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The concept of fuzzy modular space is first proposed in this paper. Afterwards, a Hausdorff topology induced by a 𝛽-homogeneous
fuzzymodular is defined and some related topological properties are also examined. And then, several theorems on 𝜇-completeness
of the fuzzy modular space are given. Finally, the well-known Baire’s theorem and uniform limit theorem are extended to fuzzy
modular spaces.

1. Introduction and Preliminaries

In the 1960s, the concept of modular space was introduced
by Nakano [1]. Soon after, Musielak and Orlicz [2] redefined
and generalized the notion of modular space. A real function
𝜌 on an arbitrary vector space 𝑋 is said to be a modular if it
satisfies the following conditions:
(M-1) 𝜌(𝑥) = 0 if and only if 𝑥 = 𝜃 (i.e., 𝑥 is the null vector

𝜃),
(M-2) 𝜌(𝑥) = 𝜌(−𝑥),
(M-3) 𝜌(𝛼𝑥+𝛽𝑦) ≤ 𝜌(𝑥)+𝜌(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 ≥ 0

with 𝛼 + 𝛽 = 1.
A modular space 𝑋𝜌 is defined by a corresponding

modular 𝜌, that is, 𝑋𝜌 = {𝑥 ∈ 𝑋 : 𝜌(𝜆𝑥) → 0 as 𝜆 → 0}.
Based on definition of the modular space, Kozłowski

[3, 4] introduced the notion ofmodular function space. In the
sequel, Kozłowski and Lewicki [5] considered the problem
of analytic extension of measurable functions in modular
function spaces and discussed some extension properties by
means of polynomial approximation. Afterwards, Kilmer and
Kozłowski [6] studied the existence of best approximations in
modular function spaces by elements of sublattices. In 1990,
Khamsi et al. [7] initiated the study of fixed point theory for
nonexpansive mappings defined on some subsets of modular
function spaces. More researches on fixed point theory in
modular function spaces can be found in [8–13].

In 2007, Nourouzi [14] proposed probabilistic modular
spaces based on the theory of modular spaces and some
researches on the Menger’s probabilistic metric spaces. A
pair (𝑋, 𝜌) is called a probabilistic modular space if 𝑋 is a
real vector space, 𝜌 is a mapping from 𝑋 into the set of all
distribution functions (for 𝑥 ∈ 𝑋, the distribution function
𝜌(𝑥) is denoted by 𝜌𝑥, and 𝜌𝑥(𝑡) is the value 𝜌𝑥 at 𝑡 ∈ R)
satisfying the following conditions:

(PM-1) 𝜌𝑥(0) = 0,
(PM-2) 𝜌𝑥(𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝜃,
(PM-3) 𝜌−𝑥(𝑡) = 𝜌𝑥(𝑡),
(PM-4) 𝜌𝛼𝑥+𝛽𝑦(𝑠 + 𝑡) ≥ 𝜌𝑥(𝑠) ∧ 𝜌𝑦(𝑡) for all 𝑥, 𝑦 ∈ 𝑋 and

𝛼, 𝛽, 𝑠, 𝑡 ∈ R+
0
, 𝛼 + 𝛽 = 1.

Especially, for every 𝑥 ∈ 𝑋, 𝑡 > 0 and 𝛼 ∈ R \ {0}, if

𝜌𝛼𝑥 (𝑡) = 𝜌𝑥 (
𝑡

|𝛼|𝛽
) , where 𝛽 ∈ (0, 1] , (1)

then we say that (𝑋, 𝜌) is 𝛽-homogeneous.
Recently, further studies have been made on the prob-

abilistic modular spaces. Nourouzi [15] extended the well-
known Baire’s theorem to probabilistic modular spaces by
using a special condition. Fallahi and Nourouzi [16] inves-
tigated the continuity and boundedness of linear operators
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defined between probabilistic modular spaces in the proba-
bilistic sense.

In this paper, following the idea of probabilistic modular
space and the definition of fuzzy metric space in the sense
of George and Veeramani [17], we apply fuzzy concept to the
classical notions ofmodular andmodular spaces and propose
a novel concept named fuzzy modular spaces.

2. Fuzzy Modular Spaces

In this section, following the idea of probabilistic modular
space, we will introduce the concept of fuzzy modular
space by using continuous 𝑡-norm and present some related
notions.

Definition 1 (Schweizer and Sklar [18]). A binary operation
∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if it
satisfies the following conditions:

(TN-1) ∗ is commutative and associative;
(TN-2) ∗ is continuous;
(TN-3) 𝑎 ∗ 1 = 𝑎 for every 𝑎 ∈ [0, 1];
(TN-4) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 ∈

[0, 1].

Three common examples of the continuous 𝑡-norm are
(1) 𝑎∗𝑀𝑏 = min{𝑎, 𝑏}; (2) 𝑎∗𝑃𝑏 = 𝑎 ⋅ 𝑏; (3) 𝑎∗𝐿𝑏 = max{𝑎 +
𝑏−1, 0}. Formore examples, the reader can be referred to [19].

Definition 2 (George and Veeramani [17]). A fuzzy metric
space is an ordered triple (𝑋,𝑀, ∗) such that𝑋 is a nonempty
set, ∗ is a continuous t-norm, and 𝑀 is a fuzzy set on 𝑋 ×
𝑋×(0,∞) satisfying the following conditions, for all 𝑥, 𝑦, 𝑧 ∈
𝑋, 𝑠, 𝑡 > 0:

(F-1) 𝑀(𝑥, 𝑦, 𝑡) > 0,
(F-2) 𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦,
(F-3) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡),
(F-4) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠),
(F-5) 𝑀(𝑥, 𝑦, ⋅) : (0,∞) → (0, 1] is continuous.

Based on the notion of probabilistic modular space and
Definition 2, we will propose a novel concept named fuzzy
modular spaces.

Definition 3. The triple (𝑋, 𝜇, ∗) is said to be a fuzzy modular
space (shortly, F-modular space) if 𝑋 is a real or complex
vector space, ∗ is a continuous 𝑡-norm, and 𝜇 is a fuzzy set on
𝑋 × (0,∞) satisfying the following conditions, for all 𝑥, 𝑦 ∈
𝑋, 𝑠, 𝑡 > 0 and 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1:

(FM-1) 𝜇(𝑥, 𝑡) > 0,
(FM-2) 𝜇(𝑥, 𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝜃,
(FM-3) 𝜇(𝑥, 𝑡) = 𝜇(−𝑥, 𝑡),
(FM-4) 𝜇(𝛼𝑥 + 𝛽𝑦, 𝑠 + 𝑡) ≥ 𝜇(𝑥, 𝑠) ∗ 𝜇(𝑦, 𝑡),
(FM-5) 𝜇(𝑥, ⋅) : (0,∞) → (0, 1] is continuous.

Generally, if (𝑋, 𝜇, ∗) is a fuzzymodular space, we say that
(𝜇, ∗) is a fuzzy modular on 𝑋. Moreover, the triple (𝑋, 𝜇, ∗)
is called 𝛽-homogeneous if for every 𝑥 ∈ 𝑋, 𝑡 > 0 and 𝜆 ∈
R \ {0},

𝜇 (𝜆𝑥, 𝑡) = 𝜇(𝑥,
𝑡

|𝜆|𝛽
) , where 𝛽 ∈ (0, 1] . (2)

Example 4. Let 𝑋 be a real or complex vector space and let
𝜌 be a modular on 𝑋. Take 𝑡-norm 𝑎 ∗ 𝑏 = 𝑎∗𝑀𝑏. For every
𝑡 ∈ (0,∞), define 𝜇(𝑥, 𝑡) = 𝑡/(𝑡 + 𝜌(𝑥)) for all 𝑥 ∈ 𝑋. Then
(𝑋, 𝜇, ∗) is aF-modular space.

Remark 5. Note that the above conclusion still holds even if
the 𝑡-norm is replaced by 𝑎 ∗ 𝑏 = 𝑎∗𝑃 𝑏 and 𝑎 ∗ 𝑏 = 𝑎∗𝐿𝑏,
respectively.

Example 6. Let𝑋 = 𝑅. 𝜌 is a modular on𝑋, which is defined
by 𝜌(𝑥) = |𝑥|𝛽, where 𝛽 ∈ (0, 1]. Take 𝑡-norm 𝑎 ∗ 𝑏 = 𝑎∗𝑃 𝑏.
For every 𝑡 ∈ (0,∞), we define

𝜇 (𝑥, 𝑡) =
1

𝑒𝜌(𝑥)/𝑡
(3)

for all 𝑥 ∈ 𝑋. Then (𝑋, 𝜇, ∗) is a 𝛽-homogeneousF-modular
space.

Proof. We just need to prove the condition (FM-4) of
Definition 3 and formula (2), because other conditions hold
obviously. In the following, we first verify 𝜇(𝛼𝑥 + 𝛽𝑦, 𝑠 + 𝑡) ≥
𝜇(𝑥, 𝑠) ∗ 𝜇(𝑦, 𝑡), as 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1.

Since 𝜌 is a modular on 𝑋, for all 𝑥, 𝑦 ∈ 𝑋, we have

𝜌 (𝛼𝑥 + 𝛽𝑦) ≤ 𝜌 (𝑥) + 𝜌 (𝑦) . (4)

Then, we can obtain

𝜌 (𝛼𝑥 + 𝛽𝑦) ≤
𝑡 + 𝑠

𝑡
𝜌 (𝑥) +

𝑡 + 𝑠

𝑠
𝜌 (𝑦) , (5)

that is,

1

𝑡 + 𝑠
𝜌 (𝛼𝑥 + 𝛽𝑦) ≤

1

𝑡
𝜌 (𝑥) +

1

𝑠
𝜌 (𝑦) . (6)

Therefore

𝑒𝜌(𝛼𝑥+𝛽y)/(𝑡+𝑠) ≤ 𝑒𝜌(𝑥)/𝑡 ⋅ 𝑒𝜌(𝑦)/𝑠 = 𝑒𝜌(𝑥)/𝑡∗𝑃𝑒
𝜌(𝑦)/𝑠. (7)

Thus, we have 𝜇(𝛼𝑥 + 𝛽𝑦, 𝑠 + 𝑡) ≥ 𝜇(𝑥, 𝑠) ∗ 𝜇(𝑦, 𝑡).
On the other hand, for all 𝜆 ∈ R \ {0}, since 𝜌(𝜆𝑥) =

|𝜆𝑥|𝛽 = |𝜆|𝛽 ⋅ |𝑥|𝛽 = |𝜆|𝛽𝜌(𝑥), it follows that

𝜇 (𝜆𝑥, 𝑡) = 𝜇(𝑥,
𝑡

|𝜆|𝛽
) . (8)

Hence, we know that (𝑋, 𝜇, ∗) is a 𝛽-homogeneous F-
modular space.

Theorem 7. If (𝑋, 𝜇, ∗) is a F-modular space, then 𝜇(𝑥, ⋅) is
nondecreasing for all 𝑥 ∈ 𝑋.
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Proof. Suppose that 𝜇(𝑥, 𝑡) < 𝜇(𝑥, 𝑠) for some 𝑡 > 𝑠 > 0.
Without loss of generality, we can take 𝛼 = 1, 𝛽 = 0, and
𝑦 = 𝜃 is the null vector in 𝑋. By Definition 3, we can obtain

𝜇 (𝑥, 𝑠) ∗ 𝜇 (𝜃, 𝑡 − 𝑠) = 𝜇 (𝑥, 𝑠) ∗ 𝜇 (𝑦, 𝑡 − 𝑠) ≤ 𝜇 (𝛼𝑥 + 𝛽𝑦, 𝑡)

= 𝜇 (𝑥, 𝑡) < 𝜇 (𝑥, 𝑠) .

(9)

Since 𝜇(𝜃, 𝑡 − 𝑠) = 1, we have 𝜇(𝑥, 𝑠) < 𝜇(𝑥, 𝑠). Obviously,
this leads to a contradiction.

It should be noted that, in general, a fuzzy modular and a
fuzzy metric (in the sense of George and Veeramani [17]) do
not necessarily induce mutually when the triangular norm is
the same one. In essence, the fuzzy modular and fuzzy metric
can be viewed as two different characterizations for the same
set. The former is regarded as a kind of fuzzy quantization
on the classical vector modular, while the latter is regarded
as a fuzzy measure on the distance between two points. Next,
we construct two examples to show that there does not exist
direct relationship between a fuzzy modular and a fuzzy
metric.

Example 8. Let𝑋 = R. Take 𝑡-norm 𝑎∗𝑏 = 𝑎∗𝑀 𝑏. For every
𝑡 ∈ (0,∞), we define

𝜇 (𝑥, 𝑡) =
𝑘

𝑘 + |𝑥|
, (10)

where 𝑘 > 0 is a constant.
Here, we only show that 𝜇(𝑥, 𝑡) satisfies the condition

(FM-4) of Definition 3, since other conditions can be easily
verified.

For every 𝑥, 𝑦 ∈ R, and 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. Without
loss of generality, we assume that |𝑥| ≤ |𝑦|. Since |𝛼𝑥 + 𝛽𝑦| ≤
|𝑦|, we then obtain

𝜇 (𝛼𝑥 + 𝛽𝑦, 𝑡 + 𝑠) =
𝑘

𝑘 +
󵄨󵄨󵄨󵄨𝛼𝑥 + 𝛽𝑦

󵄨󵄨󵄨󵄨
≥

𝑘

𝑘 +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

= min{
𝑘

𝑘 + |𝑥|
,

𝑘

𝑘 +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
}

= 𝜇 (𝑥, 𝑡) ∗𝑀𝜇 (𝑦, 𝑠) .

(11)

Hence (𝜇, ∗𝑀) is a fuzzy modular on 𝑋. However, if we
set

𝑀(𝑥, 𝑦, 𝑡) = 𝜇 (𝑥 − 𝑦, 𝑡) =
𝑘

𝑘 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
, (12)

it is easy to verify that (𝑀, ∗𝑀) is not a fuzzy metric on 𝑋.

Example 9. Let𝑋 = R. Take 𝑡-norm 𝑎∗𝑏 = 𝑎∗𝑀 𝑏. For every
𝑥, 𝑦 ∈ 𝑋 and 𝑡 ∈ (0,∞), we define

𝑀(𝑥, 𝑦, 𝑡)

=

{{{{{{{{{{{
{{{{{{{{{{{
{

1, 𝑥 = 𝑦,

1

2
, 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ Z,

1

4
, 𝑥 ∈ Z, 𝑦 ∈ R \ Z or 𝑥 ∈ R \ Z, 𝑦 ∈ Z,

1

4
, 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ R \ Z.

(13)

It can easily be shown that (𝑀, ∗𝑀) is a fuzzy metric on
𝑋. Set

𝜇 (𝑥, 𝑡) = 𝑀 (𝑥, 𝜃, 𝑡) =

{{{{{{{
{{{{{{{
{

1, 𝑥 = 0,

1

2
, 𝑥 ∈ Z \ {0} ,

1

4
, 𝑥 ∈ R \ Z.

(14)

If we take 𝛼 = √2/2, 𝛽 = 1 − √2/2, 𝑥 ̸= 𝑦, and 𝑥, 𝑦 ∈
Z, then we know that 𝛼𝑥 + 𝛽𝑦 ∈ R \ Z. Thus, for all 𝑡, 𝑠 >
0, we have 𝜇(𝛼𝑥 + 𝛽𝑦, 𝑡 + 𝑠) = 1/4. But 𝜇(𝑥, 𝑡)∗𝑀𝜇(𝑦, 𝑠) =
min{𝜇(𝑥, 𝑡), 𝜇(𝑦, 𝑠)} = 1/2. Obviously, (𝜇, ∗𝑀) is not a fuzzy
modular on 𝑋.

3. Topology Induced by a 𝛽-Homogeneous
Fuzzy Modular

In this section, we will define a topology induced by a 𝛽-
homogeneous fuzzy modular and examine some topological
properties. Let N denote the set of all positive integers.

Definition 10. Let (𝑋, 𝜇, ∗) be aF-modular space.The 𝜇-ball
𝐵(𝑥, 𝑟, 𝑡) with center 𝑥 ∈ 𝑋 and radius 𝑟, 0 < 𝑟 < 1, 𝑡 > 0 is
defined as

𝐵 (𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝜇 (𝑥 − 𝑦, 𝑡) > 1 − 𝑟} . (15)

An element 𝑥 ∈ 𝐸 is called a 𝜇-interior point of 𝐸 if there
exist 𝑟 ∈ (0, 1) and 𝑡 > 0 such that 𝐵(𝑥, 𝑟, 𝑡) ⊆ 𝐸. Meantime,
we say that 𝐸 is a 𝜇-open set in 𝑋 if and only if every element
of 𝐸 is a 𝜇-interior point.

Lemma 11 (George and Veeramani [17]). If the 𝑡-norm ∗ is
continuous, then

(L1) for every 𝑟1, 𝑟2 ∈ (0, 1) with 𝑟1 > 𝑟2, there exists 𝑟3 ∈
(0, 1) such that 𝑟1 ∗ 𝑟3 ≥ 𝑟2,

(L2) for every 𝑟4 ∈ (0, 1), there exists 𝑟5 ∈ (0, 1) such that
𝑟5 ∗ 𝑟5 ≥ 𝑟4.

Theorem 12. If (𝑋, 𝜇, ∗) is a 𝛽-homogeneous F-modular
space, then 𝐵(𝑥, 𝑟, 𝑡/2𝛽+1) ⊂ 𝐵(𝑥, 𝑟, 𝑡/2).
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Proof. By Theorem 7, for every 𝑟 ∈ (0, 1) and 𝑡 > 0, since
𝜇(𝑥 − 𝑦, 𝑡/2) ≥ 𝜇(𝑥 − 𝑦, 𝑡/2𝛽+1), it is obvious that {𝑦 ∈ 𝑋 :

𝜇(𝑥−𝑦, 𝑡/2𝛽+1 > 1−𝑟)} ⊂ {𝑦 ∈ 𝑋 : 𝜇(𝑥−𝑦, 𝑡/2) > 1−𝑟}.

Theorem 13. Let (𝑋, 𝜇, ∗) be a 𝛽-homogeneous F-modular
space. Every 𝜇-ball 𝐵(𝑥, 𝑟, 𝑡) in (𝑋, 𝜇, ∗) is a 𝜇-open set.

Proof. ByDefinition 10, for every𝑦 ∈ 𝐵(𝑥, 𝑟, 𝑡), we have𝜇(𝑥−
𝑦, 𝑡) > 1 − 𝑟. Without loss of generality, we may assume that
𝑡 = 2𝑡1. Since 𝜇(𝑥 − 𝑦, ⋅) is continuous, there exists an 𝜖𝑦 > 0

such that 𝜇(𝑥 − 𝑦, (𝑡1 − 𝜖)/2𝛽−1) > 1 − 𝑟 for some 𝜖 > 0 with
(𝑡1 − 𝜖)/2𝛽−1 > 0 and 𝜖/2𝛽−1 ∈ (0, 𝜖𝑦). Set 𝑟0 = 𝜇(𝑥 − 𝑦, (𝑡1 −

𝜖)/2𝛽−1). Since 𝑟0 > 1 − 𝑟, there exists an 𝑠 ∈ (0, 1) such that
𝑟0 > 1 − 𝑠 > 1 − 𝑟. According to Lemma 11, we can find an
𝑟1 ∈ (0, 1) such that 𝑟0 ∗ 𝑟1 ≥ 1 − 𝑠.

Next, we show that 𝐵(𝑦, 1 − 𝑟1, 𝜖/2
𝛽−1) ⊂ 𝐵(𝑥, 𝑟, 2𝑡1). For

every 𝑧 ∈ 𝐵(𝑦, 1 − 𝑟1, 𝜖/2
𝛽−1), we have 𝜇(𝑦 − 𝑧, 𝜖/2𝛽−1) > 𝑟1.

Therefore,

𝜇 (𝑥 − 𝑧, 𝑡) = 𝜇 (𝑥 − 𝑧, 2𝑡1) ≥ 𝜇 (2 (𝑥 − 𝑦) , 2 (𝑡1 − 𝜖))

∗ 𝜇 (2 (𝑦 − 𝑧) , 2𝜖)

= 𝜇 (𝑥 − 𝑦,
𝑡1 − 𝜖

2𝛽−1
) ∗ 𝜇(𝑦 − 𝑧,

𝜖

2𝛽−1
)

≥ 𝑟0 ∗ 𝑟1 ≥ 1 − 𝑠 > 1 − 𝑟.

(16)

Thus 𝑧 ∈ 𝐵(𝑥, 𝑟, 𝑡) and hence 𝐵(𝑦, 1 − 𝑟1, 𝜖/2
𝛽−1) ⊂ 𝐵(𝑥, 𝑟, 𝑡).

Theorem 14. Let (𝑋, 𝜇, ∗) be a 𝛽-homogeneous F-modular
space. Define

T𝜇 = {𝐴 ⊂ 𝑋 : 𝑥 ∈ 𝐴 if and only if there exist 𝑡 > 0 and

𝑟 ∈ (0, 1) such that 𝐵 (𝑥, 𝑟, 𝑡) ⊂ 𝐴} .

(17)

ThenT𝜇 is a topology on 𝑋.

Proof. The proof will be divided into three parts.

(i) Obviously, 0,𝑋 ∈ T𝜇.
(ii) Suppose that𝐴, 𝐵 ∈ T𝜇. If 𝑥 ∈ 𝐴∩𝐵, then 𝑥 ∈ 𝐴 and

𝑥 ∈ 𝐵.

Therefore, there exist 0 < 𝑟1, 𝑟2 < 1 and 𝑡1, 𝑡2 > 0 such
that 𝐵(𝑥, 𝑟1, 𝑡1) ⊂ 𝐴 and 𝐵(𝑥, 𝑟2, 𝑡2) ⊂ 𝐵. Set 𝑟 = min{𝑟1, 𝑟2},
𝑡 = min{𝑡1, 𝑡2}. Now, we claim that 𝐵(𝑥, 𝑟, 𝑡) ⊂ 𝐵(𝑥, 𝑟1, 𝑡1).

If 𝑦 ∈ 𝐵(𝑥, 𝑟, 𝑡), then we know that 𝜇(𝑥 − 𝑦, 𝑡) > 1 − 𝑟.
According toTheorem 7, we can obtain

𝜇 (𝑥 − 𝑦, 𝑡1) ≥ 𝜇 (𝑥 − 𝑦, 𝑡) > 1 − 𝑟 ≥ 1 − 𝑟1. (18)

Thus, 𝑦 ∈ 𝐵(𝑥, 𝑟1, 𝑡1), that is, 𝐵(𝑥, 𝑟, 𝑡) ⊂ 𝐵(𝑥, 𝑟1, 𝑡1).
Similarly, 𝐵(𝑥, 𝑟, 𝑡) ⊂ 𝐵(𝑥, 𝑟2, 𝑡2).
Hence, 𝐵(𝑥, 𝑟, 𝑡) ⊂ 𝐵(𝑥, 𝑟1, 𝑡1) ∩ 𝐵(𝑥, 𝑟2, 𝑡2) ⊂ 𝐴 ∩ 𝐵. That

is to say, 𝐴 ∩ 𝐵 ∈ T𝜇.

(iii) Suppose that T󸀠
𝜇

⊂ T𝜇. If 𝑥 ∈ ⋃
𝐴∈T󸀠
𝜇

𝐴, then there
exists 𝑈 ∈ T󸀠

𝜇
such that 𝑥 ∈ 𝑈. Since 𝑈 ∈ T𝜇, there

exist 0 < 𝑟 < 1 and 𝑡 > 0 such that 𝐵(𝑥, 𝑟, 𝑡) ⊂ 𝑈 ⊂
⋃
𝐴∈T󸀠
𝜇

𝐴. Hence, ⋃
𝐴∈T󸀠
𝜇

𝐴 ∈ T𝜇.

Obviously, if we take 𝑟 = 𝑡 = (1/𝑛) (𝑛 = 1, 2, 3, . . .),
then the family of 𝜇-ball 𝐵(𝑥, 1/𝑛, 1/𝑛), (𝑛 = 1, 2, 3, . . .)
constitutes a countable local base at 𝑥. Therefore, we can
obtainTheorem 15.

Theorem 15. The topology T𝜇 induced by a 𝛽-homogeneous
F-modular space is first countable.

Theorem 16. Every 𝛽-homogeneous F-modular space is
Hausdorff.

Proof. For the 𝛽-homogeneous F-modular space (𝑋, 𝜇, ∗),
let 𝑥 and 𝑦 be two distinct points in 𝑋. By Definition 3, we
can easily obtain 0 < 𝜇(𝑥 − 𝑦, 𝑡) < 1 for all 𝑡 > 0. Set
𝑟 = 𝜇(𝑥 − 𝑦, 𝑡). According to Lemma 11, for every 𝑟0 ∈ (𝑟, 1),
there exists 𝑟1 ∈ (0, 1) such that 𝑟1 ∗ 𝑟1 ≥ 𝑟0.

Next, we consider the 𝜇-balls 𝐵(𝑥, 1 − 𝑟1, 𝑡/2
𝛽+1) and

𝐵(𝑦, 1 − 𝑟1, 𝑡/2
𝛽+1) and then show that 𝐵(𝑥, 1 − 𝑟1, 𝑡/2

𝛽+1) ∩

𝐵(𝑦, 1 − 𝑟1, 𝑡/2
𝛽+1) = 0 using reduction to absurdity. If there

exists 𝑧 ∈ 𝐵(𝑥, 1 − 𝑟1, 𝑡/2
𝛽+1) ∩ 𝐵(𝑦, 1 − 𝑟1, 𝑡/2

𝛽+1), then

𝑟 = 𝜇 (𝑥 − 𝑦, 𝑡) ≥ 𝜇 (2 (𝑥 − 𝑧) ,
𝑡

2
) ∗ 𝜇 (2 (𝑧 − 𝑦) ,

𝑡

2
)

= 𝜇 (𝑥 − 𝑧,
𝑡

2𝛽+1
) ∗ 𝜇(𝑧 − 𝑦,

𝑡

2𝛽+1
)

≥ 𝑟1 ∗ 𝑟1 ≥ 𝑟0,

(19)

which is a contradiction. Hence (𝑋, 𝜇, ∗) is Hausdorff.

In order to obtain some further properties, several basic
notions derived from general topology are introduced in the
F-modular space.

Definition 17. Let (𝑋, 𝜇, ∗) be aF-modular space.

(i) A sequence {𝑥𝑛} in 𝑋 is said to be 𝜇-convergent to a
point 𝑥 ∈ 𝑋, denoted by 𝑥𝑛

𝜇

󳨀→ 𝑥, if for every 𝑟 ∈ (0, 1)
and 𝑡 > 0, there exists 𝑛0 ∈ N such that 𝑥𝑛 ∈ 𝐵(𝑥, 𝑟, 𝑡)
for all 𝑛 ≥ 𝑛0.

(ii) A subset𝐴 ⊂ 𝑋 is called𝜇-bounded if and only if there
exist 𝑡 > 0 and 𝑟 ∈ (0, 1) such that 𝜇(𝑥, 𝑡) > 1 − 𝑟 for
all 𝑥 ∈ 𝐴.

(iii) A subset 𝐵 ⊂ 𝑋 is called 𝜇-compact if and only
if every 𝜇-open cover of 𝐵 has a finite subcover (or
equivalently, every sequence in 𝐵 has a 𝜇-convergent
subsequence in 𝐵).

(iv) A subset 𝐶 ⊂ 𝑋 is called a 𝜇-closed if and only if for
every sequence {𝑥𝑛} ⊂ 𝐶, 𝑥𝑛

𝜇

󳨀→ 𝑥 implies 𝑥 ∈ 𝐶.

Theorem 18. Every 𝜇-compact subset 𝐴 of a 𝛽-homogeneous
F-modular space (𝑋, 𝜇, ∗) is 𝜇-bounded.
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Proof. Suppose that 𝐴 is a 𝜇-compact subset of the given 𝛽-
homogeneous F-modular space (𝑋, 𝜇, ∗). Fix 𝑡 > 0 and 𝑟 ∈

(0, 1), it is easy to see that the family of 𝜇-ball {𝐵(𝑥, 𝑟, 𝑡/2𝛽+1) :
𝑥 ∈ 𝐴} is a 𝜇-open cover of 𝐴. Since 𝐴 is 𝜇-compact, there
exist 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐴 such that 𝐴 ⊆ ⋃

𝑛

𝑖=1
𝐵(𝑥𝑖, 𝑟, 𝑡/2

𝛽+1).
For every 𝑥 ∈ 𝐴, there exists 𝑖 such that 𝑥 ∈ 𝐵(𝑥𝑖, 𝑟, 𝑡/2

𝛽+1).
Therefore, we have 𝜇(𝑥 − 𝑥𝑖, 𝑡/2

𝛽+1) > 1 − 𝑟. Set 𝛼 =

min{𝜇(𝑥𝑖, 𝑡/2
𝛽+1) : 1 ≤ 𝑖 ≤ 𝑛}. Clearly, we know that 𝛼 > 0.

Thus, we have

𝜇 (𝑥, 𝑡) = 𝜇 ((𝑥 − 𝑥𝑖) + 𝑥𝑖, 𝑡) ≥ 𝜇 (2 (𝑥 − 𝑥𝑖) ,
𝑡

2
)

∗ 𝜇 (2𝑥𝑖,
𝑡

2
)

= 𝜇 (𝑥 − 𝑥𝑖,
𝑡

2𝛽+1
) ∗ 𝜇(𝑥𝑖,

𝑡

2𝛽+1
)

≥ (1 − 𝑟) ∗ 𝛼 > 1 − 𝑠

(20)

for some 𝑠 ∈ (0, 1). This shows that 𝐴 is 𝜇-bounded.

Theorem 19. Let (𝑋, 𝜇, ∗) be a 𝛽-homogeneous F-modular
space, and let T𝜇 be the topology induced by the 𝛽-

homogeneous modular. Then for a sequence {𝑥𝑛} in𝑋, 𝑥𝑛
𝜇

󳨀→ 𝑥
if and only if 𝜇(𝑥 − 𝑥𝑛, 𝑡) → 1 as 𝑛 → ∞.

Proof. Fix 𝑡 > 0. Suppose that 𝑥𝑛
𝜇

󳨀→ 𝑥. Then for every 𝑟 ∈
(0, 1), there exists 𝑛0 ∈ N such that 𝑥𝑛 ∈ 𝐵(𝑥, 𝑟, 𝑡) for all 𝑛 ≥
𝑛0. Namely, 𝜇(𝑥𝑛 − 𝑥, 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛0. Thus, we have
1 − 𝜇(𝑥𝑛 − 𝑥, 𝑡) < 𝑟 for all 𝑛 ≥ 𝑛0. Because 𝑟 is arbitrary, we
can verify that 𝜇(𝑥𝑛 − 𝑥, 𝑡) → 1 as 𝑛 → ∞.

On the other hand, if for every 𝑡 > 0, 𝜇(𝑥 − 𝑥𝑛, 𝑡) → 1 as
𝑛 → ∞, then for every 𝑟 ∈ (0, 1), there exists 𝑛0 ∈ N such
that 1 − 𝜇(𝑥 − 𝑥𝑛, 𝑡) < 𝑟 for all 𝑛 ≥ 𝑛0. Therefore, we know
that 𝜇(𝑥 − 𝑥𝑛, 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛0. Thus 𝑥𝑛 ∈ 𝐵(𝑥, 𝑟, 𝑡) for
all 𝑛 ≥ 𝑛0, and hence 𝑥𝑛

𝜇

󳨀→ 𝑥 as 𝑛 → ∞.

4. 𝜇-Completeness of a Fuzzy Modular Space

In this section, we will establish some related theorems of 𝜇-
completeness of a fuzzy modular space.

Definition 20. Let (𝑋, 𝜇, ∗) be aF-modular space.

(i) A sequence {𝑥𝑛} in 𝑋 is a 𝜇-Cauchy sequence if and
only if for every 𝜖 ∈ (0, 1) and 𝑡 > 0, there exists 𝑛0 ∈
N such that 𝜇(𝑥𝑚 − 𝑥𝑛, 𝑡) > 1 − 𝜖 for all 𝑚, 𝑛 ≥ 𝑛0.

(ii) TheF-modular space (𝑋, 𝜇, ∗) is called 𝜇-complete if
every 𝜇-Cauchy sequence is 𝜇-convergent.

In [16], Fallahi and Nourouzi proved that every 𝜇-
convergent sequence is a 𝜇-Cauchy sequence in the 𝛽-
homogeneousF-modular space. Here wewill propose a sim-
ilar result in F-modular space. Noticing that the following

theorem shows that a 𝜇-convergent sequence is not necessar-
ily a 𝜇-Cauchy sequence in a generalF-modular space.

Theorem 21. Let (𝑋, 𝜇, ∗𝑀) be a 𝛽-homogeneousF-modular
space. Then every 𝜇-convergent sequence {𝑥𝑛} in 𝑋 is a 𝜇-
Cauchy sequence.

Proof. Suppose that the sequence {𝑥𝑛} 𝜇-converges to 𝑥 ∈ 𝑋.
Therefore, for every 𝜖 ∈ (0, 1) and 𝑡 > 0, there exists 𝑛0 ∈ N

such that 𝜇(𝑥𝑛 − 𝑥, 𝑡/2𝛽+1) > 1 − 𝜖 for all 𝑛 ≥ 𝑛0. For all
𝑚, 𝑛 ≥ 𝑛0, we have

𝜇 (𝑥𝑚 − 𝑥𝑛, 𝑡) ≥ 𝜇 (2 (𝑥𝑚 − 𝑥) ,
𝑡

2
) ∗𝑀𝜇(2 (𝑥𝑛 − 𝑥) ,

𝑡

2
)

≥ 𝜇 (𝑥𝑚 − 𝑥,
𝑡

2𝛽+1
)∗𝑀𝜇(𝑥𝑛 − 𝑥,

𝑡

2𝛽+1
)

> (1 − 𝜖) ∗𝑀 (1 − 𝜖) = 1 − 𝜖.

(21)

Hence {𝑥𝑛} is a 𝜇-Cauchy sequence in 𝑋.

Remark 22. The proof of Theorem 21 shows that, in the F-
modular space, a 𝜇-convergent sequence is not necessarily
a 𝜇-Cauchy sequence. However, the 𝛽-homogeneity and the
choice of triangular norms are essential to guarantee the
establishment of theorem.

Theorem 23. Every 𝜇-closed subspace of 𝜇-complete F-
modular space is 𝜇-complete.

Proof. From Definition 20, it is evident to see that the
theorem holds.

Theorem 24. Let (𝑋, 𝜇, ∗) be a 𝛽-homogeneous F-modular
space, and let 𝑌 be a subset of 𝑋. If every 𝜇-Cauchy sequence
of 𝑌 is 𝜇-convergent in 𝑋, then every 𝜇-Cauchy sequence of 𝑌
is also 𝜇-convergent in 𝑋, where 𝑌 denotes the 𝜇-closure of 𝑌.

Proof. Suppose that the sequence {𝑥𝑛} is a𝜇-Cauchy sequence
of 𝑌. Therefore, for every 𝑛 ∈ N and 𝑡 > 0, there exists 𝑦𝑛 ∈ 𝑌

such that 𝜇(𝑥𝑛 − 𝑦𝑛, 𝑡/4
𝛽+1) > 1 − 1/(𝑛 + 1). According to

Theorem 7, we have 𝜇(𝑥𝑛 − 𝑦𝑛, 𝑡/2
𝛽+1) > 1 − (1/(𝑛 + 1)). In

addition, for every 𝑟 ∈ (0, 1) and 𝑡 > 0, there exists an 𝑛0 ∈ N

such that 𝜇(𝑥𝑛 − 𝑥𝑚, 𝑡/4
𝛽+1) > 1 − 𝑟 for all 𝑚, 𝑛 ≥ 𝑛0. That is

to say, 𝜇(𝑥𝑛 − 𝑥𝑚, 𝑡/4
𝛽+1) → 1 as 𝑚, 𝑛 → ∞. Next, we will

show that the sequence {𝑦𝑛} is a 𝜇-Cauchy sequence of 𝑌. For
every 𝑚, 𝑛 ≥ 𝑛0, we have

𝜇 (𝑦𝑛 − 𝑦𝑚, 𝑡) ≥ 𝜇 (2 (𝑦𝑛 − 𝑥𝑛) ,
𝑡

2
) ∗ 𝜇 (2 (𝑥𝑛 − 𝑦𝑚) ,

𝑡

2
)

≥ 𝜇 (2 (𝑦𝑛 − 𝑥𝑛) ,
𝑡

2
) ∗ 𝜇 (4 (𝑥𝑛 − 𝑥𝑚) ,

𝑡

4
)

∗ 𝜇 (4 (𝑥𝑚 − 𝑦𝑚) ,
𝑡

4
)



6 Journal of Applied Mathematics

= 𝜇(𝑦𝑛 − 𝑥𝑛,
𝑡

2𝛽+1
) ∗ 𝜇(𝑥𝑛 − 𝑥𝑚,

𝑡

4𝛽+1
)

∗ 𝜇(𝑥𝑚 − 𝑦𝑚,
𝑡

4𝛽+1
)

> (1 −
1

𝑛 + 1
) ∗ (1 − 𝑟) ∗ (1 −

1

𝑚 + 1
) .

(22)

Since 𝑡-norm ∗ is continuous, it follows that 𝜇(𝑦𝑛 −
𝑦𝑚, 𝑡) → 1 as𝑚, 𝑛 → ∞. Now, we assume that the sequence
{𝑦𝑛} 𝜇-converges to 𝑥 ∈ 𝑋. Thus, for every 𝜖 ∈ (0, 1) and
𝑡 > 0, there exists an 𝑛1 ∈ N such that 𝜇(𝑥−𝑦𝑛, 𝑡/2

𝛽+1) > 1−𝜖
for all 𝑛 ≥ 𝑛1. Therefore, for all 𝑛 ≥ 𝑛1, we can obtain

𝜇 (𝑥𝑛 − 𝑥, 𝑡) ≥ 𝜇 (2 (𝑥𝑛 − 𝑦𝑛) ,
𝑡

2
) ∗ 𝜇 (2 (𝑦𝑛 − 𝑥𝑛) ,

𝑡

2
)

= 𝜇 (𝑥𝑛 − 𝑦𝑛,
𝑡

2𝛽+1
) ∗ 𝜇(𝑦𝑛 − 𝑥𝑛,

𝑡

2𝛽+1
)

> (1 − 𝜖) ∗ (1 −
1

𝑛 + 1
) .

(23)

According to the arbitrary of 𝜖 and by letting 𝑛 → ∞,
it follows that lim𝑛→∞𝜇(𝑥𝑛 − 𝑥, 𝑡) = 1. That is, an arbitrary
𝜇-Cauchy sequence {𝑥𝑛} of𝑌𝜇-converges to 𝑥 ∈ 𝑋.The proof
of the theorem is now completed.

Theorem 25. Let (𝑋, 𝜇, ∗) be a 𝛽-homogeneous F-modular
space, and let 𝑌 be a dense subset of 𝑋. If every 𝜇-Cauchy
sequence of 𝑌 is 𝜇-convergent in 𝑋, then the 𝛽-homogeneous
F-modular space (𝑋, 𝜇, ∗) is 𝜇-complete.

Proof. It follows fromTheorem 24.

5. Baire’s Theorem and Uniform
Limit Theorem

In [15], Nourouzi extended the well-know Baire’s theorem
to probabilistic modular spaces. In this section, we will
extend the Baire’s theorem to fuzzy modular spaces in an
analogous way.Moreover, the uniform limit theorem also can
be extended to this type of spaces.

Theorem 26 (Baire’s theorem). Let 𝑈𝑛 (𝑛 = 1, 2, . . .) be a
countable number of 𝜇-dense and 𝜇-open sets in the 𝜇-complete
𝛽-homogeneousF-modular space (𝑋, 𝜇, ∗𝑀).Then⋂

∞

𝑛=1
𝑈𝑛 is

𝜇-dense in 𝑋.

Proof. First of all, if 𝐵(𝑥, 𝑟, 2𝑡) is a 𝜇-ball in 𝑋 and 𝑦 is an
arbitrary element of it, then we know that 𝜇(𝑥−𝑦, 2𝑡) > 1−𝑟.
Since 𝜇(𝑥−𝑦, ⋅) is continuous, there exists an 𝜖𝑦 > 0 such that
𝜇(𝑥−𝑦, (𝑡−𝜖)/2𝛽−1) > 1−𝑟 for some 𝜖 > 0with (𝑡−𝜖)/2𝛽−1 > 0

and 𝜖/2𝛽−1 ∈ (0, 𝜖𝑦). Choose 𝑟󸀠 ∈ (0, 𝑟), 𝜖/2𝛽−1 ∈ (0, 𝜖𝑦) and

𝑧 ∈ 𝐵(𝑦, 𝑟󸀠, 𝜖/4𝛽), there exists a sequence {𝑧𝑛} in𝐵(𝑦, 𝑟󸀠, 𝜖/4𝛽)

such that 𝑧𝑛
𝜇

󳨀→ 𝑧 and hence we have

𝜇(𝑧 − 𝑦,
𝜖

2𝛽−1
) ≥ 𝜇(2 (𝑧 − 𝑧𝑛) ,

𝜖

2𝛽
)∗𝑀𝜇 (2 (𝑧𝑛 − 𝑦) ,

𝜖

2𝛽
)

= 𝜇(𝑧 − 𝑧𝑛,
𝜖

4𝛽
)∗𝑀𝜇(𝑧𝑛 − 𝑦,

𝜖

4𝛽
)

> 1 − 𝑟

(24)

for some 𝑛 ∈ N. Therefore, we can obtain

𝜇 (𝑥 − 𝑧, 2𝑡) = 𝜇 (2 (𝑧 − 𝑦) , 2𝜖) ∗𝑀𝜇 (2 (𝑥 − 𝑦) , 2 (𝑡 − 𝜖))

= 𝜇 (𝑧 − 𝑦,
𝜖

2𝛽−1
)∗𝑀𝜇(𝑥 − 𝑦,

𝑡 − 𝜖

2𝛽−1
)

> (1 − 𝑟) ∗𝑀 (1 − 𝑟) = 1 − 𝑟.

(25)

This shows that𝐵(𝑦, 𝑟󸀠, 𝜖/4𝛽) ⊆ 𝐵(𝑥, 𝑟, 2𝑡). Itmeans that if
𝐴 is a nonempty𝜇-open set of𝑋, then𝐴∩𝑈1 is nonempty and
𝜇-open. Now, let 𝑥1 ∈ 𝐴∩𝑈1, there exist 𝑟1 ∈ (0, 1) and 𝑡1 > 0

such that 𝐵(𝑥1, 𝑟1, 𝑡1/2
𝛽−1) ⊆ 𝐴 ∩ 𝑈1. Choose 𝑟󸀠

1
< 𝑟1 and

𝑡󸀠
1
= min{𝑡1, 1} such that 𝐵(𝑥1, 𝑟

󸀠

1
, 𝑡󸀠
1
/2𝛽−1) ⊆ 𝐴∩𝑈1. Since𝑈2

is 𝜇-dense in 𝑋, we can obtain 𝐵(𝑥1, 𝑟
󸀠

1
, 𝑡󸀠
1
/2𝛽−1) ∩ 𝑈2 ̸= 0. Let

𝑥2 ∈ 𝐵(𝑥1, 𝑟
󸀠

1
, 𝑡󸀠
1
/2𝛽−1)∩𝑈2, there exist 𝑟2 ∈ (0, 1/2) and 𝑡2 > 0

such that 𝐵(𝑥2, 𝑟2, 𝑡2/2
𝛽−1) ⊆ 𝐵(𝑥1, 𝑟

󸀠

1
, 𝑡󸀠
1
/2𝛽−1) ∩ 𝑈2. Choose

𝑟󸀠
2

< 𝑟2 and 𝑡󸀠
2

= min{𝑡2, 1/2} such that 𝐵(𝑥2, 𝑟
󸀠

2
, 𝑡󸀠
2
/2𝛽−1) ⊆

𝐴∩𝑈2. By induction, we can obtain a sequence {𝑥𝑛} in𝑋 and
two sequence {𝑟󸀠

𝑛
}, {𝑡󸀠
𝑛
} such that 0 < 𝑟󸀠

𝑛
< 1/𝑛, 0 < 𝑡󸀠

𝑛
< 1/𝑛

and 𝐵(𝑥𝑛, 𝑟
󸀠
𝑛
, 𝑡󸀠
𝑛
/2𝛽−1) ⊆ 𝐴 ∩ 𝑈𝑛.

Next, we show that {𝑥𝑛} is a𝜇-Cauchy sequence. For given
𝑡 > 0 and 𝑟 ∈ (0, 1), we can choose 𝑘 ∈ N such that 2𝑡󸀠

𝑘
< 𝑡 and

𝑟󸀠
𝑘

< 𝑟. Then for 𝑚, 𝑛 ≥ 𝑘, since 𝑥𝑚, 𝑥𝑛 ∈ 𝐵(𝑥𝑘, 𝑟
󸀠

𝑘
, 𝑡󸀠
𝑘
/2𝛽−1),

we have

𝜇 (𝑥𝑚 − 𝑥𝑛, 2𝑡) ≥ 𝜇 (𝑥𝑚 − 𝑥𝑛, 4𝑡
󸀠

𝑘
)

≥ 𝜇 (2 (𝑥𝑚 − 𝑥𝑘) , 2𝑡
󸀠

𝑘
)

∗𝑀𝜇 (2 (𝑥𝑛 − 𝑥𝑘) , 2𝑡
󸀠

𝑘
)

= 𝜇(𝑥𝑚 − 𝑥𝑘,
𝑡󸀠
𝑘

2𝛽−1
)∗𝑀𝜇(𝑥𝑛 − 𝑥𝑘,

𝑡󸀠
𝑘

2𝛽−1
)

≥ 1 − 𝑟𝑘 > 1 − 𝑟.

(26)

According to the arbitrary of 𝑡, it follows that {𝑥𝑛} is a 𝜇-
Cauchy sequence. Since 𝑋 is 𝜇-complete, there exists 𝑥 ∈ 𝑋

such that 𝑥𝑛
𝜇

󳨀→ 𝑥. But 𝑥𝑛 ∈ 𝐵(𝑥𝑘, 𝑟
󸀠

𝑘
, 𝑡󸀠
𝑘
/2𝛽−1) for all 𝑛 ≥ 𝑘,

and therefore 𝑥 ∈ 𝐵(𝑥𝑘, 𝑟
󸀠

𝑘
, 𝑡󸀠
𝑘
/2𝛽−1) ⊆ 𝐴 ∩ 𝑈𝑘 for all 𝑘. Thus

𝐴 ∩ (⋂
∞

𝑛=1
𝑈𝑛) ̸= 0. Hence ⋂

∞

𝑛=1
𝑈𝑛 is 𝜇-dense in 𝑋.

Definition 27. Let 𝑋 be any nonempty set and let (𝑌, 𝜇, ∗) be
aF-modular space. A sequence {𝑓𝑛} of functions from 𝑋 to
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𝑌 is said to 𝜇-converge uniformly to a function 𝑓 from 𝑋 to
𝑌 if given 𝑡 > 0 and 𝑟 ∈ (0, 1); there exists 𝑛0 ∈ N such that
𝜇(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛0 and for every 𝑥 ∈ 𝑋.

Theorem 28 (Uniform limit theorem). Let 𝑓𝑛 : 𝑋 → 𝑌 be
a sequence of continuous functions from a topological space
𝑋 to a 𝛽-homogeneous F-modular space (𝑌, 𝜇, ∗). If {𝑓𝑛} 𝜇-
converges uniformly to 𝑓 : 𝑋 → 𝑌, then 𝑓 is continuous.

Proof. Let 𝑉 be a 𝜇-open set of 𝑌 and 𝑥0 ∈ 𝑓−1(𝑉). Since
𝑉 is 𝜇-open, there exist 𝑟 ∈ (0, 1) and 𝑡 > 0 such that
𝐵(𝑓(𝑥0), 𝑟, 𝑡) ⊂ 𝑉. Owing to 𝑟 ∈ (0, 1), we can choose
𝑠 ∈ (0, 1) such that (1 − 𝑠) ∗ (1 − 𝑠) ∗ (1 − 𝑠) > 1 − 𝑟. Since
{𝑓𝑛} 𝜇-converges uniformly to 𝑓, given 𝑠 ∈ (0, 1) and 𝑡 > 0,
there exists 𝑛0 ∈ N such that 𝜇(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡/4𝛽+1) > 1 − 𝑠
for all 𝑛 ≥ 𝑛0 and for every 𝑥 ∈ 𝑋. Moreover,𝑓𝑛 is continuous
for every 𝑛 ∈ N, there exists a neighborhood 𝑈 of 𝑥0 such
that 𝑓𝑛(𝑈) ⊂ 𝐵(𝑓𝑛(𝑥0), 𝑠, 𝑡/4

𝛽+1). Therefore, we know that
𝜇(𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0), 𝑡/4

𝛽+1) > 1 − 𝑠 for every 𝑥 ∈ 𝑈. Thus, we
have

𝜇 (𝑓 (𝑥) − 𝑓 (𝑥0) , 𝑡) ≥ 𝜇 (2 (𝑓 (𝑥) − 𝑓𝑛 (𝑥)) ,
𝑡

2
)

∗ 𝜇 (2 (𝑓𝑛 (𝑥) − 𝑓 (𝑥0)) ,
𝑡

2
)

= 𝜇 (𝑓 (𝑥) − 𝑓𝑛 (𝑥) ,
𝑡

2𝛽+1
)

∗ 𝜇(𝑓𝑛 (𝑥) − 𝑓 (𝑥0) ,
𝑡

2𝛽+1
)

≥ 𝜇(𝑓 (𝑥) − 𝑓𝑛 (𝑥) ,
𝑡

2𝛽+1
)

∗ 𝜇(2 (𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑥0)) ,
𝑡

2𝛽+2
)

∗ 𝜇(2 (𝑓𝑛 (𝑥0) − 𝑓 (𝑥0)) ,
𝑡

2𝛽+2
)

= 𝜇(𝑓 (𝑥) − 𝑓𝑛 (𝑥) ,
𝑡

2𝛽+1
)

∗ 𝜇(𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑥0) ,
𝑡

4𝛽+1
)

∗ 𝜇(𝑓𝑛 (𝑥0) − 𝑓 (𝑥0) ,
𝑡

4𝛽+1
)

≥ (1 − 𝑠) ∗ (1 − 𝑠) ∗ (1 − 𝑠)

> 1 − 𝑟.

(27)

This shows that 𝑓(𝑥) ∈ 𝐵(𝑓(𝑥0), 𝑟, 𝑡) ⊂ 𝑉. Hence 𝑓(𝑈) ⊂
𝑉; that is, 𝑓 is continuous.

Remark 29. All the results in this paper are still valid if
the condition (FM-5) in Definition 3 is replaced by left
continuity.

6. Conclusions

In this paper, we have proposed the concept of fuzzymodular
space based on the (probabilistic) modular space and contin-
uous 𝑡-norm, which can be regarded as a generalization of
(probabilistic) modular space in the fuzzy sense. Meantime,
two examples are given to show that a fuzzy modular and a
fuzzymetric do not necessarily inducemutually when the tri-
angular norm is the same one. In the sequel, we have defined
a Hausdorff topology induced by a 𝛽-homogeneous fuzzy
modular and examined some related topological properties.
It should be pointed out that the 𝛽-homogeneity is essential
to ensure the establishment of most important conclusions,
and some properties also depend on the choice of triangular
norms. Finally, we have extended the well-known Baire’s
theorem and uniform limit theorem to𝛽-homogeneous fuzzy
modular spaces.

Further research will focus on the following problems. (1)
We first address the problem whether there is a relationship
between a fuzzymodular and a fuzzymetric. If the aforemen-
tioned relationship exists, then the following issue should be
simultaneously considered. (2) It has important theoretical
values to explore what conditions a fuzzy modular and a
fuzzy metric can induce mutually. (3) Similar to the fixed
point theory in probabilistic or fuzzy metric spaces, it is an
interesting and valuable research direction to construct fixed
point theorems in fuzzymodular spaces. (4) Inspired by [3, 4,
20–22], a problem worthy to be considered is extending the
modular sequence (function) space and the Orlicz sequence
space to fuzzy setting by the method used in this paper.
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