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In this paper, a multilevel thresholding (MT) algorithm based on the harmony search algorithm (HSA) is introduced. HSA is an
evolutionary method which is inspired in musicians improvising new harmonies while playing. Different to other evolutionary
algorithms, HSA exhibits interesting search capabilities still keeping a low computational overhead. The proposed algorithm
encodes random samples from a feasible search space inside the image histogram as candidate solutions, whereas their quality
is evaluated considering the objective functions that are employed by the Otsu’s or Kapur’s methods. Guided by these objective
values, the set of candidate solutions are evolved through the HSA operators until an optimal solution is found. Experimental
results demonstrate the high performance of the proposed method for the segmentation of digital images.

1. Introduction

Segmentation is one of the most important tasks in image
processing that endeavors to identifywhether a pixel intensity
corresponds to a predefined class. Thresholding is the easiest
method for segmentation as it works taking a threshold (th)
value so that pixels whose intensity value is higher than th
are labeled as first class while the rest correspond to a second
class label.When the image is segmented into two classes, the
task is called bilevel thresholding (BT) and requires only one
th value. On the other hand, when pixels are separated into
more than two classes, the task is named asMT and demands
more than one th value [1].

In recent years image processing has been applied to
different areas as engineering, medicine, agriculture, and so
forth. Since most of such implementations use a THmethod-
ology, several techniques had been studied. Generally, TH
methods are divided into parametric and nonparametric [2–
5]. Parametric approaches need to estimate values of a prob-
ability density function to model each class. The estimation

process is time consuming and computationally expensive.
On the other hand, the TH nonparametric employs several
criteria such as the between-class variance, the entropy, and
the error rate [6–8] in order to verify the quality of a th value.
These metrics could also be used as optimization functions
since they result as an attractive option due their robustness
and accuracy.

There exist two classical thresholding methods. The first,
proposed byOtsu in [6] that maximizes the variance between
classes while the second method, submitted by Kapur et al.
in [7], uses the maximization of the entropy to measure the
homogeneity among classes. Their efficiency and accuracy
have been already proved for a bilevel segmentation [4].
Although they can be expanded for MT, their computational
complexity increases exponentially when a new threshold is
incorporated [5].

As an alternative to classical methods, the MT problem
has also been handled through evolutionary optimization
methods. In general, they have demonstrated to deliver better
results than those based on classical techniques in terms
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of accuracy, speed, and robustness. Numerous evolutionary
approaches have been reported in the literature.

Hammouche et al. in [9] provides an interesting survey of
how different evolutionary algorithms are used to solve the
Kaptur’s and Otsu’s problems. The study uses four classical
evolutionary algorithms to test their efficiency in MT. Such
methods include differential evolution (DE) [10], simulated
annealing (SA) [11], and tabu search (TS) [12].

Genetic algorithms (GA) [13], inspired on the biological
evolution, have been also used for solving segmentation
tasks. One interesting example is presented in [14], where a
GA-based algorithm is combined with Gaussian models for
multilevel thresholding. Other similar works, such as that of
Yin [15] proposes an improved GA for optimal thresholding.
In the approach, it is used as a learning strategy to increase
the speed of convergence.

Evolutionary approaches inspired on swarm behavior,
such as particle swarm optimization (PSO) [16] and artificial
bee colony (ABC) [17], have been employed to face the
segmentation problem. In [18], bothmethods are used to find
the optimal multilevel threshold points by using the Kapur’s
entropy as fitness function.

Finally, in [19], the optimal segmentation threshold values
are determined by using the bacterial foraging algorithm
(BFA). Suchmethod aims tomaximize the Kapur’s andOtsu’s
objective functions by considering a set of operators that
are based on the social foraging behavior of the bacteria
Eschericha Colli.

On the other hand, the harmony search algorithm (HSA)
introduced by Geem et al. [20] is an evolutionary opti-
mization algorithm which is based on the metaphor of the
improvisation process that occurs when a musician searches
for a better state of harmony. The HSA generates a new
candidate solution from all existing solutions. The solution
vector is analogous to the harmony in music while the
local and global search schemes are analogous to musi-
cian’s improvisations. In comparison to other metaheuristics
methods in the literature, HSA imposes fewer mathematical
requirements as it can be easily adapted for solving several
sorts of engineering optimization challenges [21]. Further-
more, numerical comparisons have demonstrated that the
convergence for theHSA is faster thanGA [22] which attracts
further attention. It has been successfully applied to solve a
wide range of practical optimization problems such as dis-
crete and continuous structural optimization [23], parameter
estimation of the nonlinear Muskingum model [24], design
optimization of water distribution networks [25], vehicle
routing [26], combined heat and power economic dispatch
[27], design of steel frames [28], and image processing [29].
Although the standard HSA presents good search character-
istics, several modifications to the original HSA have been
proposed in the literature in order to enhance its own features
[30].

In this paper, a novel multithresholding segmentation
algorithm is introduced. The proposed approach, called
the harmony search multithresholding algorithm (HSMA),
combines the original harmony search algorithm (HSA) and
the Otsu’s and Kapur’s methodologies. The proposed algo-
rithm takes random samples from a feasible search space

inside the image histogram. Such samples build each har-
mony (candidate solution) in the HSA context, whereas its
quality is evaluated considering the objective function that
is employed by the Otsu’s or the Kapur’s method. Guided
by these objective values, the set of candidate solutions are
evolved using the HSA operators until the optimal solution
is found. The approach generates a multilevel segmentation
algorithm which can effectively identify the threshold values
of a digital image within a reduced number of iterations.
Experimental results over several complex images have val-
idated the efficiency of the proposed technique regarding
accuracy, speed, and robustness.

The paper is organized as follows. In Section 2, the HSA
is introduced. Section 3 gives a brief description of the Otsu’s
and Kapur’s methods. Section 4 explains the implementation
of the proposed algorithm. Section 5 discusses experimental
results after testing the proposed method over a set bench-
mark images. Finally, some conclusions are discussed in
Section 6.

2. Harmony Search Algorithm

2.1. The Harmony Search Algorithm. In the basic HSA, each
solution is called a “harmony” and is represented by an n-
dimension real vector. An initial population of harmony
vectors are randomly generated and stored within a har-
mony memory (HM). A new candidate harmony is thus
generated from the elements in the HM by using a memory
consideration operation either by a random reinitialization
or a pitch adjustment operation. Finally, the HM is updated
by comparing the new candidate harmony and the worst
harmony vector in the HM. The worst harmony vector is
replaced by the new candidate vector when the latter delivers
a better solution in the HM. The above process is repeated
until a certain termination criterion is met. The basic HS
algorithm consists of three main phases: HM initialization,
improvisation of new harmony vectors, and updating the
HM. The following discussion addresses details about each
stage.

2.1.1. Initializing the Problem and the Algorithm Parameters.
In general, the global optimization problem can be summa-
rized as follows:
minimize 𝑓 (x) , x = (𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑛)) ∈ R𝑛,

subject to: 𝑥 (𝑗) ∈ [𝑙 (𝑗) , 𝑢 (𝑗)] 𝑗 = 1, 2, . . . , 𝑛,
(1)

where 𝑓(x) is the objective function, x = (𝑥(1), 𝑥(2), . . . ,
𝑥(𝑛)) is the set of design variables, 𝑛 is the number of design
variables, and 𝑙(𝑗) and 𝑢(𝑗) are the lower and upper bounds
for the design variable 𝑥(𝑗), respectively. The parameters for
HSA are the harmony memory size, that is, the number
of solution vectors lying on the harmony memory (HM),
the harmony-memory consideration rate (HMCR), the pitch
adjusting rate (PAR), the distance bandwidth (BW), and the
number of improvisations (NI) which represents the total
number of iterations. The performance of HSA is strongly
influenced by values assigned to such parameters, which in
turn, depend on the application domain [31].
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2.1.2. Harmony Memory Initialization. In this stage, initial
vector components at HM, that is, HMS vectors, are con-
figured. Let x

𝑖
= {𝑥
𝑖
(1), 𝑥
𝑖
(2), . . . , 𝑥

𝑖
(𝑛)} represent the 𝑖th

randomly-generated harmony vector: 𝑥
𝑖
(𝑗) = 𝑙(𝑗) + (𝑢(𝑗) −

𝑙(𝑗)) ⋅ rand(0, 1) for 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 = 1, 2, . . . ,HMS,
where rand(0,1) is a uniform random number between 0 and
1, the upper and lower bounds of the search space are defined
by 𝑙(𝑗) and 𝑢(𝑗), respectively. Then, the HM matrix is filled
with the HMS harmony vectors as follows:

HM =
[
[
[
[

[

x
1

x
2

...
xHMS

]
]
]
]

]

. (2)

2.1.3. Improvisation of New Harmony Vectors. In this phase,
a new harmony vector xnew is built by applying the following
three operators: memory consideration, random reinitializa-
tion, and pitch adjustment. Generating a new harmony is
known as “improvisation.” In thememory consideration step,
the value of the first decision variable 𝑥new(1) for the new
vector is chosen randomly from any of the values already
existing in the current HM, that is, from the set {𝑥

1
(1),

𝑥
2
(1), . . . , 𝑥HMS(1)}. For this operation, a uniform random

number 𝑟
1
is generated within the range [0, 1]. If 𝑟

1
is

less than HMCR, the decision variable 𝑥new(1) is gener-
ated through memory considerations; otherwise, 𝑥new(1) is
obtained from a random reinitialization between the search
bounds [𝑙(1), 𝑢(1)]. Values of the other decision variables
𝑥new(2), 𝑥new(3), . . . , 𝑥new(𝑛) are also chosen accordingly.
Therefore, both operations, memory consideration and ran-
dom reinitialization, can be modeled as follows:

𝑥new (𝑗)

=

{{{{
{{{{
{

𝑥
𝑖
(𝑗) ∈ {𝑥

1
(𝑗) , 𝑥

2
(𝑗) , . . . , 𝑥HMS (𝑗)} ,

with probability HMCR,
𝑙 (𝑗) + (𝑢 (𝑗) − 𝑙 (𝑗)) ⋅ rand (0, 1) ,

with probability 1 −HMCR.

(3)

Every component obtained by memory consideration is
further examined to determine whether it should be pitch-
adjusted. For this operation, the pitch-adjusting rate (PAR)
is defined as to assign the frequency of the adjustment and
the bandwidth factor (BW) to control the local search around
the selected elements of the HM. Hence, the pitch-adjusting
decision is calculated as follows:

𝑥new (𝑗)

=
{{
{{
{

𝑥new (𝑗) = 𝑥new (𝑗) ± rand (0, 1) ⋅ BW,

with probability PAR,
𝑥new (𝑗) , with probability (1 − PAR) .

(4)

Pitch adjusting is responsible for generating new potential
harmonies by slightly modifying original variable positions.
Such operation can be considered similar to the mutation
process in evolutionary algorithms. Therefore, the decision

variable is either perturbed by a random number between 0
and BW or left unaltered. In order to protect the pitch adjust-
ing operation, it is important to assure that points lying
outside the feasible range [𝑙, 𝑢] must be reassigned, that is,
truncated to the maximum or minimum values of the inter-
val.

2.1.4. Updating the Harmony Memory. After a new harmony
vector 𝑥new is generated, the harmony memory is updated by
the survival of the fit competition between 𝑥new and the worst
harmony vector 𝑥

𝑤
in the HM.Therefore 𝑥new will replace 𝑥

𝑤

and become a newmember of theHM in case the fitness value
of 𝑥new is better than the fitness value of 𝑥

𝑤
.

2.1.5. Computational Procedure. The computational proce-
dure of the basic HSA can be summarized as in Algorithm 1
[20].

This procedure is implemented for minimization. If the
intention is to maximize the objective function, a sign
modification of step 4 (x

𝑤
= xnew if 𝑓(xnew) > 𝑓(x

𝑤
)) is

required. In this paper the HSA is used for maximization
proposes.

3. Image Multilevel Thresholding (MT)

Thresholding is a process in which the pixels of a gray scale
image are divided in sets or classes depending on their inten-
sity level (𝐿). For this classification it is necessary to select a
threshold value (th) and follow the simple rule of

𝐶
1
← 𝑝 if 0 ≤ 𝑝 < th,

𝐶
2
← 𝑝 if th ≤ 𝑝 < 𝐿 − 1,

(5)

where𝑝 is one of the𝑚×𝑛 pixels of the gray scale image 𝐼
𝑔
that

can be represented in 𝐿 gray scale levels 𝐿 = {0, 1, 2, . . . , 𝐿−1}.
𝐶
1
and 𝐶

2
are the classes in which the pixel 𝑝 can be located,

while th is the threshold. The rule in (5) corresponds to a
bilevel thresholding and can be easily extended for multiple
sets:

𝐶
1
← 𝑝 if 0 ≤ 𝑝 < th

1
,

𝐶
2
← 𝑝 if th

1
≤ 𝑝 < th

2
,

𝐶
𝑖
← 𝑝 if th

𝑖
≤ 𝑝 < th

𝑖+1
,

𝐶
𝑛
← 𝑝 if th

𝑛
≤ 𝑝 < 𝐿 − 1,

(6)

where {th
1
, th
2
, . . . , th

𝑖
, th
𝑖+1
, th
𝑘
} represent different thresh-

olds. The problem for both bilevel and MT is to select
the th values that correctly identify the classes. Although,
Otsu’s and Kapur’s methods are well-known approaches for
determining such values, both propose a different objective
function which must be maximized in order to find optimal
threshold values, just as it is discussed below.

3.1. Between-Class Variance (Otsu’s Method). This is a non-
parametric technique for thresholding proposed by Otsu [6]
that employs the maximum variance value of the different
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𝑆𝑡𝑒𝑝 1. Set the parameters HMS, HMCR, PAR, BW and NI.
𝑆𝑡𝑒𝑝 2. Initialize the HM and calculate the objective function value of

each harmony vector.
𝑆𝑡𝑒𝑝 3. Improvise a new harmony xnew as follows:

for (𝑗 = 1 to 𝑛) do
if (𝑟
1
<HMCR) then

𝑥new(𝑗) = 𝑥𝑎(𝑗) where 𝑎 ∈ (1, 2, . . . ,HMS)
if (𝑟
2
< PAR) then

𝑥new(𝑗) = 𝑥new(𝑗) ± 𝑟3 ⋅ BW where 𝑟
1
, 𝑟
2
, 𝑟
3
∈ rand (0, 1)

end if
if 𝑥new(𝑗) < 𝑙(𝑗)
𝑥new(𝑗) = 𝑙(𝑗)
end if
if 𝑥new(𝑗) > 𝑢(𝑗)
𝑥new(𝑗) = 𝑢(𝑗)
end if

else
𝑥new(𝑗) = 𝑙(𝑗) + 𝑟⋅ (𝑢(𝑗) − 𝑙(𝑗)), where 𝑟 ∈ rand (0, 1)

end if
end for

𝑆𝑡𝑒𝑝 4. Update the HM as x
𝑤
= xnew if 𝑓(xnew) < 𝑓(x𝑤)

𝑆𝑡𝑒𝑝 5. If NI is completed, the best harmony vector x
𝑏
in the HM is returned;

otherwise go back to Step3.

Algorithm 1

𝑆𝑡𝑒𝑝 1. Read the image 𝐼 and if it is RGB separate it into 𝐼
𝑅
, 𝐼
𝐺
and 𝐼
𝐵
. If 𝐼 is gray scale store it into

𝐼Gr. 𝑐 = 1, 2, 3 for RGB images or 𝑐 = 1 for gray scale images.
𝑆𝑡𝑒𝑝 2. Obtain histograms: for RGB images ℎ𝑅, ℎ𝐺, ℎ𝐵 and for gray scale images ℎGr.
𝑆𝑡𝑒𝑝 3. Calculate the probability distribution using (7) and obtain the histograms.
𝑆𝑡𝑒𝑝 4. Initialize the HSA parameters: HMS, 𝑘, HMCR, PAR, BW, NI, and the limits 𝑙 and 𝑢.
𝑆𝑡𝑒𝑝 5. Initialize a HM x𝑐

𝑖
of HMS random particles with 𝑘 dimensions.

𝑆𝑡𝑒𝑝 6. Compute the values 𝜔𝑐
𝑖
and 𝜇𝑐

𝑖
. Evaluate each element ofHM in the objective function 𝐽(HM) (14)

or (20) depending on the thresholding method (Otsu or Kapur respectively).
𝑆𝑡𝑒𝑝 7. Improvise a new harmony x𝑐new as follows:

for (𝑗 = 1 to 𝑛) do
if (𝑟
1
< HCMR) then

𝑥𝑐new (𝑗) = 𝑥
𝑐

𝑎
(𝑗) where 𝑎 ∈ (1, 2, . . . ,HMS)

if (𝑟
2
< PAR) then

𝑥𝑐new (𝑗) = 𝑥
𝑐

𝑎
(𝑗) ± 𝑟

3
⋅ BW where 𝑟

1
, 𝑟
2
, 𝑟
3
∈ rand (0, 1)

end if
if 𝑥𝑐new (𝑗) < 𝑙 (𝑗)
𝑥𝑐new (𝑗) = 𝑙 (𝑗)

end if
if 𝑥𝑐new (𝑗) > 𝑢 (𝑗)
𝑥𝑐new (𝑗) = 𝑢 (𝑗)

end if
else

𝑥𝑐new (𝑗) = 𝑙 (𝑗) + 𝑟 ⋅ (𝑢 (𝑗) − 𝑙 (𝑗)) whew 𝑟 ∈ rand (0, 1)
end if

end for
𝑆𝑡𝑒𝑝 8. Update the HM as x𝑐worst = x𝑐new if 𝑓 (x𝑐new) > 𝑓 (x

c
worst)

𝑆𝑡𝑒𝑝 9. If NI is completed or the stop criteria is satisfied, then jump to Step 10; otherwise go back to Step 6.
𝑆𝑡𝑒𝑝 10. Select the harmony that has the best 𝑥𝑐bestobjective function value.
𝑆𝑡𝑒𝑝 11. Apply the thresholds values contained in 𝑥𝑐best to the image 𝐼 (6).

Algorithm 2
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Figure 1: Continued.
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Figure 1: (a) Camera man, (c) Lena, (e) Baboon, (g) Hunter, and (i) Butterfly, the selected benchmark images. (b), (d), (f), (h), and (j)
histograms of the images.

classes as a criterion to segment the image. Taking the𝐿 inten-
sity levels from a gray scale image or from each component of
a RGB (red, green, and blue) image, the probability distribu-
tion of the intensity values is computed as follows:

Ph𝑐
𝑖
=

ℎ𝑐
𝑖

NP
,

NP
∑
𝑖=1

Ph𝑐
𝑖
= 1,

𝑐 = {
1, 2, 3, if RGB Image,
1, if Gray scale Image,

(7)

where 𝑖 is a specific intensity level (0 ≤ 𝑖 ≤ 𝐿 − 1), 𝑐 is the
component of the image which depends if the image is gray
scale or RGB, whereas NP is the total number of pixels in
the image. ℎ𝑐

𝑖
(histogram) is the number of pixels that cor-

responds to the 𝑖 intensity level in 𝑐. The histogram is norm-
alized within a probability distribution Ph𝑐

𝑖
. For the simplest

segmentation (bilevel) two classes are defined as

𝐶
1
=

Ph𝑐
1

𝜔𝑐
0
(th)

, . . . ,
Ph𝑐th
𝜔𝑐
0
(th)

, 𝐶
2
=

Ph𝑐th+1
𝜔𝑐
1
(th)

, . . . ,
Ph𝑐
𝐿

𝜔𝑐
1
(th)

,

(8)

where 𝜔
0
(th) and 𝜔

1
(th) are probabilities distributions for𝐶

1

and 𝐶
2
, as it is shown by

𝜔𝑐
0
(th) =

th
∑
𝑖=1

Ph𝑐
𝑖
, 𝜔𝑐

1
(th) =

𝐿

∑
𝑖=th+1

Ph𝑐
𝑖
. (9)

It is necessary to compute mean levels 𝜇𝑐
0
and 𝜇𝑐

1
that define

the classes using (10). Once those values are calculated, the
Otsu variance between classes 𝜎2

𝑐

is calculated using (11) as
follows:

𝜇𝑐
0
=

th
∑
𝑖=1

𝑖Ph𝑐
𝑖

𝜔𝑐
0
(th)

, 𝜇𝑐
1
=
𝐿

∑
𝑖=th+1

𝑖Ph𝑐
𝑖

𝜔𝑐
1
(th)

, (10)

𝜎2
𝑐

= 𝜎𝑐
1
+ 𝜎𝑐
2
. (11)

Notice that for both equations, (10) and (11), 𝑐 depends on the
type of image. In (11) the number two is part of the Otsu’s
variance operator and does not represent an exponent in
the mathematical sense. Moreover 𝜎𝑐

1
and 𝜎𝑐

2
in (11) are the

variances of 𝐶
1
and 𝐶

2
which are defined as

𝜎𝑐
1
= 𝜔𝑐
0
(𝜇𝑐
0
+ 𝜇𝑐
𝑇
)
2

, 𝜎𝑐
2
= 𝜔𝑐
1
(𝜇𝑐
1
+ 𝜇𝑐
𝑇
)
2

, (12)

where 𝜇𝑐
𝑇
= 𝜔𝑐
0
𝜇𝑐
0
+𝜔𝑐
1
𝜇𝑐
1
and 𝜔𝑐

0
+𝜔𝑐
1
= 1. Based on the values

𝜎𝑐
1
and 𝜎𝑐

2
, (13) presents the objective function:

𝐽 (th) = max (𝜎2
𝑐

(th)) , 0 ≤ th ≤ 𝐿 − 1, (13)

where 𝜎2
𝑐

(th) is the Otsu’s variance for a given th value.
Therefore, the optimization problem is reduced to find the
intensity level (th) that maximizes (13).

Otsu’s method is applied for a single component of an
image. In case of RGB images, it is necessary to apply separa-
tion into single component images. The previous description
of such bilevel method can be extended for the identification
ofmultiple thresholds. Considering 𝑘 thresholds, it is possible
separate the original image into 𝑘 classes using (6); then it
is necessary to compute the 𝑘 variances and their respective
elements. The objective function 𝐽(th) in (13) can thus be
rewritten for multiple thresholds as follows:

𝐽 (TH) = max (𝜎2
𝑐

(TH)) , 0 ≤ th
𝑖
≤ 𝐿 − 1, 𝑖 = 1, 2, . . . , 𝑘,

(14)

where TH = [th
1
, th
2
, . . . , th

𝑘−1
], is a vector containing mult-

iple thresholds and the variances are computed through

𝜎2
𝑐

=
𝑘

∑
𝑖=1

𝜎𝑐
𝑖
=
𝑘

∑
𝑖=1

𝜔𝑐
𝑖
(𝜇𝑐
𝑖
− 𝜇𝑐
𝑇
)
2

. (15)
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Here, 𝑖 represents the 𝑖 class, 𝜔𝑐
𝑖
and 𝜇𝑐

𝑗
are, respectively, the

probability of occurrence and themean of a class. InMT, such
values are obtained as

𝜔𝑐
0
(th) =

th
1

∑
𝑖=1

Ph𝑐
𝑖
,

𝜔𝑐
1
(th) =

th
2

∑
𝑖=th
1
+1

Ph𝑐
𝑖
,

...

𝜔𝑐
𝑘−1

(th) =
𝐿

∑
𝑖=th
𝑘
+1

Ph𝑐
𝑖
.

(16)

And, for the mean values

𝜇𝑐
0
=

th
1

∑
𝑖=1

𝑖Ph𝑐
𝑖

𝜔𝑐
0
(th
1
)
,

𝜇𝑐
1
=

th
2

∑
𝑖=th
1
+1

𝑖Ph𝑐
𝑖

𝜔𝑐
0
(th
2
)
,

...

𝜇𝑐
𝑘−1

=
𝐿

∑
𝑖=th
𝑘
+1

𝑖Ph𝑐
𝑖

𝜔𝑐
1
(th
𝑘
)
.

(17)

Similar to the bilevel case, for the MT using the Otsu’s
method, 𝑐 corresponds to the image components, RGB 𝑐 =
1, 2, 3, and gray scale 𝑐 = 1.

3.2. Entropy Criterion Method (Kapur’s Method). Another
nonparametric method that is used to determine the optimal
threshold values has been proposed by Kapur et al. [7]. It is
based on the entropy and the probability distribution of the
image histogram. The method aims to find the optimal th
that maximizes the overall entropy. The entropy of an image
measures the compactness and separability among classes. In
this sense, when the optimal th value appropriately separates
the classes, the entropy has the maximum value. For the
bilevel example, the objective function of theKapur’s problem
can be defined as

𝐽 (th) = 𝐻𝑐
1
+ 𝐻𝑐
2
,

𝑐 = {
1, 2, 3, if RGB Image,
1, if Gray scale Image,

(18)

where the entropies𝐻
1
and𝐻

2
are computed by the following

model:

𝐻𝑐
1
=

th
∑
𝑖=1

Ph𝑐
𝑖

𝜔𝑐
0

ln(
Ph𝑐
𝑖

𝜔𝑐
0

) ,

𝐻𝑐
2
=
𝐿

∑
𝑖=th+1

Ph𝑐
𝑖

𝜔𝑐
1

ln(
Ph𝑐
𝑖

𝜔𝑐
1

) .

(19)

Ph𝑐
𝑖
is the probability distribution of the intensity levels which

is obtained using (7). 𝜔
0
(th) and 𝜔

1
(th) are probabilities

distributions for 𝐶
1
and 𝐶

2
. ln(⋅) stands for the natural

logarithm. Similar to the Otsu’s method, the entropy-based
approach can be extended for multiple threshold values; for
such a case, it is necessary to divide the image into 𝑘 classes
using the similar number of thresholds. Under such condi-
tions, the new objective function is defined as:

𝐽 (TH) = max(
𝑘

∑
𝑖=1

𝐻𝑐
𝑖
) ,

𝑐 = {
1, 2, 3, if RGB Image,
1, if Gray scale Image,

(20)

where TH = [th
1
, th
2
, . . . , th

𝑘−1
] is a vector that contains

the multiple thresholds. Each entropy is computed separately
with its respective th value, so (21) is expanded for 𝑘 entropies:

𝐻𝑐
1
=

th
1

∑
𝑖=1

Ph𝑐
𝑖

𝜔𝑐
0

ln(
Ph𝑐
𝑖

𝜔𝑐
0

) ,

𝐻𝑐
2
=

th
2

∑
𝑖=th
1
+1

Ph𝑐
𝑖

𝜔𝑐
1

ln(
Ph𝑐
𝑖

𝜔𝑐
1

) ,

...

𝐻𝑐
𝑘
=
𝐿

∑
𝑖=th
𝑘
+1

Ph𝑐
𝑖

𝜔𝑐
𝑘−1

ln(
Ph𝑐
𝑖

𝜔𝑐
𝑘−1

) .

(21)

The values of the probability occurrence (𝜔𝑐
0
, 𝜔𝑐
1
, . . . , 𝜔𝑐

𝑘−1
)

of the 𝑘 classes are obtained using (16) and the probability
distribution Ph𝑐

𝑖
with (10). Finally, it is necessary to use (6) to

separate the pixels into the corresponding classes.

4. Multilevel Thresholding Using Harmony
Search Algorithm (HSMA)

4.1. Harmony Representation. Each harmony (candidate sol-
ution) uses 𝑘 different elements as decision variables within
the optimization algorithm. Such decision variables represent
a different threshold point th that is used for the segmenta-
tion. Therefore, the complete population is represented as

HM = [x𝑐
1
, x𝑐
2
, . . . , x𝑐HMS]

𝑇

,

x𝑐
𝑖
= [th𝑐
1
, th𝑐
2
, . . . , th𝑐

𝑘
] ,

(22)

where 𝑇 refers to the transpose operator, HMS is the size of
the harmony memory, x

𝑖
is the 𝑖th element of HM, and 𝑐 =

1, 2, 3 is set for RGB images while 𝑐 = 1 is chosen for gray
scale images. For this problem, the boundaries of the search
space are set to 𝑙 = 0 and 𝑢 = 255, which correspond to image
intensity levels.

4.2. HMA Implementation. Theproposed segmentation algo-
rithmhas been implemented considering two different objec-
tive functions: Otsu and Kapur. Therefore, the HSA has been
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coupled with the Otsu and Kapur functions, producing two
different segmentation algorithms. The implementation of
both algorithms can be summarized as in Algorithm 2.

4.3. Parameter Setting. The performance of HSA is strongly
influenced by values assigned to parameters HM, HMCR,
PAR, BW, and NI. Determining the most appropriate param-
eter values for an arbitrary problem is a complex issue, since
such parameters interact to each other in a highly nonlinear
manner, and no mathematical models of such interaction
currently exist. The common method to find the best set
of parameter values is to fix each parameter value to a
random number within the parameter limits and then HSA
is executed. If the final result is not satisfactory; then a
new set of parameter values is defined, and the evolutionary
algorithm is executed again. Evidently, this process can be
very expensive (in terms of computational time), since many
different trials may be required before reaching a set of
satisfactory parameter values. Additionally, the set of values
chosen by the user are not necessarily the best possible, but
only the best from the arbitrary number of trials performed
by the user. In order to reduce the number of experiments in
this paper, it has used the factorial design method proposed
in [32, 33] to systematically identify the best parameters of
HSA.

The factorial design method [34] is a statistical technique
that evaluates at the same time all process variables in order
to determine which ones really exert significant influence on
the final response. All variables are called factors and the
different values chosen to study the factors are called levels.
The factors to be considered in the factorial design are the
HSA parameters, the harmonymemory (HM), the harmony-
memory consideration rate (HMCR), the pitch adjusting rate
(PAR), the distance bandwidth (BW), and the number of
improvisations (NI), whereas the response is the best fitness
value obtained as a consequence of the HSA execution.
Table 1 show the levels of the quantitative factors used in the
factorial design. The values of zero level (central point) are
based on the suggestions of the literature [33].

Each experiment is conducted combining the two differ-
ent levels that define each parameter considering as a problem
an image histogram example. Since the factors are five, a
25−1 fractional factorial design is chosen, requiring sixteen
optimization experiments plus one optimization trial for the
central point. The results obtained from seventeen runs were
analyzed according to [32, 33] using a general linear form
of analysis of variance (ANOVA) [34] considering a 95% of
confidence. After such analysis, it was found that the best
possible configuration of HSA is shown in Table 2. These
results were consistent considering six replications using
different image histograms and the Otsu (14) or Kapur (20)
functions, indistinctly. Formore information on how to build
fractional factorial designs, the reader is referred to [32, 33].

5. Experimental Results

The HSMA has been tested under a set of 11 benchmark
images. Some of these images are widely used in the image

Table 1: Levels of the factors used for the factorial design method.

HSA parameters (Factors) (−) Level Central point (+) Level
HM 50 100 200
HMCR 0.5 0.75 0.9
PAR 0.1 0.5 0.9
BW 0.1 0.3 0.5
NI 200 250 300

Table 2: HSMA parameter values obtained by the factorial design
method.

HM HMCR PAR BW NI
100 0.75 0.5 0.5 300

processing literature to test different methods (Lena, Cam-
eraman, Hunter, Baboon, etc.) [3, 9]. All the images have
the same size (512 × 512 pixels), and they are in JPGE
format. For the sake of representation, only five images
which are presented in Figure 1 have been used to show the
visual results; however, the numerical outcomes are analyzed
considering the complete set.

Since HSMA is stochastic, it is necessary to employ
an appropriate statistical metrics to measure its efficiency.
Hence, the results have been reported executing the algo-
rithm 35 times for each image. In order to maintain com-
patibility with similar works reported in the literature [14, 15,
18, 19], the number of thresholds points used in the test are
th = 2, 3, 4, 5. In the experiments, the stop criterion is the
number of times in which the best fitness values remain with
no change.Therefore, if the fitness value for the best harmony
remains unspoiled in 10% of the total number of iterations
(NI), then the HSA is stopped.

To evaluate the stability and consistency, it has been
computed the standard deviation (STD) from the results
obtained in the 35 executions. Since the STD represents a
measure about how the data are dispersed, the algorithm
becomes more instable as the STD value increases [19].
Equation (23) shows the model used to calculate the STD
value:

STD = √
NI
∑
𝑖=1

(bf
𝑖
− av)
Ru

, (23)

where bf
𝑖
is the best fitness of the 𝑖th iteration, av is the average

value of bf, and Ru is the number of total executions (Ru =
35).

On the other hand, as an index of quality, the peak-to-
signal ratio (PSNR) is used to assess the similarity of the
segmented image against a reference image (original image)
based on the produced mean square error (MSE) [18, 35].
Both PSNR and MSE are defined as

PSNR = 20 log
10
(

255

RMSE
) , (dB)

RMSE = √
∑

ro
𝑖=1
∑

co
𝑗=1

(𝐼𝑐
𝑜
(𝑖, 𝑗) − 𝐼𝑐th (𝑖, 𝑗))

ro × co
,

(24)
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Table 3: Result after appling the HSMA using Otsu’s function to the
set of benchmark images.

Image 𝑘 Thresholds 𝑥𝑐best PSNR STC

Camera man

2 70, 144 17.247 2.30𝐸 − 12

3 59, 119, 156 20.211 1.55𝐸 − 02

4 42, 95, 140, 170 21.533 2.76𝐸 − 12

5 36, 82, 122, 149, 173 23.282 5.30𝐸 − 03

Lena

2 91, 150 15.401 9.22𝐸 − 13

3 79, 125, 170 17.427 2.99𝐸 − 02

4 73, 112, 144, 179 18.763 2.77𝐸 − 01

5 71, 107, 134, 158, 186 19.443 3.04𝐸 − 01

Baboon

2 97, 149 15.422 6.92𝐸 − 13

3 85, 125, 161 17.709 1.92𝐸 − 02

4 71, 105, 136, 167 20.289 5.82𝐸 − 02

5 66, 97, 123, 147, 173 21.713 4.40𝐸 − 01

Hunter

2 51, 116 17.875 2.30𝐸 − 12

3 36, 86, 135 20.350 2.30𝐸 − 12

4 27, 65, 104, 143 22.203 1.22𝐸 − 02

5 22, 53, 88, 112, 152 23.703 1.84𝐸 − 12

Airplane

2 113, 173 15.029 9.22𝐸 − 13

3 92, 144, 190 18.854 4.83𝐸 − 01

4 84, 129, 172, 203 20.735 7.24𝐸 − 01

5 68, 106, 143, 180, 205 23.126 8.38𝐸 − 01

Peppers

2 72, 138 16.299 1.38𝐸 − 12

3 65, 122, 169 18.359 4.61𝐸 − 13

4 50, 88, 128, 171 20.737 4.61𝐸 − 13

5 48, 85, 118, 150, 179 22.310 1.84𝐸 − 012

Living room

2 87, 145 15.999 1.15𝐸 − 12

3 76, 123, 163 18.197 6.92𝐸 − 12

4 56, 97, 132, 168 20.673 9.22𝐸 − 12

5 49, 88, 120, 146, 178 22.225 2.86𝐸 − 02

Blonde

2 106, 155 14.609 6.92𝐸 − 13

3 53, 112, 158 19.157 9.23𝐸 − 13

4 50, 103, 139, 168 20.964 5.48𝐸 − 01

5 49, 92, 121, 152, 172 22.409 6.50𝐸 − 01

Bridge

2 91, 56 13.943 4.61𝐸 − 13

3 72, 120, 177 17.019 7.10𝐸 − 01

4 63, 103, 145, 193 18.872 2.91𝐸 − 01

5 56, 91, 124, 159, 201 20.539 3.57𝐸 − 01

Butterfly

2 99, 151 13.934 7.30𝐸 − 02

3 82, 119, 160 16.932 6.17𝐸 − 01

4 71, 102, 130, 163 19.259 3.07𝐸 + 00

5 62, 77, 109, 137, 167 21.450 3.87𝐸 + 00

Lake

2 85, 154 14.638 4.61𝐸 − 13

3 78, 140, 194 15.860 1.84𝐸 − 12

4 67, 110, 158, 198 17.629 2.68𝐸 − 01

5 57, 88, 127, 166, 200 19.416 1.12𝐸 − 01

where 𝐼𝑐
𝑜
is the original image, 𝐼𝑐th is the segmented image,

𝑐 = 1 for gray scale, and 𝑐 = 3 for RGB images, whereas ro,

co are the total number of rows and columns of the image,
respectively.

5.1. Otsu’s Results. This section analyzes the results of HSMA
after considering the variance among classes (14) as the
objective function, just as it has been proposed by Otsu [6].
The approach is applied over the complete set of benchmark
images, whereas the results are registered in Table 3. Such
results present the best threshold values after testing the
proposed method with four different threshold points th =
2, 3, 4, 5.The table also features the PSNR and the STD values.
It is evident that the PSNR and STD values increase their
magnitude as the number of threshold points also increases.

For the sake of representation, it has been selected only
five images of the set to show (graphically) the segmenta-
tion results. Figure 1 presents the images selected from the
benchmark set and their respective histograms which possess
irregular distributions (see Figure 1(j) in particular). Under
such circumstances, classical methods face great difficulties
to find the best threshold values.

The processing results for the selected original images
are presented in five tables: Tables 4, 5, 6, 7, and 8. Such
results show the segmented images considering four different
threshold points, th = 2, 3, 4, 5. The tables also show the
evolution of the objective function during one execution.

5.2. Kapur’s Results. This section analyzes the performance of
HSMA after considering the entropy function (20) as objec-
tive function, as it has been proposed by Kapur et al. in [7].
Table 9 presents the experimental results after the application
of HSMAover the entire set of benchmark images.The values
listed are PSNR, STD, and the best threshold values of the last
population (𝑥𝐵

𝑡
).The same test procedure that was previously

applied to the Otsu’s method (Section 5.1) is used with the
Kapur’s method, also considering the same stop criterion and
a similar HSA parameter configuration.

The results after appling the HSMA to the selected
benchmark images are presented in Tables 10, 11, 12, 13,
and 14. Four different threshold points have been employed:
th = 2, 3, 4, 5. All tables exhibit the segmented image, the
approximated histogram, and the evolution of the fitness
value during the execution of the HSA method.

From the results of both Otsu’s and Kapur’s methods, it is
possible to appreciate that the HSMA converges (stabilizes)
after a determined number of iterations depending on the th
value. For experimental purposes HSMA continues running
still further, even though the stop criterion is achieved. In this
way, the graphics show that convergence is often reached in
the first iterations of the optimization process.The segmented
images provide evidence that the outcome is better with th =
4 and th = 5; however, if the segmentation task does not
require to be extremely accurate then it is possible to select
th = 3.

5.3. Comparisons. In order to analyze the results of HSMA,
two different comparisons are executed.The first one involves
the comparison between the two versions of the proposed
approach, one with the Otsu function and the other with
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Table 4: Results after appling the HSMA using Otsu’s over the Camera man image.
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Table 5: Results after appling the HSMA using Otsu’s over Lena image.
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Table 6: Results after appling the HSMA using Otsu’s over the Baboon image.
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Table 7: Results after appling the HSMA using Otsu’s over the Hunter image.
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Table 8: Results after appling the HSMA using Otsu’s over the Butterfly image.
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Table 9: Results after appling the HSMA using Kapur’s function to the set of benchmark images.

Image 𝑘 Thresholds 𝑥𝑐best PSNR STD

Camera man

2 128, 196 13.626 3.60𝐸 − 15

3 44, 103, 196 14.460 1.40𝐸 − 03

4 44, 96, 146, 196 20.153 1.20𝐸 − 03

5 24, 60, 98, 146, 196 20.661 2.75𝐸 − 02

Lena

2 96, 163 14.638 3.60𝐸 − 15

3 23, 96, 163 16.218 7.66𝐸 − 02

4 23, 80, 125, 173 19.287 1.44𝐸 − 14

5 23, 71, 109, 144, 180 21.047 1.22𝐸 − 02

Baboon

2 79, 143 16.016 1.08𝐸 − 14

3 79, 143, 231 16.016 7.19𝐸 − 02

4 44, 98, 152, 231 18.485 8.47𝐸 − 02

5 33, 74, 114, 159, 231 20.507 1.08𝐸 − 14

Hunter

2 92, 179 15.206 1.44𝐸 − 14

3 59, 117, 179 18.500 4.16𝐸 − 04

4 44, 89, 133, 179 21.065 4.31𝐸 − 04

5 44, 89, 133, 179, 222 21.086 3.43𝐸 − 02

Airplane

2 70, 171 15.758 3.30𝐸 − 03

3 68, 126, 182 18.810 1.08𝐸 − 14

4 68, 126, 182, 232 18.810 1.82𝐸 − 01

5 64, 104, 143, 184, 232 20.321 1.80𝐸 − 01

Peppers

2 66, 143 16.265 7.21𝐸 − 15

3 62, 112, 162 18.367 1.80𝐸 − 14

4 62, 112, 162, 227 18.376 2.39𝐸 − 02

5 48, 86, 127, 171, 227 18.827 4.17𝐸 − 04

Living room

2 89, 170 14.631 1.40𝐸 − 03

3 47, 103, 175 17.146 2.70𝐸 − 03

4 47, 98, 149, 197 19.144 1.34𝐸 − 02

5 42, 85, 125, 162, 197 21.160 1.89𝐸 − 02

Blonde

2 125, 203 12.244 1.44𝐸 − 14

3 65, 134, 203 16.878 1.00𝐸 − 03

4 65, 113, 155, 203 20.107 5.50𝐸 − 03

5 65, 113, 155, 203, 229 20.107 4.48𝐸 − 02

Bridge

2 94, 171 13.529 7.40𝐸 − 03

3 65, 131, 195 16.806 1.44𝐸 − 02

4 53, 102, 151, 199 18.902 2.47𝐸 − 02

5 40, 85, 131, 171, 211 20.268 2.12𝐸 − 02

Butterfly

2 27, 213 8.1930 2.25𝐸 − 02

3 27, 120, 213 13.415 8.60𝐸 − 04

4 27, 96, 144, 213 16.725 3.80𝐸 − 03

5 27, 83, 118, 152, 213 19.413 3.90𝐸 − 03

Lake

2 91, 163 14.713 1.44𝐸 − 14

3 73, 120, 170 16.441 3.05𝐸 − 04

4 69, 112, 156, 195 17.455 4.53𝐸 − 02

5 62, 96, 131, 166, 198 18.774 3.66𝐸 − 02
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Table 10: Results after appling the HSMA using Kapur’s over the Camera man image.
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Table 11: Results after appling the HSMA using Kapur’s over Lena’s image.
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Table 12: Results after appling the HSMA using Kapur’s over the Baboon image.
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Table 13: Results after appling the HSMA using Kapur’s over the Hunter image.
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Table 14: Results after appling the HSMA using Kapur’s over the Butterfly image.
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Table 15: 𝑃 values produced by Wilcoxon’s test comparing Otsu
versus Kapur over the averaged PSNR from Tables 3 and 9.

Image 𝑘 P-value Otsu versus Kapur

Camera man

2 1.0425𝐸 − 16

3 2.1435𝐸 − 15

4 2.6067𝐸 − 16

5 6.2260𝐸 − 16

Lena

2 1.0425𝐸 − 16

3 9.4577𝐸 − 15

4 9.7127𝐸 − 15

5 1.2356𝐸 − 12

Baboon

2 1.0425𝐸 − 16

3 1.7500𝐸 − 02

4 5.3417𝐸 − 14

5 1.4013𝐸 − 14

Hunter

2 1.0425𝐸 − 16

3 2.6067𝐸 − 16

4 6.6386𝐸 − 14

5 6.4677𝐸 − 15

Airplane

2 1.0425𝐸 − 16

3 4.6500𝐸 − 02

4 1.7438𝐸 − 13

5 6.2475𝐸 − 13

Peppers

2 1.0425𝐸 − 16

3 1.0425𝐸 − 16

4 6.0498𝐸 − 15

5 5.3194𝐸 − 15

Living room

2 3.2405𝐸 − 15

3 1.4223𝐸 − 15

4 1.3175𝐸 − 14

5 6.2220𝐸 − 14

Blonde

2 1.0425𝐸 − 16

3 2.6067𝐸 − 16

4 4.0480𝐸 − 13

5 7.8167𝐸 − 04

Bridge

2 7.3588𝐸 − 06

3 1.1300𝐸 − 04

4 1.9400𝐸 − 02

5 2.1900𝐸 − 02

Butterfly

2 1.1615𝐸 − 14

3 2.5697𝐸 − 14

4 3.7190𝐸 − 13

5 1.7941𝐸 − 06

Lake

2 1.0425𝐸 − 16

3 5.6120𝐸 − 16

4 9.8174𝐸 − 14

5 2.2292𝐸 − 14

the Kapur criterion. The second analyses the comparison
between the HSMA and other state-of-the-art approaches.

5.3.1. Comparison between Otsu and Kapur HSMA. In order
to statistically compare the results fromTables 3 and 9, a non-
parametric significance proof known as the Wilcoxon’s rank
test [36, 37] for 35 independent samples has been conducted.
Such proof allows assessing result differences among two
related methods. The analysis is performed considering a 5%
significance level over the peak-to-signal ratio (PSNR) data
corresponding to the five threshold points. Table 15 reports
the 𝑃 values produced by Wilcoxon’s test for a pairwise
comparison of the PSNR values between the Otsu and Kapur
objective functions. As a null hypothesis, it is assumed that
there is no difference between the values of the two objective
functions. The alternative hypothesis considers an existent
difference between the values of both approaches. All𝑃 values
reported in Table 15 are less than 0.05 (5% significance level)
which is a strong evidence against the null hypothesis, indi-
cating that the Otsu PSNR mean values for the performance
are statistically better and it has not occurred by chance.

5.3.2. Comparison among HSMA and Other MT Approaches.
The results produced by HSMA have been compared with
those generated by state-of-the-art thresholding methods
such genetic algorithms (GA) [15], particle swarm optimiza-
tion (PSO) [18], and bacterial foraging (BF) [19].

All the algorithms run 35 times over each selected image.
The images at this test are the same as in Sections 5.2 and
5.1 (Camera man, Lena, Baboon, Hunter, and Butterfly). For
each image, the PSNR, the STD, and themean of the objective
function values are calculated. Moreover, the entire test is
performed using both Otsu’s and Kapur’s objective functions.

Table 16 presents the computed values for a reduced
benchmark test (five images). It is clear that the HSMA
delivers better performance than the others. Such values are
computed using the Otsu’s method as the objective function.
On the other hand, the same experiment has been performed
using the Kapur’s method. Using the same criteria (as those
described for the Otsu’s method), the algorithm runs over
35 times at each image. The results of this experiment are
presented in Table 17 and show that the proposed HSMA
algorithm is better in comparison with the GA, PSO, and BF.

6. Conclusions

In this paper, a MT-based method on the original harmony
search algorithm (HSA) is presented.The approach combines
the good search capabilities of HSA algorithm and the use
of some objective functions that have been proposed by the
popularMTmethods of Otsu and Kapur. In order tomeasure
the performance of the proposed approach, the peak signal-
to-noise ratio (PSNR) is used to assess the segmentation
quality by considering the coincidences between the seg-
mented and the original images. In this work, a simple HSA
implementation without any modification is considered in
order to demonstrate that it can be applied to image process-
ing tasks.

The study explores the comparison between two versions
of HSMA: one employs the Otsu objective function while
the other uses the Kapur criterion. Results show that the
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Table 16: Comparisons between HSMA, GA, PSO, and BF, applied over the selected test images using Otsu’s method.

Image 𝑘
HSMA GA PSO BF

PSNR STD Mean PSNR STD Mean PSNR STD Mean PSNR STD Mean

Camera man

2 17.247 2.30𝐸 − 12 3651.9 17.048 0.0232 3604.5 17.033 0.0341 3598.3 17.058 0.0345 3590.9
3 20.211 1.55𝐸 − 02 3727.4 17.573 0.1455 3678.3 19.219 0.2345 3662.7 20.035 0.2459 3657.5
4 21.533 2.76𝐸 − 12 3782.4 20.523 0.2232 3781.5 21.254 0.3142 3777.4 21.209 0.4560 3761.4
5 23.282 5.30𝐸 − 03 3813.7 21.369 0.4589 3766.4 22.095 0.5089 3741.6 22.237 0.5089 3789.8

Lena

2 15.401 9.22𝐸 − 13 1964.4 15.040 0.0049 1960.9 15.077 0.0033 1961.4 15.031 2.99𝐸 − 04 1961.5
3 17.427 2.99𝐸 − 02 2131.4 17.304 0.1100 2126.4 17.276 0.0390 2127.7 17.401 0.0061 2128.0
4 18.763 2.77𝐸 − 01 2194.9 17.920 0.2594 2173.7 18.305 0.1810 2180.6 18.507 0.0081 2189.0
5 19.443 3.04𝐸 − 01 2218.7 18.402 0.3048 2196.2 18.770 0.2181 2212.5 19.001 0.0502 2215.6

Baboon

2 15.422 6.92𝐸 − 13 1548.1 15.304 0.0031 1547.6 15.088 0.0077 1547.9 15.353 8.88𝐸 − 04 1548.0
3 17.709 1.92𝐸 − 02 1638.3 17.505 0.1750 1633.5 17.603 0.0816 1635.3 17.074 0.0287 1637.0
4 20.289 5.82𝐸 − 02 1692.1 18.708 0.2707 1677.7 19.233 0.0853 1684.3 19.654 0.0336 1690.7
5 21.713 4.40𝐸 − 01 1717.5 20.203 0.3048 1712.9 20.526 0.1899 1712.9 21.160 0.1065 1716.7

Hunter

2 17.875 2.30𝐸 − 12 3054.2 17.088 0.0470 3064.1 17.932 0.2534 3064.1 17.508 0.0322 3064.1
3 20.350 2.30𝐸 − 12 3213.4 20.045 0.1930 3212.9 19.940 0.9727 3212.4 20.350 0.9627 3213.4
4 22.203 1.22𝐸 − 02 3269.5 20.836 0.6478 3268.4 21.128 2.2936 3266.3 21.089 2.2936 3266.3
5 23.703 1.84𝐸 − 12 3308.1 21.284 1.6202 3305.6 22.026 4.1811 3276.3 22.804 3.6102 3291.1

Butterfly

2 13.934 7.30𝐸 − 02 1553.0 13.007 0.0426 1553.0 13.092 0.0846 1553.0 13.890 0.0643 1553.0
3 16.932 6.17𝐸 − 01 1669.2 15.811 0.3586 1669.0 17.261 2.6268 1665.7 17.285 1.2113 1667.2
4 19.259 3.07𝐸 + 00 1708.3 17.104 0.6253 1709.9 17.005 3.7976 1702.9 17.128 2.2120 1707.0
5 21.450 3.87𝐸 + 00 1728.0 18.593 0.5968 1734.4 18.099 6.0747 1730.7 18.9061 3.5217 1733.0

Table 17: Comparison between HSMA GA, PSO, and BF, applied over selected test images using Kapur’s method.

Image 𝑘
HSMA GA PSO BF

PSNR STD Mean PSNR STD Mean PSNR STD Mean PSNR STD Mean

Camera man

2 13.626 3.60𝐸 − 15 17.584 11.941 0.1270 15.341 12.259 0.1001 16.071 12.264 0.0041 16.768
3 14.460 1.40𝐸 − 03 22.007 14.827 0.2136 20.600 15.211 0.1107 21.125 15.250 0.0075 21.498
4 20.153 1.20𝐸 − 03 26.586 17.166 0.2857 24.267 18.000 0.2005 25.050 18.406 0.0081 25.093
5 20.661 2.75𝐸 − 02 30.553 19.795 0.3528 28.326 20.963 0.2734 28.365 21.211 0.0741 30.026

Lena

2 14.638 3.60𝐸 − 15 17.809 12.334 0.0049 16.122 12.345 0.0033 16.916 12.345 2.99𝐸 − 4 16.605
3 16.218 7.66𝐸 − 02 22.306 14.995 0.1100 20.920 15.133 0.0390 20.468 15.133 0.0061 20.812
4 19.287 1.44𝐸 − 14 26.619 17.089 0.2594 23.569 17.838 0.1810 24.449 17.089 0.0081 26.214
5 21.047 1.22𝐸 − 02 30.485 19.549 0.3043 27.213 20.442 0.2181 27.526 19.549 0.0502 28.046

Baboon

2 16.016 1.08𝐸 − 14 17.625 12.184 0.0567 16.425 12.213 0.0077 16.811 12.216 8.88𝐸 − 4 16.889
3 16.016 7.19𝐸 − 02 22.117 14.745 0.1580 21.069 15.008 0.0816 21.088 15.211 0.0287 21.630
4 18.485 8.47𝐸 − 02 26.671 16.935 0.1765 25.489 17.574 0.0853 24.375 17.999 0.0336 25.446
5 20.507 1.08𝐸 − 14 30.800 19.662 0.2775 29.601 20.224 0.1899 30.994 20.720 0.1065 30.887

Hunter

2 15.206 1.44𝐸 − 14 17.856 12.349 0.0148 16.150 12.370 0.0068 15.580 12.373 0.0033 16.795
3 18.500 4.16𝐸 − 04 22.525 14.838 0.1741 21.026 15.128 0.0936 20.639 15.553 0.1155 21.860
4 21.065 4.31𝐸 − 04 26.728 17.218 0.2192 25.509 18.040 0.1560 27.085 18.381 0.0055 26.230
5 21.086 3.43𝐸 − 02 30.612 19.563 0.3466 29.042 20.533 0.2720 29.013 21.256 0.0028 28.856

Butterfly

2 8.1930 2.25𝐸 − 02 16.791 10.470 0.0872 15.481 10.474 0.0025 14.098 10.474 0.0014 15.784
3 13.415 8.60𝐸 − 04 21.417 11.628 0.2021 20.042 12.313 0.1880 19.340 12.754 0.0118 21.308
4 16.725 3.80𝐸 − 03 25.292 13.314 0.2596 23.980 14.231 0.2473 25.190 14.877 0.0166 25.963
5 19.413 3.90𝐸 − 03 28.664 15.756 0.3977 27.411 16.337 0.2821 27.004 16.828 0.0877 27.980
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Otsu function delivers better results than the Kapur criterion.
Such conclusion has been statistically proved considering the
Wilcoxon test.

The proposed approach has been compared to other
techniques that implement different optimization algorithms
likeGA, PSO, andBF.The efficiency of the algorithmhas been
evaluated in terms of the PSNR index and the STD value.
Experimental results provide evidence on the outstanding
performance, accuracy, and convergence of the proposed
algorithm in comparison to other methods. Although the
results offer evidence to demonstrate that the standard HSA
method can yield good results on complicated images, the
aim of our paper is not to devise an MT algorithm that
could beat all currently available methods, but to show that
harmony search algorithms can be effectively considered as
an attractive alternative for this purpose.
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