;; + D,) =
/\E +Dn,¢(E +D,) = AjE; + Dy, or §(Ej; + D,) =
/\UEU + A E + D,,. Since D, is arbltrary, we set D, = 0 for
convenience.

I 4(E,)
E + 2E;
1mphes (1/3)()t

= AyE;j + A Ej; then (1/3)E;; + (1/3)(5,,. +
= (1/3)(2E; + Ej;; + 2E; + Ej;) € I,
i ,]+)ti"j EJ,)+(1/3)()t,JE,]+)t E +2E; +
E;) = (1/3)2A;E; + 2}tij E; + 2E; + Ej;) € I,; that is,
—-2/9 € A, whichisa contradiction. Hence, we proved that itis
impossible $(E;;) = A;E;i+ A Ejor §(Ej;) = A;E;+ A7 Ej.
If(E;j) = A;;E;;and §(E ;) = A;;E;;, then (1/2)(E;; + E;; +
Ej; + Ej;) € I, implies (1/2)(¢(E;;) + $(E;; + Ej; + Ej;)) € l"n;
that is, (1/2)(E”+2/\ E;; +E]]) € I, which is a contradiction.
Hence, we proved that ¢(E,]) = AjjEjjand §(Ej) = A5 'E., or

ji?
$(E;) = A;'Ej; and §(E;;) =

+ Ey) =

’J ’J

3. Proof of Theorem 1

Suppose ¢ € @,, then we can derive Theorem1 from
Propositions 13, 14, and 16.

Proposition 13. Suppose i, j € (n) with i+ j; then ¢(E;) = 0
if and only if §(E;;) = 0.

Proof. Suppose ¢(E;) = 0 and ¢(E; )%0 for some i, j € (n)
with i # j. At first, we prove that (/5( 1]) = (E ) for
arbitrarya € C. Since the equation is already true whena =0,
then we assume a # 0 in the following proof.

Let A = a '(aE; + E;), B = —a_lEjj, and C = E;;; then
it is easy to verify A, B, and C satistying the assumption of
Corollary 10. So (/)(a_l(aEii + Ej]-)) + ¢(—a_1E]-j) and qS(Ejj)
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are orthogonal. Moreover, we can derive ¢(aE; + E;;) € I,
from (aE;; + Ej;) —aE;; € SI,, and ¢(E;;) = 0. Let a ' (P(aE;; +
Ejj)—qb(Ejj)) = D, then D and qb(Ejj) are orthogonal k-potent
matrices. While ¢(aE; + E;;) € I, implies aD + ¢(E;;) € T,
then aD e T,. There are two cases on a.
(1) Ifa ¢ A, then D = 0; that is, ¢p(aE;; + Ej; ) = P(E ;)
(2)if a € A, we can derive that (1/3)¢(aE; + EJJ)
(1/3)¢l(a-3)E; + E;;] € T, from (1/3)(aE; + E};) —
(1/3)[(a - 3)E; + E;] € SI,. Note thata — 3 ¢ A,
so it is true that ¢[(a — 3)E;; + Ejj] = </>(Ejj); that is,
(1/3)¢(aE;;+E;;)—(1/3)$(E};) = (a/3)D € T, Finally,
we can derive D = 0 from a/3 ¢ Aand D € T,. At the
same time, ¢(aE;; + E;;) = §(E;;).
Anyway, $(aE; + E};) = ¢(E ;) for arbitrary a € C.
Since (b™' +b)'(b7'E,; + E;j+Ej; + bEj;) € SI,, for every
nonzero b € C with 1+b”#0, then (b™' +b) ™ [$(E;; + Ej;) +
¢(b’1Eii+bEjj)] €T, and (b’l+b)_1[(/J(Eij+Eﬁ)+b¢(Ejj)] €
-1 _ : ; -1
T, Ey ¢ E; +bE};) = bgb(kEjj). While thelequa‘uon o+
b) "[P(E;; + Ej) + b(E;)I" = b +b) [¢(E; + Ej;) +

bgb(E]]) is equivalent to pt [¢(Eij ) + bgb(E]]) =(1+
VY E; + E;) + bp(E )], Note that $(E;; + E;) is the
constant term of’ the equat1on; then ¢(E;; + E;;) = 0 by the

infinite property of b, and (b™" + b)_lbqb(Ejj) e T, follows.
Then we can derive ¢(E : J) = 0 which is a contradiction to the
assumption. O

Proposition 14. Suppose ¢(E;;) = 0 for every i € (n); then
¢(X) = 0 for arbitrary X € S,

Proof. The proof will be completed by induction on the
following equation for arbitrary X € S, with X[i,i] = x; for

everyi € (n):
< o} + Z Xi u> (10)
i=m+1

wherel <m <n-1.

When m = 1, (10) is equivalent to ¢(} -, a;E;
arbitrary D, = Y| a,E;; € S,..

Atfirst, by the assumptlon itisalready true that ¢(E;) = 0
for every i € (n).

Suppose (/)(Z;:l aijEiji]_) =0foreverys e (n—1) with1 <
iy <--+ < ig < n; then by the homogeneity of ¢, we just need
to prove the following equation for i, with i, <ig, <mn:

) = 0 for

s+1

S
) <ZaijEijij +E > =0. (11)
j=1

S
There are two cases on B, = ) i=1 aijEijl-j.

(1) If B, ¢ ST, then there exists | € (s) such that a;, ¢ A,
and the following statements are true:

(BS + Ei5+1is+1) - BS = Eis+1is+l € Sr”’

a'(B,+E,_, )-a (B+E, . -akE,)=E; €SI,

Ist1lst1 i) it
(12)
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Note that ¢(B;) = 0and ¢(B, + E; ; —a,E;;) = 0by
the assumption; then the following statements are true:

(/) (Bs + Eis+1is+l) € r”’

(B, +E

(13)
) €T,

st1ls+l

Since @, ¢ A, then ) =0

follows.

(2) If B, € ST, then we have the following statements:

e ST

Lst1tst1 n’

¢ A, and ¢(B, + E

Tsr1lsr1

B, +E

%(—315 +B,+E, , )=E., €S

iy ne

(14)

(Bs + Eis+1is+l) -

W —

Sinceq; -3 ¢ Asthen §(=3E; ; +B+E;
and (1/3)¢>(B +E; .
» hence we get (/)(B +E .
Anyway, we prove ¢(}"

) = Obycasel,
) €

igp1icy

)eTl, follows Whlle ¢(B, +E;
) —
j=1 1
the induction, (10) is true for m = 1.
Suppose (10) is true for m € (n — 1), then we prove the
caseonm + 1.
Let X\, = Xpmvmp 9 = Xy,
Y XiomEi € M,,_,; then we have ¢ = X(,11,1,m
the following equation:

(ol o

We will prove the following equation which is equivalent to
(10) onm + 1:

igr1icy

.+ E . )=

Lst1lst1

0; then by

A =

mym+1]> n-m

) and

X, g 0
t
¢ g Xma 0 -0 16)
0 0 An—m—l

For arbitrary nonzero « € C with g'g + o’ #0, the
following n x n matrix B is idempotent:

a'gg g0
t
B=1 9 a0 , (17)
0 00

where 7 = (a'g'g + )"

Note that X,,,, = [);’!‘ xgl] and A,_,,_, satisfy the
following equation:
X, g 0
T gt Xm+1 0
0 0 An—m—l (18)
X -1t
m— & gg 0 0
-7 0 Xy — & 0 =B
0 0 A

After applying ¢ on the above matrices, we have
T$(X,,01 ® A,_,,_1) € [, by the inductive assumption. Then
¢(X,01 ®A,_,,_1) = 0because of the assumption of «; that
is, (10) holds for m + 1.

Finally, we prove that ¢(X) = 0 for every X € S, by the
induction. O

Remark 15. If ¢ is a weak k-potence preserver from M, to
M,; then Propositions 13 and 14 (replacing g' with K* for
arbitrary X € M,, in the proof of Proposition 14) hold since
Corollary 10 is true under this assumption.

Proposition 16. Suppose ¢(E;;) #0 for every i € (n), then
there exist P € GL, and ¢ € A such that $(X) = cP'XP
forevery X €S,

Proof. The proof will be completed in the following 4 steps.

Step 1. §(E;) = ¢;E;;, where ¢; € A for everyi € (n).

Since ¢(E;;) is nonzero k-potent, then we can derive from
Lemma 4 that there exists P; € GL,, such that P ¢(E;;)P; =
GE;; for every i € (n), where ¢; € A It is obvious that the
following map ¢ € @, and SD(Eu) = gEj; for everyi € (n).

¢ (X) =P '¢p(X)P. (19)

Without loss of generality, we can assume ¢(E;;) = G.E;;.

Step 2. ‘MZ; VaE) = YL ap(E;), for arbitrary diagonal

matrix Y, gE;;.
The proof of this step can be seen in Step 3, Section 3 in

[5].

Step 3. ¢; = c € Aforeveryi € (n).

Let A = (1/2)(E;; + E;;), B = (1/2)(E;; + Ej;), and C =
Yic<ns\(i,j) En» we can derive the following equation from Step
2 and Corollary 10:

where o, By, V9, 09 € C, 14, j € (n) withi# j.

Note that pE;; +q(E,~j +Eji) +(1 —p)Ejj e ST, forp,qeC
with g* = p(1 — p). In fact, 0 and 1 are all the eigenvalues of
this matrix. Applying ¢ on the matrix q(E;; + E;;) + [pE;; +
(1-p)E;;], we have H(p) = q(ayE;; + BoEjj + Yo Eji + 8 E ;) +

pGE;; + (1= p);Ej; = (pe + qa)Ey; + Py Eyj + qyoEji + (1 -
p)c +q0y)E;; € L.

Since k is fixed, then A is the finite set which contains all
of eigenvalues of H(p), and there existsw € {c+d | ¢,d € A}
such that the trace of H(p) is w for infinite choices of p; that s,
there exist (p,, p,) with p; # p, such that the traces of H(p,)
and H(p,) are all equal to w; then we have the following
equation:

(P15i+‘h“0)+((1 _Pl)cj+%50) a1

= (P26 + Ga%) + ((1 - p) G+ %50)

which is equivalent to



(41— q2) (g +8) = (P2 — p1) (Ci - Cj) , (22)

where ¢* = p(1 - p,), fors =1, 2.

Naturally, there are infinite choices of p, for fixed p, such
that the above equation is true. If (g, — q,)/(p, — p;) is equal
to some a € C, where p, # p;, p; and g, are fixed, then we
can derive from the following equation:

(a2 + l)pg - (Zaq1 +2azp1 + l)p2 +(q, +ap1)2 =0
(23)

that there are infinite choices of p, for constant (g, —q,)/(p,—
p,)ifand onlyif a® + 1 = 2aq, +2a°p, +1 = (g, +ap,)* = 0.
While a® + 1 = (g, +ap,)* = 0and ¢ = p,(1 - p,) imply
Py = q, = 0, which is a contradiction to 2aq, +2a°p, +1 = 0,
hence (g, — q,)/(p, — p,) varies with p,.

Since «, + &, and ¢; — ¢; are all fixed numbers for fixed
¢, then o + &, # 0 implies that there are at least two different
values of ¢; — ¢; = (9, — q,)/(p, — p1) (&g + &) for fixed p, and
infinite choices of p,; it is a contradiction. So & + §, = 0 and
¢ = c; follows. Hence ¢; = ¢ € A for every i € (n).

Step 4. $(X) = X for every X € §,,.
After the discussion in Steps 1, 2, and 3, we already have
the following equation:

¢ (i‘%ﬂi) = CiaiEii’ (24)
in iz

where ¢ € A, a; € C for everyi € {n). Since the map ¢ "¢ €
®,, then we can assume ¢(}\_, ¢,E;) = Y., a;E; without
loss of generality.

The proof in this step will be completed by induction on
the following equation for arbitrary X € S, with X[i,i] = x;
for every i € (n):

¢<X{f1 ,,,,, SEDY ijjf>
jE<n>\{isnsiyy}

(25)
it ¥ D, %iEjp

jE<t\{iyserning }

where 1 <i; <---<i, <nwith2<m<n-1

When m = 2, (25) is equivalent to §(E;; + E;; + D,) =
E;j + Ej; + D, for arbitrary diagonal matrix D, € S, and i,
j € (n) with i < j, since ¢ is homogeneous. The proof will be
completed in the following (1) and (2).

(@) ¢(Ejjsy + Eiyy; + Dy) = Ejyy + E

ie(n-1).

.+ + D, for every
We already derive from Corollary 11 that ¢(E;;,; + E; 1, +
D,) = ME;,, + A'E;,; + D, for every i € (n— 1), where
A; € Cis only decided by i.
Suppose the map p : S, — M,, satisfies the following
equation for every X € §,,

n—-1
p(X) = diag(l,AI,AlAz,...,HM) ¢ (X)
i=1 (26)

n—1
x diag<1,x;1,A;‘A;‘, L)
i=1
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then p € ®,, and for arbitrary diagonal matrix D,, and every
i € (n—1),p(D,) = D, and p(Ej;,, + Ejyy; + D,) = Eyyy +
Ejp1i + D,

Without loss of generality, we can assume ¢(E;;, | + E;,1; +
D,)=E;,+E;;+D,foreveryi € (n—1) and arbitrary D,,.

(2) Suppose ¢(E;; + E;; + D,)) = E;; + Ej; + D,, for every i,
jwithl < j—i<s<n-1Lthen¢(E;+E; +D,) =
E;j+Ej + D, foreveryi, jwith j—i =s.

At first, we have to prove that ¢(x;;,,(E;iyq + Eiri) +

XivtivmEivtiom + Eivmiz1) + D) = X (B + Ejpyy) +
Xiptivm (Eir1izm + Eismis1) + D, for arbitrary nonzero x;;,, and
Xitlitm eC

By the assumption, we already have the following equa-
tions:

¢ (X1 (Eiir + Eipii) + D) = X434y (Ejiyy + Eiyyy) + D,
¢ (xi+1i+m (Ei+1i+m + Ei+mi+1) + Dn)

= Xitlitm (Ei+1i+m + Ei+mi+1) +D,.

(27)

Let Xy = x;41 (Ejir + E1i) + Xitiam (Eitiom + Eipmis) +
Xy = Xji11(Ejjyq + Eipyi) + Dy and X5 = Xy (B g +
1) + D,,. Then the following statements are true

D,
E

n>

i+mi+

Xy = (X3 = @31 Eri1 = GmEivmism) € ST

n
X1 ~(X3= a1 Eistio1 = GemEiemiem) + € z Ey € ST,

l#i+1,i+m

X, = (X3 - bE; - b, E;yyy0) € ST,

n
Xy = (X5 =bE; — by Eyyiy) +€ Z Ey € ST,
I#i,i+1
(28)

where X, 1i0m(Eivtiom + Eivmiv1) + G Eiviis + GiomEivmiom

and x;;,, (Ejjy + Ejpy) + BEj; + by, Ejy 4, are k-potent.

Let A = X, B = =(X; = @i, Ei i1 = % Eivmism)> and
C = Ylsis1iem En» then A, B, and C satisfy the assumption
of Corollary 10. Hence we get ¢(A) + ¢(B) and ¢(C) are

orthogonal; that is,

¢ (X)) = Xo + Y1 Eivrisr + YismEismivm (29)

+ yi+1i+mEi+1i+m + yi+mi+1Ei+mi+1'

Similarly, we can derive the following equation from
Corollary 10:

¢ (X)) = X5+ zE; + 2, Eiyyin
(30)
+ Zi Bi + Zie1i B

Comparing the above two equations, we have z; = y;,,,, =
0,21 = Yivb> Ziis1 = Zivti = Xiis1> A0 Yisjim = Vigmins =
Xi1ieme thatis, (X)) = X + y; 1 Ejyiyy-

We will prove z;,; = y;,; = 0. For arbitrary nonzero «

12 2 12 -1 _
with x7, ., + «”#0,let 7 = (& x7,,;,,, + @) ,and X, =
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X, + 0‘71xi2+1i+mEi+li+l + “Ei+mi+m; then X, + 71X, € Srn
implies 7¢p(X,) + 7¢(X,) € [}; that is, the following matrix is
k-potent since ¢(X,) = X, by the assumption

-1,2
|:y16rl g] +T[“xx1+11+m xi+&i+m (31)

i+li+m

by Lemma 5, y;,, = 0. Hence we prove ¢(X,) = X,

Now we prove ¢(Ej;,,,, + Eiypi + D) = Eijon + EHm, +D,,.
By Corollary 11, we already have ¢(E;; ., + E; ,,.; + D,,) =
1
A11‘*'”’1 ii+m + A(11"'111 i+mi + Dn'

For arbitrary nonzero a with 2 + o”#0, 2a™' +

&) '(Ejjpy + Eisi + D) — Qa7 + @) (~aN(E,; + Ejyy +
Ei1i* Eivin1) = Eivtiom = Eivmiv1 = %Eiimivm + D) = Qo+
“)_1(“71(E11+E1i+1+Ei+1i+Ei+1i+1)+(Eii+m+Ei+li+m)+(Ei+mi+
E; mis1) + @E; i) is idempotent.

After applying ¢ on the above matrices, we have Qat +
“)_1¢(E11+m + EH—ml +D ) - (Za_l + “)_1¢(_“_1(Eii + Eii+1 +
Ez+11 z+lz+1) Ez+lz+m Ez+mz+1 “E1+mz+m +D ) = (20‘71 +
OC) ((X (E +E11+1+Ez+11+Ez+lz+l)+(Ezz+m+El+11+m) (E +
El+ml+1) + aEHmHm) + (206 + (X) ((/\le l)E;Hm + (A
1)E1+m1) € r

Then )L“er =1 by Lemma 5.

By the induction, we prove §(E;;+E;;+D,) = E;+E;+D,
foreveryi, jwithl <i< j<n.

1+m1

11+m

(3) Suppose (25) is true for every s with 2 < s < m < n;
then we prove it holds on m.

For arbitrary X € S, with X[i,i] = x; for every i € (n), let
A,B,U,V, y, ,and 7 satisty the following equations:

A= X{ilpmim} + Z x]E]],
FEM\ iy sesipn}

B=Xi it 2 XEp
FEM\iysenstyyy}

U= X{ll hn—13im}? (32)
V=X,

ipseedy1 12

yim = (X{z HIPO . l}‘X{ im_l;im}) [im’im] >

T= (oc_lyim + oc)il.

Then 7A +T(—B+oflUV+(xE,-mim
nonzero o with y; +a? #0. Applying ¢ on it, we have T¢(A) +
t¢(-B+a" UV +akE, ; ) €T,.LetC = —B+a ' UV +aE, ; ;
thenbyTA+‘rC+eZ iy Ejj € SL, foreveryeeA

) is idempotent for arbitrary

jem\{ip,..

,,,,,

Note that ¢(zC + 6Z]e(n)\{11
GZJe(n)\ {igsm I}E and ¢(C) -

_____ i1 Ej ]) C +
C by the assumption; then

,,,,

Corollary 10; that is, ¢(A) ; + Z e\ Gy X Ejj fOT
someY € M,,.
On the other hand, C = X, t

2 je i\ iy} XiEjj) + & UV + ak; ;= ~(Xg

,,,,, + U + V implies
™Yy, iy — X{,l ,,,,, ,}+ocUV+ocEm+U+V):
(Y, iy~ X)) +7(@ UV +aE;, ; +U+V) €T, by

T¢(A) +7¢(C) e F By Lemma 5, we can derive the following
equations:

.....

Vi it = Xiposiro
Y figyr i) = X (i i] >
(33)
Y{il,...,im,l},{im} =nU,
Yo i) =1V
. -1
thatis, p(A) = X;; ; y+nU+n V+ ZjG(n)\{il,...,im,l} x,Ej;.
Let B, and B, satisfy the following equations:
Bi=Xy iyt D xEp
jem\izsenip,}
(34)
By = Xiis iz T > x;Ejjs
FEM\irs iy}
then we can prove
Yiiypind = Xy
Y [il’ll] X [il’ll]
Y i vtiy = BXiy i b
Yiihtipind = B iy
(35)
Y{il,...,im_z,im} = X{il,...,im_z,im}’
Y [im—him—l] =X [im—l’im—l] >
Y{ipwim—z’im}){imq} = VX{il)~--xim—2)im}:{im—1}’
Y{ [N S PPN S i y_ X{im,l},{il,...,imfz,im}'

Comparing the above three sets of equations, we can get
¢(A) = A, which is equivalent to (25) on m.

By the induction, we prove that ¢(X) = X for arbitrary
XeS,. O

Remark 17. 1f ¢ is a weak k-potence preserver from M, to M,,,
then the proof in Steps 1, 2, and 3 of Proposition 16 holds, and
we prove ¢(X) = X or (X) = X' in Step 4. We omit the
detailed proof since the case on X' is totally the same after
changing relevant notations.
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