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This paper concerns limit cycle bifurcations by perturbing a piecewise linear Hamiltonian system.We first obtain all phase portraits
of the unperturbed system having at least one family of periodic orbits. By using the first-order Melnikov function of the piecewise
near-Hamiltonian system, we investigate the maximal number of limit cycles that bifurcate from a global center up to first order of
𝜀.

1. Introduction and Main Results

Recently, piecewise smooth dynamical systems have been
well concerned, especially in the scientific problems and
engineering applications. For example, see the works of
Filippov [1], Kunze [2], di Bernardo et al. [3], and the refer-
ences therein. Because of the variety of the nonsmoothness,
there can appear many complicated phenomena in piecewise
smooth dynamical systems such as stability (see [4, 5]), chaos
(see [6]), and limit cycle bifurcation (see [7–10]). Here, we
are more concerned with bifurcation of limit cycles in a
perturbed piecewise linear Hamiltonian system:

𝑥̇ = 𝑦 + 𝜀𝑝 (𝑥, 𝑦, 𝛿) ,

𝑦̇ = −𝑔 (𝑥) + 𝜀𝑞 (𝑥, 𝑦, 𝛿) ,

(1)

where 𝜀 > 0 is a sufficiently small real parameter,
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and 𝛿 = (𝑎
+

𝑖𝑗
, 𝑎
−

𝑖𝑗
, 𝑏
+

𝑖𝑗
, 𝑏
−

𝑖𝑗
) ∈ 𝐷 ⊂ R2(𝑛+1)(𝑛+2) with 𝐷 compact.

Then system (1) has two subsystems

𝑥̇ = 𝑦 + 𝜀𝑝
+
(𝑥, 𝑦, 𝛿) ,

𝑦̇ = −𝑎
1
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1
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0
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(𝑥, 𝑦, 𝛿) ,
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which are called the right subsystem and the left subsystem,
respectively. For 𝜀 = 0, systems (5a) and (5b) are Hamiltonian
with the Hamiltonian functions, respectively,

𝐻
+
(𝑥, 𝑦) =

1

2

𝑦
2
+

1

2

𝑎
1
𝑥
2
+ 𝑎

0
𝑥,

𝐻
−
(𝑥, 𝑦) =

1

2

𝑦
2
+

1

2

𝑏
1
𝑥
2
+ 𝑏

0
𝑥.

(6)

Note that the phase portrait of the linear system

𝑥̇ = 𝑦,

𝑦̇ = −𝑎𝑥 − 𝑏,

(7)

with 𝑎
2
+𝑏

2
̸= 0 has possibly the following four different phase

portraits on the plane (see Figure 1).
Then, one can find that system (1) |

𝜀=0
can have 13 different

phase portraits (see Figure 2) when at least one family of
periodic orbits appears.

We remark that in Figure 2,

GC: global center,
Ho: homoclinic,
He: heteroclinic,
𝐶
+: center in the region {(𝑥, 𝑦) | 𝑥 > 0},

𝐶
−: center in the region {(𝑥, 𝑦) | 𝑥 < 0},

𝑆
+: saddle in the region {(𝑥, 𝑦) | 𝑥 > 0},

𝑆
−: saddle in the region {(𝑥, 𝑦) | 𝑥 < 0},

𝐿
+: curvilinear or straightline in the region {(𝑥, 𝑦) |

𝑥 > 0},
𝐿
−: curvilinear or straightline in the region {(𝑥, 𝑦) |

𝑥 < 0}.

It is easy to obtain the following Table 1 which shows
conditions for each possible phase portrait appearing above.
Also, cases (3), (5), (7), (9), and (13) in Figure 2 are equivalent
to cases (2), (6), (8), (10), and (12), respectively, bymaking the
transformation

(𝑥, 𝑦) 󳨀→ (−𝑥, 𝑦) , (8)

together with time rescaling 𝑑𝑡 = −𝑑𝜏.
The authors Liu and Han [7] studied system (1) in a

subcase of the case (1) of Figure 2 by taking 𝑎
1
= 𝑏

1
= 1, 𝑎

0
=

𝑏
0

= 0. By using the first order Melnikov function, they
proved that the maximal number of limit cycles on Poincaré
bifurcations is n up to first-order in 𝜀. The authors Liang
et al. [8] considered system (1) in the case (5) of Figure 2
by taking 𝑎

1
= −1, 𝑎

0
= 1, 𝑏

1
= 1, and 𝑏

0
= 0. By using

the same method, they gave lower bounds of the maximal
number of limit cycles in Hopf, and Homoclinic bifurcations,
and derived an upper bound of the maximal number of limit
cycles bifurcating from the periodic annulus between the
center and the Homoclinic loop up to the first-order in 𝜀.
Clearly, the maximal number of limit cycles in the case (7) or
(8) of Figure 2 is [(𝑛−1)/2] onPoincaré,Hopf andHomoclinic

bifurcations up to first-order in 𝜀, by using the first order
Melnikov function.

This paper focuses on studying the limit cycle bifurcations
of system (1) in the case (1) of Figure 2 by using the first order
Melnikov function. That is, system (1) satisfies

𝑎
1
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0
≥ 0, 𝑎

0
+ 𝑎

1
> 0,

𝑏
1
≥ 0, 𝑏

0
≤ 0, 𝑏

0
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1
.

(9)

Clearly, system (1) |
𝜀=0

satisfying (9) has a family of periodic
orbits

𝐿
ℎ

= 𝐿
+

ℎ
∪ 𝐿

−

ℎ

= {(𝑥, 𝑦) | 𝐻
+
(𝑥, 𝑦) = ℎ}

∪ {(𝑥, 𝑦) | 𝐻
−
(𝑥, 𝑦) = ℎ} , ℎ > 0,

(10)

such that the limit of 𝐿
ℎ
as ℎ → 0

+ is the origin. The
intersection points of the closed curve 𝐿

ℎ
with the positive 𝑦-

axis and the negative 𝑦-axis are denoted by 𝐴(ℎ) = (0, √2ℎ)

and 𝐴
1
(ℎ) = (0, −√2ℎ), respectively. Let

𝑀
+
(ℎ, 𝛿) = ∫

𝐴𝐴
1
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+
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(ℎ, 𝛿) = ∫

𝐴
1
𝐴

𝑞
−
𝑑𝑥 − 𝑝

−
𝑑𝑦, ℎ > 0.

(11)

Then, from Liu and Han [7], the first-order Melnikove
function corresponding to system (1) is

𝑀(ℎ, 𝛿) = 𝑀
+
(ℎ, 𝛿) + 𝑀

−
(ℎ, 𝛿) , ℎ ∈ (0, +∞) . (12)

Let 𝑍(𝑛) denote the maximal number of zeros of 𝑀(ℎ, 𝛿) for
ℎ > 0 and 𝑁(𝑛) the cyclicity of system (1) at the origin. Then,
we can obtain the following.

Theorem 1. Let (9) be satisfied. For any given 𝑛 ≥ 1,
one has Table 2.

This paper is organized as follows. In Section 2, we will
provide some preliminary lemmas, which will be used to
prove the main results. In Section 3, we present the proof of
Theorem 1.

2. Preliminary Lemmas

In this section, we will derive expressions of 𝑀
+
(ℎ, 𝛿),

𝑀
−
(ℎ, 𝛿) in (11). First, we have the following.

Lemma 2. Suppose system (1) satisfies (9). Then,
(i)M+
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Table 1: Coefficient conditions for phase portraits (1)–(13).

Coefficient conditions 𝑎
1
≥ 0, 𝑎

0
≥ 0 𝑎

1
> 0 𝑎

1
≤ 0, 𝑎

0
≤ 0 𝑎

1
< 0

𝑎
1
+ 𝑎

0
> 0 𝑎

0
< 0 𝑎

1
+ 𝑎

0
< 0 𝑎

0
> 0

𝑏
1
≥ 0, 𝑏

0
≤ 0, 𝑏

1
> 𝑏

0
(1) (2) (5)

𝑏
1
> 0, 𝑏

0
> 0 (3) (4) (7) (9)

𝑏
1
≤ 0, 𝑏

0
≥ 0, 𝑏

0
> 𝑏

1
(8)

(11) (𝑎2
0
𝑏
1
= 𝑎

1
𝑏
2

0
),

𝑏
1
< 0, 𝑏

0
< 0 (6) (10) (12) (𝑎2

0
𝑏
1
> 𝑎

1
𝑏
2

0
),

(13) (𝑎2
0
𝑏
1
< 𝑎

1
𝑏
2

0
)

Table 2

𝑎
1
> 0, 𝑎

0
= 0 𝑎

1
= 0, 𝑎

0
> 0 𝑎

1
> 0, 𝑎

0
> 0

𝑏
1
> 0, 𝑍(𝑛) = 𝑛, 𝑍(𝑛) = 𝑛 + [

𝑛 + 1

2

], 𝑍(𝑛) = 𝑛 + [

𝑛 + 1

2

],

𝑏
0
= 0 𝑁(𝑛) ≥ 𝑛 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2

] 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2

]

𝑏
1
= 0, 𝑍(𝑛) = 𝑛 + [

𝑛 + 1

2

], 𝑍(𝑛) = 𝑛, 𝑛 + [

𝑛 + 1

2

] ≤ 𝑍(𝑛) ≤ 𝑛 + 2 [

𝑛 + 1

2

]

𝑏
0
< 0 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2

] 𝑁(𝑛) ≥ 𝑛 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2

],

𝑏
1
> 0, 𝑍(𝑛) = 𝑛 + [

𝑛 + 1

2

], 𝑛 + [

𝑛 + 1

2

] ≤ 𝑍(𝑛) ≤ 𝑛 + 2 [

𝑛 + 1

2

]
𝑛 ≤ 𝑍(𝑛) ≤ 𝑛 + [

𝑛 + 1

2

] ,

𝑎
2

0

𝑎
1

=

𝑏
2

0

𝑏
1

,

𝑏
0
< 0 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2

] 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2

], 𝑛 ≤ 𝑍(𝑛) ≤ 𝑛 + 2 [

𝑛 + 1

2

] ,

𝑎
2

0

𝑎
1

̸=

𝑏
2

0

𝑏
1

𝑁(𝑛) ≥ 𝑛,

(a) 𝑎 = 0, 𝑏 > 0 (b) 𝑎 = 0, 𝑏 < 0

(c) 𝑎 > 0 (d) 𝑎 < 0

Figure 1: The possible phase portraits of system (7).



4 Abstract and Applied Analysis

𝑦

𝑦

𝑦

𝑦 𝑦𝑦

𝑦

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑥

𝑥

𝑥

𝑥 𝑥𝑥

𝑥

𝑥𝑥

𝑥𝑥

𝑥𝑥0

0

0

0 00

0

00

00

00

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11)

(13)

(12)

Figure 2: The possible phase portraits of system (1) |
𝜀=0

. (1) GC. (2) HoC+. (3) HoC−. (4) HoC−C+. (5) HoS+. (6) HoS−. (7) HoC−L+. (8)
HoC+L−. (9) HoC−HoS+. (10) HoC+HoS

−

. (11) HeS−S+. (12) HeS+. (13) HeS−.
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with

𝑝
+

𝑖𝑗
= 𝑎

+

𝑖+1,𝑗
+

𝑗 + 1

𝑖 + 1

𝑏
+

𝑖,𝑗+1
, 𝑞

+

𝑖𝑗
= 𝑏

+

𝑖,𝑗+1
+

𝑖 + 1

𝑗 + 1

𝑎
+

𝑖+1,𝑗
.

(15)

(ii) (ℎ, 𝛿) in (11) can be expressed as

𝑀
−
(ℎ, 𝛿) = 𝑀

−

1
(ℎ, 𝛿) −

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

2𝑘 + 1

𝑎
−

0,2𝑘
ℎ
𝑘+1/2

, (16)

where

𝑀
−

1
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+𝑗=0

𝑝
−

𝑖𝑗
∫

𝐴
1
𝐴

𝑥
𝑖+1

𝑦
𝑗
𝑑𝑦 =

𝑛−1

∑

𝑖+𝑗=0

𝑞
−

𝑖𝑗
∫

𝐴
1
𝐴

𝑥
𝑖
𝑦
𝑗+1

𝑑𝑥,

(17)

with

𝑝
−

𝑖𝑗
= 𝑎

−

𝑖+1,𝑗
+

𝑗 + 1

𝑖 + 1

𝑏
−

𝑖,𝑗+1
, 𝑞

−

𝑖𝑗
= 𝑏

−

𝑖,𝑗+1
+

𝑖 + 1

𝑗 + 1

𝑎
−

𝑖+1,𝑗
.

(18)

Proof. We only prove (i) since (ii) can be verified in a similar
way. By (11), we obtain

𝑀
+
(ℎ, 𝛿) = ∫

𝐴𝐴
1

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

+ ∫

󳨀→
𝐴1𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

− ∫

󳨀→
𝐴1𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

= ∮

𝐴𝐴
1
∪

󳨀→

𝐴
1
𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

+ ∫

󳨀→
𝐴1𝐴

𝑝
+
(0, 𝑦, 𝛿) 𝑑𝑦,

(19)

which follows that by Green formula and (3)

𝑀
+
(ℎ, 𝛿) = 𝑀

+

1
(ℎ, 𝛿) +

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

2𝑘 + 1

𝑎
+

0,2𝑘
ℎ
𝑘+1/2

, (20)

where

𝑀
+

1
(ℎ, 𝛿) = ∬

int𝐴𝐴
1
∪

󳨀→

𝐴
1
𝐴

(𝑝
+

𝑥
+ 𝑞

+

𝑦
) 𝑑𝑥 𝑑𝑦. (21)

Then, by Green formula again

𝑀
+

1
(ℎ, 𝛿) = − ∮

𝐴𝐴
1
∪

󳨀→

𝐴
1
𝐴

𝑝
+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

= ∮

𝐴𝐴
1
∪

󳨀→

𝐴
1
𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥,

(22)

where

𝑝
+
(𝑥, 𝑦, 𝛿) = 𝑝

+
(𝑥, 𝑦, 𝛿) − 𝑝

+
(0, 𝑦, 𝛿) + ∫

𝑥

0

𝑞
+

𝑦
(𝑢, 𝑦, 𝛿) 𝑑𝑢,

𝑞
+
(𝑥, 𝑦, 𝛿) = 𝑞

+
(𝑥, 𝑦, 𝛿) − 𝑞

+
(𝑥, 0, 𝛿) + ∫

𝑦

0

𝑝
+

𝑥
(𝑥, V, 𝛿) 𝑑V.

(23)

By (3), (4), and the above formulas, we have

𝑝
+
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑎
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
−

𝑛

∑

𝑗=0

𝑎
+

0𝑗
𝑦
𝑗
+

𝑛

∑

𝑖+𝑗=1

𝑗

𝑖 + 1

𝑏
+

𝑖𝑗
𝑥
𝑖+1

𝑦
𝑗−1

= 𝑥

𝑛−1

∑

𝑖+𝑗=0

(𝑎
+

𝑖+1,𝑗
+

𝑗 + 1

𝑖 + 1

𝑏
+

𝑖,𝑗+1
)𝑥

𝑖
𝑦
𝑗

= 𝑥

𝑛−1

∑

𝑖+𝑗=0

𝑝
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
,

(24)

𝑞
+
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑏
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
−

𝑛

∑

𝑗=0

𝑏
+

𝑖0
𝑥
𝑖
+

𝑛

∑

𝑖+𝑗=1

𝑖

𝑗 + 1

𝑎
+

𝑖𝑗
𝑥
𝑖−1

𝑦
𝑗+1

= 𝑦

𝑛−1

∑

𝑖+𝑗=0

(𝑏
+

𝑖,𝑗+1
+

𝑖 + 1

𝑗 + 1

𝑎
+

𝑖+1,𝑗
)𝑥

𝑖
𝑦
𝑗

= 𝑦

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
.

(25)

Combining (20)–(25) gives (13) and (14). Thus, the proof is
ended.

Then, using Lemma 2 and (6) we can obtain the following
three lemmas.

Lemma 3. (i) If a
1
= 0, a

0
> 0, thenM+

(ℎ, 𝛿) in (11) has form

M+
(ℎ, 𝛿) = ℎ

1/2

n
∑

𝑖+2𝑘=0

𝐵
+

𝑖,2𝑘
ℎ
𝑖+𝑘

, (26)

where

B+
0,2𝑘

=

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1

,

𝐵
+

𝑖,2𝑘
=

2
𝑘+1+1/2

𝑎
𝑖

0

(𝑎
+

𝑖,2𝑘
+

2𝑘 + 1

𝑖

𝑏
+

𝑖−1,2𝑘+1
)

× ∫

𝜋/2

0

sin2𝑘𝜃cos𝑖+1 𝜃 d𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(27)

(ii) If b
1
= 0, b

0
< 0, then we have

𝑀
−
(ℎ, 𝛿) = ℎ

1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

, (28)
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where

𝐵
−

0,2𝑘
= −

2
𝑘+1+1/2

𝑎
−

0,2𝑘

2𝑘 + 1

,

𝐵
−

𝑖,2𝑘
=

−2
𝑘+1+1/2

𝑏
𝑖

0

(𝑎
−

𝑖,2𝑘
+

2𝑘 + 1

𝑖

𝑏
−

𝑖−1,2𝑘+1
)

× ∫

𝜋/2

0

sin2k 𝜃cos2𝑖+1𝜃d𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(29)

Proof. Note that along ̂AA
1
, 𝑥 = ℎ/𝑎

0
− (1/2𝑎

0
)𝑦
2. Then,

inserting it into (14) follows that

𝑀
+

1
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+𝑗=0

𝑝
+

𝑖𝑗
∫

√2ℎ

−√2ℎ

(

ℎ

𝑎
0

−

1

2𝑎
0

𝑦
2
)

𝑖+1

𝑦
𝑗
𝑑𝑦

=

𝑛−1

∑

𝑖+2𝑘=0

𝑝
+

𝑖,2𝑘

2
𝑖
𝑎
𝑖+1

0

∫

√2ℎ

0

(2ℎ − 𝑦
2
)

𝑖+1

𝑦
2𝑘

𝑑𝑦.

(30)

Let 𝑦 = √2ℎ sin 𝜃. Then we have 𝑑𝑦 = √2ℎ cos 𝜃 𝑑𝜃 and the
above integral can be carried into

∫

√2ℎ

0

(2ℎ − 𝑦
2
)

𝑖+1

𝑦
2𝑘

𝑑𝑦 = (2ℎ)
𝑖+1+𝑘+(1/2)

× ∫

𝜋/2

0

sin2𝑘𝜃cos2(𝑖+1)+1 𝜃 d𝜃.

(31)

Thus, using (30) and the above equation we can write (13) as

𝑀
+
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+2𝑘=0

2
𝑘+1+1/2

𝑝
+

𝑖,2𝑘

𝑎
𝑖+1

0

× ∫

𝜋/2

0

sin2𝑘𝜃cos2(𝑖+1)+1 𝜃𝑑𝜃 × ℎ
𝑖+1+𝑘+1/2

+

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1

ℎ
𝑘+1/2

= ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
+

𝑖,2𝑘
ℎ
𝑖+𝑘

,

(32)

where

𝐵
+

0,2𝑘
=

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1

,

𝐵
+

𝑖,2𝑘
=

2
𝑘+1+1/2

𝑝
+

𝑖−1,2𝑘

𝑎
𝑖

0

∫

𝜋/2

0

sin2𝑘𝜃 cos2𝑖+1 𝜃 𝑑𝜃, 1 ≤ 𝑖 ≤ 𝑛,

(33)

which gives (i) by (15). Thus, (i) holds and we can prove (ii)
in the same way by (16)–(18). This ends the proof.

Lemma 4. Let system (5a) satisfy (3) and (4). Then

(i) If a
1
> 0, a

0
= 0,M+

(ℎ, 𝛿) has the expression

M+
(ℎ, 𝛿) = √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

, (34)

where

𝐴
+

0,2𝑘
=

2(√2)

2𝑘+1

𝑎
+

0,2𝑘

2𝑘 + 1

,

𝐴
+

𝑖,2k =

2(√2)

2𝑘+1+𝑖

(√𝑎
1
)
𝑖

(𝑏
+

𝑖−1,2𝑘+1
+

𝑖

2𝑘 + 1

𝑎
+

𝑖,2𝑘
)

× ∫

𝜋/2

0

sini−1𝜃cos2𝑘+2𝜃 𝑑𝜃, 𝑖 ≥ 1.

(35)

(ii) If a
1
> 0, a

0
̸= 0, M+

(ℎ, 𝛿) can be written as

𝑀
+
(ℎ, 𝛿) = √ℎ[

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
+

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1

𝑎
+

𝑖+1,2𝑘
)𝜙

+

𝑖𝑘
(ℎ)

+

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1

ℎ
𝑘
]

+

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
+

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1

𝑎
+

𝑖+1,2𝑘
)

×

𝑖

∑

𝑟=0, 𝑟 even
𝛼
+

𝑖𝑟𝑘
(2ℎ +

𝑎
2

0

𝑎
1

)

𝑘+𝑟/2

𝐼

+

00
(ℎ, 𝛿) ,

(36)

or

M+
(ℎ, 𝛿) = √ℎ𝜓

+

[n/2] (ℎ, 𝛿)

+ (2ℎ +

a2
0

a
1

)𝜑
+

[(n−1)/2] (2ℎ +

a2
0

a
1

, 𝛿)

× (

𝜋

2

− arcsin
a
0

√2a
1
ℎ + a2

0

),

(37)

where

𝐼

+

00
(ℎ, 𝛿) = ∫

√2ℎ+a2
0
/a
1

a
0
/√a1

√2ℎ +

a2
0

a
1

− v2dv, (38)

each 𝛼
+

𝑖𝑟𝑘
is a nonzero constant and 𝜙

+

𝑖𝑘
,𝜓+

[n/2], 𝜑
+

[(n−1)/2]
are polynomials of degree k + [(𝑖 + 1)/2], [n/2], [(n −

1)/2], respectively.
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Proof. Since 𝑦 = ±√2ℎ − 𝑎
1
𝑥
2
− 2𝑎

0
𝑥 along the curve

𝐴𝐴
1
, 𝑀

+

1
(ℎ, 𝛿) in (14) becomes

𝑀
+

1
(ℎ, 𝛿)

=

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
∫

𝐴𝐴
1

𝑥
𝑖
𝑦
𝑗+1

𝑑𝑥

=

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
[

[

∫

(−𝑎
0
+√2𝑎

1
ℎ+𝑎
2

0
)/𝑎
1

0

𝑥
𝑖
(2ℎ − 𝑎

1
𝑥
2
− 2𝑎

0
𝑥)

(𝑗+1)/2

𝑑𝑥
]

]

+ ∫

0

(−𝑎
0
+√2𝑎

1
ℎ+𝑎
2

0
)/𝑎
1

𝑥
𝑖
(−1)

𝑗+1
(2ℎ − 𝑎

1
𝑥
2
− 2𝑎

0
𝑥)

(𝑗+1)/2

𝑑𝑥

=

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘
𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) ,

(39)

where

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿)

= ∫

(−𝑎
0
+√2𝑎

1
ℎ+𝑎
2

0
)/𝑎
1

0

𝑥
𝑖
[2ℎ +

𝑎
2

0

𝑎
1

− 𝑎
1
(𝑥 +

𝑎
0

𝑎
1

)

2

]

𝑘+1/2

𝑑𝑥.

(40)

Let V = √𝑎
1
(𝑥 + 𝑎

0
/𝑎
1
). Then, we have 𝑑V = √𝑎

1
𝑑𝑥 and the

above equation becomes

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) =

1

(√𝑎
1
)
𝑖+1

∫

√2ℎ+𝑎
2

0
/𝑎
1

𝑎
0
/√𝑎1

(V −

𝑎
0

√𝑎
1

)

𝑖

× (2ℎ +

𝑎
2

0

𝑎
1

− V
2
)

𝑘+(1/2)

𝑑V.

(41)

For 𝑎
0
= 0, make the transformation V = √2ℎ sin 𝜃. Then,

we have by (41)

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) =

(√2ℎ)

2𝑘+1+𝑖+1

(√𝑎
1
)
𝑖+1

∫

𝜋/2

0

sin𝑖𝜃cos2𝑘+2 𝜃 𝑑𝜃. (42)

Substituting the above formula into (37), together with (13),
gives that

𝑀
+
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘

(√𝑎
1
)
𝑖+1

× ∫

𝜋/2

0

sin𝑖𝜃cos2𝑘+2 𝜃 𝑑𝜃 × (√2ℎ)

2𝑘+1+𝑖+1

+

𝑛

∑

2𝑘=0

2𝑎
+

0,2𝑘

2𝑘 + 1

(√2ℎ)

2𝑘+1

=

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

,

(43)

where

𝐴
+

0,2𝑘
=

2(√2)

2𝑘+1

𝑎
+

0,2𝑘

2𝑘 + 1

,

𝐴
+

𝑖,2𝑘
=

2(√2)

2𝑘+1+𝑖

𝑞
+

𝑖−1,2𝑘

(√𝑎
1
)
𝑖

× ∫

𝜋/2

0

sin𝑖−1 𝜃cos2𝑘+2 𝜃 𝑑𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(44)

Thus, by (15) and the above discussion we know that (i) holds.
For 𝑎

0
̸= 0, (41) can be represented as

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) =

1

(√𝑎
1
)
𝑖+1

𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
(−

𝑎
0

√𝑎
1

)

𝑖−𝑟

𝐼

+

𝑟𝑘
(ℎ, 𝛿) , (45)

where

𝐼

+

𝑟𝑘
(ℎ, 𝛿) = ∫

√2ℎ+𝑎
2

0
/𝑎
1

𝑎
0
/√𝑎1

V
𝑟
(2ℎ +

𝑎
2

0

𝑎
1

− V
2
)

𝑘+1/2

𝑑V. (46)

Recall that

∫ V
𝑟
(2ℎ +

𝑎
2

0

𝑎
1

− V
2
)

𝑘+1/2

𝑑V

=

V
𝑟+1

(2ℎ + 𝑎
2

0
/𝑎
1
− V

2
)

𝑘+1/2

2𝑘 + 2 + 𝑟

+

(2𝑘 + 1) (2ℎ + 𝑎
2

0
/𝑎
1
)

2𝑘 + 2 + 𝑟

× ∫ V
𝑟
(2ℎ +

𝑎
2

0

𝑎
1

− V
2
)

𝑘−1/2

𝑑V.

(47)

Then, by (46) and the above equation we obtain that

𝐼

+

𝑟𝑘
(ℎ, 𝛿) = −

𝑎
𝑟+1

0
(2ℎ)

𝑘+1/2

𝑎
(𝑟+1)/2

1
(2𝑘 + 2 + 𝑟)

+

(2𝑘+1) (2ℎ+𝑎
2

0
/𝑎
1
)

2𝑘+2+𝑟

𝐼

+

𝑟,𝑘−1
(ℎ, 𝛿) , 𝑘≥1, 𝑟≥0.

(48)

It follows that

𝐼

+

𝑟𝑘
(ℎ, 𝛿) = −

𝑎
𝑟+1

0

𝑎
(𝑟+1)/2

1

√2ℎ𝜑̃
+

𝑟𝑘
(ℎ)

+ 𝛼̃
+

𝑟𝑘
(2ℎ +

𝑎
2

0

𝑎
1

)

𝑘

𝐼

+

𝑟0
(ℎ, 𝛿) , 𝑘 ≥ 1, 𝑟 ≥ 0,

(49)
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where

𝛼̃
+

𝑟𝑘
=

(2𝑘+1) (2𝑘−1) (2𝑘−3) × ⋅ ⋅ ⋅ × 3

(2𝑘+2+𝑟) (2𝑘+𝑟) (2𝑘−2+𝑟) × ⋅ ⋅ ⋅ × (4+𝑟)

,

𝜑̃
+

𝑟𝑘
(ℎ) =

(2ℎ)
𝑘

2𝑘 + 2 + 𝑟

+

2𝑘 + 1

(2𝑘 + 2 + 𝑟) (2𝑘 + 𝑟)

× (2ℎ +

𝑎
2

0

𝑎
1

) (2ℎ)
𝑘−1

+

(2𝑘 + 1) (2𝑘 − 1)

(2𝑘 + 2 + 𝑟) (2𝑘 + 𝑟) (2𝑘 − 2 + 𝑟)

× (2ℎ +

𝑎
2

0

𝑎
1

)

2

(2ℎ)
𝑘−2

+ ⋅ ⋅ ⋅

+

(2𝑘 + 1) (2𝑘 − 1) × ⋅ ⋅ ⋅ × 5

(2𝑘 + 2 + 𝑟) (2𝑘 + 𝑟) (2𝑘 − 2 + 𝑟) × ⋅ ⋅ ⋅ × (4 + 𝑟)

× (2ℎ +

𝑎
2

0

𝑎
1

)

𝑘−1

2ℎ,

(50)

which is a polynomial of degree 𝑘 in ℎ. For convenience,
introduce

𝜑
+

𝑟𝑘
(ℎ) = {

𝜑̃
+

𝑟𝑘
(ℎ) , 𝑘 ≥ 1,

0, 𝑘 = 0,

𝛼
+

𝑟𝑘
= {

𝛼̃
+

𝑟𝑘
, 𝑘 ≥ 1,

1, 𝑘 = 0.

(51)

Then, combining (49) and (51) gives that

𝐼

+

𝑟𝑘
(ℎ, 𝛿) = −

𝑎
𝑟+1

0

𝑎
(𝑟+1)/2

1

√2ℎ𝜑
+

𝑟𝑘
(ℎ)

+ 𝛼
+

𝑟𝑘
(2ℎ +

𝑎
2

0

𝑎
1

)

𝑘

𝐼

+

𝑟0
(ℎ, 𝛿) , 𝑘 ≥ 0, 𝑟 ≥ 0.

(52)

Further, by using the formula

∫ V
𝑟
(2ℎ +

𝑎
2

0

𝑎
1

− V
2
)

1/2

𝑑V

=

−V
𝑟−1

(2ℎ + 𝑎
2

0
/𝑎
1
− V

2
)

3/2

𝑟 + 2

+

(𝑟 − 1) (2ℎ + 𝑎
2

0
/𝑎
1
)

𝑟 + 2

× ∫ V
𝑟−2

(2ℎ +

𝑎
2

0

𝑎
1

− V
2
)

1/2

𝑑V,

(53)

we have that

𝐼

+

𝑟0
(ℎ, 𝛿) =

𝑎
𝑟−1

0
(2ℎ)

3/2

𝑎
(𝑟−1)/2

1
(𝑟 + 2)

+

𝑟 − 1

𝑟 + 2

(2ℎ +

𝑎
2

0

𝑎
1

) 𝐼

+

𝑟−2,0
(ℎ, 𝛿) , 𝑟 ≥ 1.

(54)

It follows that

𝐼

+

𝑟0
(ℎ, 𝛿) = (2ℎ)

3/2
𝜑̃
+

𝑟
(ℎ)

+ 𝛼̃
+

𝑟
(2ℎ +

𝑎
2

0

𝑎
1

)

𝑟/2

𝐼
00

(ℎ, 𝛿) , 𝑟 ≥ 1,

(55)

where

𝛼̃
+

𝑟
=

{

{

{

0, 𝑟 odd,
(𝑟 − 1) (𝑟 − 3) × ⋅ ⋅ ⋅ × 3 × 1

(𝑟 + 2) 𝑟 (𝑟 − 2) × ⋅ ⋅ ⋅ × 6 × 4

, 𝑟 even,

𝜑̃
+

𝑟
(ℎ) =

𝑎
𝑟−1

0

(𝑟 + 2) 𝑎
(𝑟−1)/2

1

+

(𝑟 − 1) 𝑎
𝑟−3

0

(𝑟 + 2) 𝑟𝑎
(𝑟−3)/2

1

(2ℎ +

𝑎
2

0

𝑎
1

)

+

(𝑟 − 1) (𝑟 − 3) 𝑎
𝑟−5

0

(𝑟 + 2) 𝑟 (𝑟 − 2) 𝑎
(𝑟−5)/2

1

(2ℎ +

𝑎
2

0

𝑎
1

)

2

+ ⋅ ⋅ ⋅

+ ( (𝑟 − 1) (𝑟 − 3) × ⋅ ⋅ ⋅ × (𝑟 + 1 − 2 [

(𝑟 − 1)

2

])

×𝑎
𝑟−1−2[(𝑟−1)/2]

0
)

× ( (𝑟 + 2) 𝑟 (𝑟 − 2) × ⋅ ⋅ ⋅ × (𝑟 + 2 − 2 [

(𝑟 − 2)

2

])

× 𝑎
(𝑟−1)/2−[(𝑟−1)/2]

1
[

(𝑟 − 1)

2

])

−1

× (2ℎ +

𝑎
2

0

𝑎
1

)

[(𝑟−1)/2]

,

(56)

which is a polynomial of degree [(𝑟 − 1)/2] in ℎ. Let

𝜑
+

𝑟
(ℎ) = {

𝜑̃
+

𝑟
(ℎ) , 𝑟 ≥ 1,

0, 𝑟 = 0,

𝛼
+

𝑟
= {

𝛼̃
+

𝑟
, 𝑟 ≥ 1,

1, 𝑟 = 0.

(57)

Then, we have that by (55) and the above

𝐼

+

𝑟0
(ℎ, 𝛿) = (2ℎ)

3/2
𝜑
+

𝑟
(ℎ)

+ 𝛼
+

𝑟
(2ℎ +

𝑎
2

0

𝑎
1

)

𝑟/2

𝐼

+

00
(ℎ, 𝛿) , 𝑟 ≥ 0.

(58)

Substituting the above equation into (52), one can find that

𝐼

+

𝑟𝑘
(ℎ, 𝛿) = √ℎ𝜓

+

𝑟𝑘
(ℎ) + 𝛼

𝑟𝑘
𝛼
𝑟
(2ℎ +

𝑎
2

0

𝑎
1

)

𝑘+𝑟/2

× 𝐼

+

00
(ℎ, 𝛿) , 𝑟 ≥ 0, 𝑘 ≥ 0,

(59)

where 𝛼
𝑟
= 0 for 𝑟 odd, 𝛼

𝑟
> 0 for 𝑟 even, and

𝜓
+

𝑟𝑘
(ℎ, 𝛿) = −

√2𝑎
𝑟+1

0

𝑎
(𝑟+1)/2

1

𝜑
+

𝑟𝑘
(ℎ)

+ 2√2ℎ𝛼
𝑟𝑘

(2ℎ +

𝑎
2

0

𝑎
1

)

𝑘

𝜑
+

𝑟
(ℎ) ,

(60)
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which is a polynomial of degree 𝑘 + [(𝑟 + 1)/2] in ℎ.
Combining (37), (45), and (59) gives that

𝑀
+

1
(ℎ, 𝛿) = √ℎ

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘

(√𝑎
1
)
𝑖+1

𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
(−

𝑎
0

√𝑎
1

)

𝑖−𝑟

𝜓
+

𝑟𝑘
(ℎ)

+

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘

(√𝑎
1
)
𝑖+1

×

𝑖

∑

𝑟=0, 𝑟 even
𝐶
𝑟

𝑖
𝛼
𝑟𝑘

𝛼
𝑟
(−

𝑎
0

√𝑎
1

)

𝑖−𝑟

× (2ℎ +

𝑎
2

0

𝑎
1

)

𝑘+𝑟/2

𝐼

+

00
(ℎ, 𝛿) ,

(61)

which implies (35), together with (13) and (15).
Note that

∫√𝑎
2
− 𝑥

2
𝑑𝑥 =

1

2

[𝑥√𝑎
2
− 𝑥

2
+ 𝑎

2 arcsin 𝑥

|𝑎|

] . (62)

Then, we have

𝐼

+

00
(ℎ, 𝛿) = −

𝑎
0

2√𝑎
1

√2ℎ +

1

2

(2ℎ +

𝑎
2

0

𝑎
1

)

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

).

(63)

Inserting the above formula into (35), we can obtain (36).
Hence, the proof is finished.

Similar to Lemma 4, we can obtain the following lemma
about 𝑀−

(ℎ, 𝛿).

Lemma 5. Let system (5b) satisfy (3) and (4). Then
(i) If 𝑏

1
> 0, 𝑏

0
= 0, M−

(ℎ, 𝛿) in (11) has the expression

𝑀
−
(ℎ, 𝛿) = √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐴
−

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

, (64)

where

𝐴
−

0,2𝑘
= −

2(√2)

2𝑘+1

𝑎
−

0,2𝑘

2𝑘 + 1

,

𝐴
−

𝑖,2𝑘
=

2(√2)

2𝑘+1+𝑖

(√𝑏
1
)

𝑖
(𝑏

−

𝑖−1,2𝑘+1
+

𝑖

2𝑘 + 1

𝑎
−

𝑖,2𝑘
)

× ∫

0

−𝜋/2

sin𝑖−1𝜃cos2𝑘+2𝜃 d𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(65)

(ii) If 𝑏
1
> 0, 𝑏

0
̸= 0,𝑀

−
(ℎ, 𝛿) in (11) has the form

𝑀
−
(ℎ, 𝛿) = √ℎ[

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
−

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1

𝑎
−

𝑖+1,2𝑘
)𝜙

−

𝑖𝑘
(ℎ)

−

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
−

0,2𝑘

2𝑘 + 1

ℎ
𝑘
]

+

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
−

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1

𝑎
−

𝑖+1,2𝑘
)

×

𝑖

∑

𝑟=0, 𝑟 even
𝛼
−

𝑖𝑟𝑘
(2ℎ +

𝑏
2

0

𝑏
1

)

𝑘+𝑟/2

𝐼

−

00
(ℎ, 𝛿) ,

(66)

or

𝑀
−
(ℎ, 𝛿) = √ℎ𝜓

−

[𝑛/2]
(ℎ, 𝛿) + (2ℎ +

𝑏
2

0

𝑏
1

)𝜑
−

[(𝑛−1)/2]

× (2ℎ +

𝑏
2

0

𝑏
1

, 𝛿)(

𝜋

2

+ arcsin
𝑏
0

√2𝑏
1
ℎ + 𝑏

2

0

),

(67)

where

𝐼

−

00
(ℎ, 𝛿) = ∫

𝑏
0
/√𝑏
1

−√2ℎ+𝑏
2

0
/𝑏
1

√2ℎ +

𝑏
2

0

𝑏
1

− V2𝑑V, (68)

each 𝛼
−

𝑖𝑟𝑘
is nonzero constant and 𝜙

−

𝑖𝑘
, 𝜓

−

[𝑛/2]
, 𝜑
−

[(𝑛−1)/2]
are

polynomials of degree 𝑘 + [(𝑖 + 1)/2], [𝑛/2], [(𝑛 − 1)/2],
respectively.

3. Proof of Theorem 1

In this section, we will prove the main results. Obviously,
under (9) there are the following 9 subcases:

(1) 𝑎
1
= 𝑏

1
= 0, 𝑎

0
> 0, 𝑏

0
< 0,

(2) 𝑎
1
> 0, 𝑏

1
> 0, 𝑎

0
= 𝑏

0
= 0,

(3) 𝑎
1
> 0, 𝑏

0
< 0, 𝑎

0
= 𝑏

1
= 0,

(4) 𝑎
1
> 0, 𝑎

0
> 0, 𝑏

1
= 0, 𝑏

0
< 0,

(5) 𝑎
1
> 0, 𝑎

0
> 0, 𝑏

1
> 0, 𝑏

0
= 0,

(6) 𝑎
1
> 0, 𝑎

0
> 0, 𝑏

1
> 0, 𝑏

0
< 0,

(7) 𝑎
0
> 0, 𝑏

1
> 0, 𝑎

1
= 𝑏

0
= 0,

(8) 𝑎
1
= 0, 𝑎

0
> 0, 𝑏

1
> 0, 𝑏

0
< 0,

(9) 𝑎
1
> 0, 𝑎

0
= 0, 𝑏

1
> 0, 𝑏

0
< 0.

We only give the proof of Subcases 1, 2, 3, 4, 5, and 6. And
the Subcases 7, 8, and 9 can be verified, similar to Subcases 3,
4, and 5, respectively.
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Subcase 1. 𝑎
1

= 𝑏
1

= 0, 𝑎
0

> 0, 𝑏
0

< 0. From (12) and
Lemma 3, one can obtain that

𝑀(ℎ, 𝛿) = 𝑀
+
(ℎ, 𝛿) + 𝑀

−
(ℎ, 𝛿)

= ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
+

𝑖,2𝑘
ℎ
𝑖+𝑘

+ ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

= ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

(𝐵
+

𝑖,2𝑘
+ 𝐵

−

𝑖,2𝑘
) ℎ

𝑖+𝑘
,

(69)

which implies that 𝑀(ℎ, 𝛿) has at most 𝑛 isolated positive
zeros for ℎ > 0. To show that this bound can be reached, take
𝑎
−

𝑖𝑗
= 𝑏

±

𝑖𝑗
= 0, 𝑎

+

𝑖𝑗
= 0, 𝑗 ≥ 1. Then, by (27) and (29), (69) has

the form

𝑀(ℎ, 𝛿) = ℎ
1/2

𝑛

∑

𝑖=0

𝐵
+

𝑖0
ℎ
𝑖
, (70)

where

𝐵
+

00
= 2

1+1/2
𝑎
+

00
, 𝐵

+

𝑖0
=

2
1+1/2

𝑎
𝑖

0

(2𝑖)!!

(2𝑖 + 1)!!

𝑎
+

𝑖0
, 𝑖 ≥ 1.

(71)

Hence, using (70) we can take 𝑎
+

𝑖0
, 𝑖 = 0, 1, . . . , 𝑛 as free

parameters to produce 𝑛 simple positive zeros of𝑀(ℎ, 𝛿) near
ℎ = 0, which gives 𝑛 limit cycles correspondingly near the
origin. Thus, 𝑁(𝑛) ≥ 𝑛 in this case. This ends the proof.

Subcase 2. 𝑎
1

> 0, 𝑏
1

> 0, 𝑎
0

= 𝑏
0

= 0 Similar to the above
and using (32) and (64), 𝑀(ℎ, 𝛿) in (12) has the expression of
the form

𝑀(ℎ, 𝛿) =

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

+

𝑛

∑

𝑖+2𝑘=0

𝐴
−

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

= √ℎ

𝑛

∑

𝑙=0

𝐴
𝑙
(√ℎ)

𝑙

,

(72)

where 𝐴
𝑙
= ∑

𝑖+2𝑘=𝑙
(𝐴

+

𝑖,2𝑘
+ 𝐴

−

𝑖,2𝑘
). Further, taking 𝑎

−

𝑖𝑗
= 𝑏

±

𝑖𝑗
=

0, 𝑎
+

𝑖𝑗
= 0, 𝑗 ≥ 1, then, by (34) and (65), 𝑀(ℎ, 𝛿) in (72)

becomes

𝑀(ℎ, 𝛿) = ℎ
1/2

𝑛

∑

𝑖=0

𝐴
+

𝑖0
(√ℎ)

𝑖

, (73)

where

𝐴
+

00
=

2𝑎
+

00

2𝑘 + 1

,

𝐴
+

𝑖0
=

2𝑖𝑎
+

𝑖0

(√𝑎
1
)
𝑖
∫

𝜋/2

0

sin𝑖−1𝜃cos2 𝜃 d𝜃, 𝑖 ≥ 1.

(74)

Thus, from (72) and (73), we can discuss similar to Subcase 1.
This finishes the proof.

Subcase 3. 𝑎
1

> 0, 𝑏
0

< 0, 𝑎
0

= 𝑏
1

= 0 By Lemmas 3, and 4
and (12), we can have that

𝑀(ℎ, 𝛿) =

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

+ ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

= ℎ
1/2

(

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

+

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

)

= ℎ
1/2

𝑀
∗
(ℎ, 𝛿) .

(75)

Let us prove that𝑀∗
(ℎ, 𝛿) has at most 𝑛+[(𝑛+1)/2] zeros on

the open interval (0, +∞). For the purpose, let√ℎ = 𝜆. Then,
for 𝑛 = 2𝑙, 𝑙 ≥ 1, 𝑀∗

(ℎ, 𝛿) in (75) has the expression

𝑀
∗
(ℎ, 𝛿) =

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
𝜆
𝑖+2𝑘

+

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
𝜆
2𝑖+2𝑘

=

2𝑙

∑

𝑗=0

𝐶
𝑗
𝜆
𝑗
+

𝑙

∑

𝑗=1

𝐶
2𝑙+𝑗

𝜆
2𝑗+2𝑙

≜ 𝑀(𝜆, 𝛿) ,

(76)

where

𝐶
𝑗
= ∑

𝑖+2𝑘=𝑗

𝐴
+

𝑖,2𝑘
+ ∑

2𝑖+2𝑘=𝑗

𝐵
−

𝑖,2𝑘
, 𝑗 = 0, 1, 2, . . . , 2𝑙,

𝐶
2𝑙+𝑗

= ∑

𝑖+𝑘=𝑗+𝑙

𝐵
−

𝑖,2𝑘
, 𝑗 = 1, 2, . . . , 𝑙.

(77)

To prove𝑀
∗
(ℎ, 𝛿)has atmost 𝑛+[(𝑛+1)/2] zeros, it suffices to

prove𝑀(𝜆, 𝛿) has at most 𝑛+ [(𝑛+1)/2] = 3𝑙 zeros for 𝜆 > 0.
By Rolles theoremwe need only to prove that𝑑2𝑙𝑀(𝜆, 𝛿)/𝑑𝜆

2𝑙

has at most 𝑙 zeros for 𝜆 ∈ (0, +∞). From (76), we can have
that

𝑑
2𝑙
𝑀(𝜆, 𝛿)

𝑑𝜆
2𝑙

= 𝐶
2𝑙

(2𝑙)! +

𝑙

∑

𝑗=1

𝐶
2𝑙+𝑗

𝐴
2𝑙

2𝑙+2𝑗
𝜆
2𝑗

, (78)

which shows that 𝑑2𝑙𝑀(𝜆, 𝛿)/𝑑𝜆
2𝑙 has at most 𝑙 zeros for 𝜆 >

0. Thus, 𝑀(ℎ, 𝛿) has at most 3𝑙 zeros for ℎ > 0. To prove 3𝑙

zeros can appear, we only need to prove that𝑀∗
(ℎ, 𝛿) in (75)

can appear 3𝑙 zeros for ℎ > 0 small. Let 𝑏±
𝑖𝑗

= 0, 𝑎
±

𝑖𝑗
= 0, 𝑗 ≥

1, 𝑎
−

𝑖0
= 0, 0 ≤ 𝑖 ≤ 𝑙, and 𝑎

−

2𝑙
̸= 0. Then 𝑀

∗
(ℎ, 𝛿) in (75) can be

expressed as by (29) and (34)

𝑀
∗
(ℎ, 𝛿) =

2𝑙

∑

𝑖=0

𝐴
+

𝑖0
(√ℎ)

𝑖

+

2𝑙

∑

𝑖=𝑙+1

𝐵
−

𝑖0
(√ℎ)

2𝑖

= 𝐴
+

00
+ 𝐴

+

10
√ℎ + 𝐴

+

20
(√ℎ)

2

+ ⋅ ⋅ ⋅

+ 𝐴
+

2𝑙−1,0
(√ℎ)

2𝑙−1

+ 𝐴
+

2𝑙,0
(√ℎ)

2𝑙

+ 𝐵
−

𝑙+1,0
(√ℎ)

2𝑙+2

+ 𝐵
−

𝑙+2,0
(√ℎ)

2𝑙+4

+ ⋅ ⋅ ⋅ + 𝐵
−

2𝑙,0
(√ℎ)

4𝑙

,

(79)
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where

𝐴
+

00
= 2√2𝑎

+

00
,

𝐴
+

𝑖0
=

2(√2)

𝑖+1

(√𝑎
1
)
𝑖

𝑖𝑎
+

𝑖0
, 𝑖 = 1, 2, . . . , 2𝑙,

𝐵
−

𝑖0
=

−2√2

𝑏
𝑖

0

𝑎
−

𝑖0
∫

𝜋/2

0

cos2𝑖+1 𝜃𝑑𝜃

=

−2√2

𝑏
𝑖

0

(2𝑖)!!

(2𝑖 + 1)!!

𝑎
−

𝑖0
, 𝑖 = 𝑙 + 1, . . . , 2𝑙.

(80)

Thus, by changing the sign of 𝑎
−

2𝑙,0
, 𝑎
−

2𝑙−1,0
, . . . , 𝑎

−

𝑙+1,0
, 𝑎

+

2𝑙,0
,

𝑎
+

2𝑙−1,0
, . . . , 𝑎+

00
in turn such that

𝑎
−

𝑖−1,0
𝑎
−

𝑖0
< 0, 𝑖 = 2𝑙, 2𝑙 − 1, . . . , 𝑙 + 2,

𝑎
−

𝑙+1
𝑎
+

2𝑙,0
> 0, 𝑎

+

𝑖−1,0
𝑎
+

𝑖0
< 0, 𝑖 = 2𝑙, 2𝑙 − 1, . . . , 1,

0 <
󵄨
󵄨
󵄨
󵄨
𝑎
+

00

󵄨
󵄨
󵄨
󵄨
≪

󵄨
󵄨
󵄨
󵄨
𝑎
+

10

󵄨
󵄨
󵄨
󵄨
≪ ⋅ ⋅ ⋅ ≪

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
+

2𝑙,0

󵄨
󵄨
󵄨
󵄨
󵄨

≪
󵄨
󵄨
󵄨
󵄨
𝑎
−

𝑙+1

󵄨
󵄨
󵄨
󵄨
≪

󵄨
󵄨
󵄨
󵄨
𝑎
−

𝑙+2

󵄨
󵄨
󵄨
󵄨
≪

󵄨
󵄨
󵄨
󵄨
𝑎
−

2𝑙−1

󵄨
󵄨
󵄨
󵄨
≪ 1,

(81)

we can find 3𝑙 simply positive zeros ℎ
1
, ℎ
2
, . . . , ℎ

3𝑙
with 0 <

ℎ
3𝑙

< ℎ
3𝑙−1

< ⋅ ⋅ ⋅ < ℎ
1

≪ 1. For 𝑛 = 2𝑙 + 1, 𝑙 = 0, 1, . . ., we can
discuss in a similar way.Thus, this bound can be reached and
𝑁(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2]. The proof is finished.

Subcase 4. 𝑎
1

> 0, 𝑎
0

> 0, 𝑏
1

= 0, 𝑏
0

< 0 From (12) and
Lemmas 3 and 4, we get that

𝑀(ℎ, 𝛿) = √ℎ𝜓
+

[𝑛/2]
(ℎ, 𝛿) + (2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)(𝜋 − 2 arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

)

+ √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

= √ℎ𝑓
𝑛
(ℎ, 𝛿) + (2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)(𝜋 − 2 arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

),

(82)

where

𝑓
𝑛
(ℎ, 𝛿) = 𝜓

+

[𝑛/2]
(ℎ, 𝛿) +

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

, (83)

which is a polynomial of degree 𝑛 in ℎ. Let 𝜆 = √ℎ. Then
ℎ = 𝜆

2
, 𝜆 ∈ (0, +∞), and (82) becomes

𝑀(ℎ, 𝛿) = 𝜆𝑓
𝑛
(𝜆
2
)

+ V (𝜆, 𝛿)(

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
𝜆
2
+ 𝑎

2

0

)

≜ 𝑀̃ (𝜆, 𝛿) ,

(84)

where

V (𝜆, 𝛿) = (2𝜆
2
+

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎
1

, 𝛿) . (85)

One can see that (𝑑/𝑑𝜆)(𝑀̃(𝜆, 𝛿)/V(𝜆, 𝛿)) = 𝑢(𝜆, 𝛿)/V
2
(𝜆, 𝛿),

where

𝑢 (𝜆, 𝛿) = (2𝜆
2
+

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎
1

, 𝛿)

×

𝑑

𝑑𝜆

(𝜆𝑓
𝑛
(𝜆
2
, 𝛿)) − 𝜆𝑓

𝑛
(𝜆
2
, 𝛿)

×

𝑑

𝑑𝜆

[(2𝜆
2
+

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎
1

, 𝛿)]

+

√2𝑎
0

√𝑎
1

(2𝜆
2
+

𝑎
2

0

𝑎
1

)

× (𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎
1

, 𝛿))

2

.

(86)

Denote by #{𝜆 ∈ (0, +∞) | 𝑓(𝜆) = 0} the number of zeros of
the function in the interval (0, +∞) taking into account their
multiplicities. Note that

deg V = 2 [

𝑛 + 1

2

] , deg 𝑢 = 2 (𝑛 + [

𝑛 + 1

2

]) , (87)

and they are even functions in 𝜆. Therefore,

# {𝜆 ∈ (0, +∞) | V (𝜆, 𝛿)} ≤ [

𝑛 − 1

2

] ,

# {𝜆 ∈ (0, +∞) | 𝑢 (𝜆, 𝛿)} ≤ 𝑛 + [

𝑛 + 1

2

] .

(88)

Then, from [8], we can obtain that

# {𝜆 ∈ (0, +∞) | 𝑀̃ (𝜆, 𝛿) = 0}

≤ # {𝜆 ∈ (0, +∞) | V (𝜆, 𝛿)}

+ # {𝜆 ∈ (0, +∞) | 𝑢 (𝜆, 𝛿)} + 1

≤ [

𝑛 − 1

2

] + 𝑛 + [

𝑛 + 1

2

] + 1

= 𝑛 + 2 [

𝑛 + 1

2

] ,

(89)



12 Abstract and Applied Analysis

which implies that 𝑍(𝑛) ≤ 𝑛 + 2[(𝑛 + 1)/2]. Now, we verify
𝑍(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2].

Make the transformation 𝑢 = √V2/2ℎ − 𝑎
2

0
/2𝑎

1
ℎ. Then

𝐼

+

00
(ℎ, 𝛿) in (35) becomes

𝐼

+

00
(ℎ, 𝛿) =

(2ℎ)
3/2

√𝑎
2

0
/𝑎
1

∫

1

0

𝑢(1 − 𝑢
2
)

1/2

√1 + (2ℎ𝑎
1
𝑢
2
/𝑎
2

0
)

𝑑𝑢, (90)

which follows that as ℎ > 0 small

𝐼

+

00
(ℎ, 𝛿)

=

(2ℎ)
3/2

√𝑎
2

0
/𝑎
1

∫

1

0

𝑢(1 − 𝑢
2
)

1/2

× [1 +

+∞

∑

𝑚=1

(−1)
𝑚

(2𝑚 − 1)!!

(2𝑚)!!

(

2𝑎
1

𝑎
2

0

)

𝑚

ℎ
𝑚
𝑢
2𝑚

]𝑑𝑢.

(91)

Note that

∫

1

0

𝑢
2𝑚+1

(1 − 𝑢
2
)

1/2

𝑑𝑢

= ∫

𝜋/2

0

sin2𝑚+1𝜃cos2𝜃𝑑𝜃 (Let 𝑢 = sin 𝜃)

=

(2𝑚)!!

(2𝑚 + 3)!!

, 𝑚 = 0, 1, 2, . . . .

(92)

Inserting the above formula into (91) gives that

𝐼
00

(ℎ, 𝛿) = 2√ℎ√

2𝑎
1

𝑎
2

0

+∞

∑

𝑚=0

𝐶
𝑚
(

2𝑎
1

𝑎
2

0

)

𝑚

ℎ
𝑚+1

, (93)

where

𝐶
𝑚

=

(−1)
𝑚

(2𝑚 + 1) (2𝑚 + 3)

, 𝑚 ≥ 0. (94)

Take 𝑏
−

𝑖𝑗
= 𝑎

+

𝑖𝑗
= 0, 𝑎

−

𝑖𝑗
= 0, 𝑗 ≥ 1, 𝑏

+

𝑖𝑗
= 0, 𝑖 ≥ 1. Then, by

(28), (35), and (93), we can obtain that for ℎ > 0 small

𝑀(ℎ, 𝛿) = √ℎ[

𝑛

∑

𝑖=0

−2√2 (2𝑖)!!

(2𝑖 + 1)!!𝑏
𝑖

0

𝑎
−

𝑖0
ℎ
𝑖
+

𝑛−1

∑

2𝑘=0

𝑏
+

0,2𝑘+1
𝜓
+

0𝑘
(ℎ)

+

𝑛−1

∑

2𝑘=0

2
𝑘+1

𝛼
+

00𝑘
√

2𝑎
1

𝑎
2

0

𝑏
+

0,2𝑘+1
(ℎ +

𝑎
2

0

2𝑎
1

)

𝑘

×

+∞

∑

𝑚=0

𝐶
𝑚
(

2𝑎
1

𝑎
2

0

)

𝑚

ℎ
𝑚+1

]

= √ℎ∑

𝑖≥0

V
𝑖
ℎ
𝑖
,

(95)

where

V
𝑖
=

−2√2 (2𝑖)!!

(2𝑖 + 1)!!𝑏
𝑖

0

𝑎
−

𝑖0

+ 𝐿
𝑖
(𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
) , 𝑖 = 0, 1, 2, . . . , 𝑛

V
𝑛+1+𝑖

=

𝑛−1

∑

2𝑘=0

𝛼
+

00𝑘
2
𝑘+1

(

2𝑎
1

𝑎
2

0

)

𝑛+𝑖−𝑘+1/2

×

𝑘

∑

𝑟=0

𝐶
𝑟

𝑘
𝐶
𝑛+𝑖−𝑟

𝑏
+

0,2𝑘+1
, 𝑖 ≥ 0,

(96)

with 𝐿
𝑖
, 𝑖 = 0, 1, . . . , 𝑛 being linear combination,

𝐿
𝑖
(0, 0, . . . , 0) = 0. One can find that

𝜕 (V
0
, V
1
, . . . , V

𝑛
, V
𝑛+1

, V
𝑛+2

, . . . , V
𝑛+[(𝑛+1)/2]

)

𝜕 (𝑎
−

00
, 𝑎
−

10
, . . . , 𝑎

−

𝑛0
, 𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
)

= (

𝐴
1

𝐴
2

0 2√

2𝑎
1

𝑎
2

0

𝐴
3

) ≡ 𝐴,

(97)

where 𝐴
2
is a (𝑛 + 1) × [(𝑛 + 1)/2] matrix,

𝐴
1
=

(

(

(

−2√2 0 0 ⋅ ⋅ ⋅ 0

0
−4√2

𝑏
0

0 ⋅ ⋅ ⋅ 0

0 0
−16√2

15𝑏
2

0

⋅ ⋅ ⋅ 0

...
...

...
. . .

...

0 0 0 ⋅ ⋅ ⋅
−2√2 (2𝑛)!!

(2𝑛 + 1)!!𝑏
𝑛

0

)

)

)

,

𝐴
3
= (𝛼

+

000
𝛽
0
, 2𝛼

+

001
𝛽
1
, 2
2
𝛼
+

002
𝛽
2
, . . . ,

2
[(𝑛−1)/2]

𝛼
+

00,[(𝑛−1)/2]
𝛽
[(𝑛−1)/2]

) ,

(98)

with 𝛽
𝑖
are [(𝑛 + 1)/2] × 1 matrix satisfying

𝛽
𝑖
=

(

(

(

(

(

(

(

(

(

(

2𝑎
1

𝑎
2

0

)

𝑛−𝑖
𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
𝐶
𝑛−𝑟

(

2𝑎
1

𝑎
2

0

)

𝑛+1−𝑖
𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
𝐶
𝑛+1−𝑟

...

(

2𝑎
1

𝑎
2

0

)

𝑛+[(𝑛−1)/2]−𝑖
𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
𝐶
𝑛+[(𝑛−1)/2]−𝑟

)

)

)

)

)

)

)

)

)

,

𝑖 = 0, 1, 2, . . . , [

𝑛 − 1

2

] .

(99)
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Hence, we can obtain that from (97)

|𝐴| = (2√

2𝑎
1

𝑎
2

0

)

[(𝑛+1)/2]

󵄨
󵄨
󵄨
󵄨
𝐴
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝐴
3

󵄨
󵄨
󵄨
󵄨

= (2𝛼
+

0
√

2𝑎
1

𝑎
2

0

)

[(𝑛+1)/2]
[(𝑛−1)/2]

∏

𝑖=0

2
𝑖
𝛼
+

00𝑖

𝑛

∏

𝑖=0

−2√2 (2𝑖)!!

(2𝑖 + 1)!!𝑏
𝑖

0

|𝐵| ,

(100)

where

𝐵 = (𝛽
0
, 𝛽
1
, . . . , 𝛽

[(𝑛−1)/2]
) , (101)

and 𝛽
𝑖
are given in (99). We claim that |𝐴| ̸= 0. We only

need to prove |𝐵| ̸= 0 by the above formula. Using elemen-
tary transformations to |𝐵| by multiplying 𝑖th column by
(2𝑎

1
/𝑎
2

0
)
𝑖−1

, 𝑖 = 2, 3, . . . , [(𝑛 + 1)/2], we can obtain that by
(99) and (101)

|𝐵| = (

2𝑎
1

𝑎
2

0

)

𝑛[(𝑛+1)/2]

󵄨
󵄨
󵄨
󵄨
𝐵
1

󵄨
󵄨
󵄨
󵄨
, (102)

where

󵄨
󵄨
󵄨
󵄨
𝐵
1

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐶
𝑛

1

∑

𝑟=0

𝐶
𝑟

1
𝐶
𝑛−𝑟

⋅ ⋅ ⋅

[(𝑛−1)/2]

∑

𝑟=0

𝐶
𝑟

[(𝑛−1)/2]
𝐶
𝑛−𝑟

𝐶
𝑛+1

1

∑

𝑟=0

𝐶
𝑟

1
𝐶
𝑛+1−𝑟

⋅ ⋅ ⋅

[(𝑛−1)/2]

∑

𝑟=0

𝐶
𝑟

[(𝑛−1)/2]
𝐶
𝑛+1−𝑟

...
...

. . .
...

𝐶
𝑛+[(𝑛−1)/2]

1

∑

𝑟=0

𝐶
𝑟

1
𝐶
𝑛+[(𝑛−1)/2]−𝑟

⋅ ⋅ ⋅

[(𝑛−1)/2]

∑

𝑟=0

𝐶
𝑟

[(𝑛−1)/2]
𝐶
𝑛+[(𝑛−1)/2]−𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(103)

Nowwewill use elementary transformations to𝐵
1
as follows.

(1) Add the first columnmultiplying by −1 to 𝑖th column,
𝑖 = 2, 3, . . . , [(𝑛 + 1)/2].

(2) Add the second column multiplying by −𝐶
1

𝑖−1
to 𝑖th

column, 𝑖 = 3, 4, . . . , [(𝑛 + 1)/2].

(3) Add the third column multiplying by −𝐶
2

𝑖−1
to 𝑖th

column, 𝑖 = 4, 5, . . . , [(𝑛 + 1)/2]

...

[(𝑛 − 1)/2]. Add the [(𝑛 − 1)/2]th column multiplying by
−𝐶

[(𝑛−3)/2]

[(𝑛−1)/2]
to [(𝑛 + 1)/2]th column,

[(𝑛 + 1)/2]. multiply 𝑖th column by (−1)
𝑖−1, 𝑖 =

2, 3, . . . , [(𝑛 + 1)/2].
Then, |𝐵

1
| becomes, together with (94)

󵄨
󵄨
󵄨
󵄨
𝐵
1

󵄨
󵄨
󵄨
󵄨
= (−1)

[(𝑛−1)/2][(𝑛+1)/2]/2 det (̃𝛽
0
,
̃
𝛽
1
, . . . ,

̃
𝛽
[(𝑛−1)/2]

)

= 2
[(𝑛+1)/2]

(−1)
𝑛[(𝑛+1)/2] det (𝛽

0
, 𝛽
1
, . . . , 𝛽

[(𝑛−1)/2]
)

≜ 2
[(𝑛+1)/2]

(−1)
𝑛[(𝑛+1)/2] 󵄨

󵄨
󵄨
󵄨
𝐵
2

󵄨
󵄨
󵄨
󵄨
,

(104)
where

𝛽̃
𝑖
=

(

(

(

(

(−1)
𝑛

(2 (𝑛 − 𝑖) + 1) (2 (𝑛 − 𝑖) + 3)

(−1)
𝑛+1

(2 (𝑛 + 1 − 𝑖) + 1) (2 (𝑛 + 1 − 𝑖) + 3)

...
(−1)

𝑛+[(𝑛−1)/2]

(2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 1) (2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 3)

)

)

)

)

,

𝛽
𝑖
=

(

(

1

2 (𝑛 − 𝑖) + 1
−

1

2 (𝑛 − 𝑖) + 3

1

2 (𝑛 + 1 − 𝑖) + 1
−

1

2 (𝑛 + 1 − 𝑖) + 3

...
1

2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 1
−

1

2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 3

)

)

,

(105)

with 𝑖 = 0, 1, . . . , [(𝑛 − 1)/2]. For 𝐵
2
in (104) by adding a

column on the left and a row on the above, we can obtain
that, together with adding 𝑖th column to (𝑖+1)th columnwith
𝑖 = 1, 2, . . . , [(𝑛 + 1)/2]

󵄨
󵄨
󵄨
󵄨
𝐵
2

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 1 1 ⋅ ⋅ ⋅ 1

1

2𝑛 + 3

1

2𝑛 + 1

1

2𝑛 − 1

⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 1

1

2𝑛 + 5

1

2𝑛 + 3

1

2𝑛 + 1

⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 3

...
...

...
. . .

...

1

2 (𝑛 + [(𝑛 − 1) /2]) + 3

1

2 (𝑛 + [(𝑛 − 1) /2]) + 1

1

2 (𝑛 + [(𝑛 − 1) /2]) − 1

⋅ ⋅ ⋅

1

2𝑛 + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (106)
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which implies that |𝐴
3
| ̸= 0 by (102) and (104) if |𝐵

2
| ̸= 0. We claim that |𝐵

2
| ̸= 0 and

󵄨
󵄨
󵄨
󵄨
𝐵
3

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2𝑛 + 3

1

2𝑛 + 1

1

2𝑛 − 1

⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 1

1

2𝑛 + 5

1

2𝑛 + 3

1

2𝑛 + 1

⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 3

...
...

. . .
...

...
1

2 (𝑛 + [(𝑛 − 1) /2]) + 3

1

2 (𝑛 + [(𝑛 − 1) /2]) + 1

1

2 (𝑛 + [(𝑛 − 1) /2]) − 1

⋅ ⋅ ⋅

1

2𝑛 + 1

1

2 (𝑛 + [(𝑛 + 1) /2]) + 3

1

2 (𝑛 + [(𝑛 + 1) /2]) + 1

1

2 (𝑛 + [(𝑛 + 1) /2]) − 1

⋅ ⋅ ⋅

1

2𝑛 + 3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̸= 0. (107)

Now, we prove them by induction on 𝑛. For 𝑛 = 1, 2 we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 1

1

5

1

3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

2

15

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 1

1

7

1

5

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

2

35

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

5

1

3

1

7

1

5

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

−4

525

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

7

1

5

1

9

1

7

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

−4

2205

,

(108)

which means that (106) and (107) hold for 𝑛 = 1, 2. Suppose
(106) and (107) hold for 𝑛 = 2𝑙 − 1, 2𝑙, 𝑙 ≥ 1. That is, we have
for 𝑛 = 2𝑙

󵄨
󵄨
󵄨
󵄨
𝐵
2

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 1 1 ⋅ ⋅ ⋅ 1

1

4𝑙 + 3

1

4𝑙 + 1

1

4𝑙 − 1

⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1

⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

...
. . .

...

1

6𝑙 + 1

1

6𝑙 − 1

1

6𝑙 − 3

⋅ ⋅ ⋅

1

4𝑙 + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≜ |𝐶| ̸= 0,

󵄨
󵄨
󵄨
󵄨
𝐵
3

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

4𝑙 + 3

1

4𝑙 + 1

1

4𝑙 − 1

⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1

⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

. . .
...

...
1

6𝑙 + 1

1

6𝑙 − 1

1

6𝑙 − 3

⋅ ⋅ ⋅

1

4𝑙 + 1

1

6𝑙 + 3

1

6𝑙 + 1

1

6𝑙 − 1

⋅ ⋅ ⋅

1

4𝑙 + 3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̸= 0.

(109)

Then for 𝑛 = 2𝑙 + 1, we have

󵄨
󵄨
󵄨
󵄨
𝐵
2

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 1 1 ⋅ ⋅ ⋅ 1

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1

⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 7

1

4𝑙 + 5

1

4𝑙 + 3

⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

...
. . .

...
1

6𝑙 + 5

1

6𝑙 + 3

1

6𝑙 + 1

⋅ ⋅ ⋅

1

4𝑙 + 3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
𝐵
3

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1

⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 7

1

4𝑙 + 5

1

4𝑙 + 3

⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

. . .
...

...
1

6𝑙 + 5

1

6𝑙 + 3

1

6𝑙 + 1

⋅ ⋅ ⋅

1

4𝑙 + 3

1

6𝑙 + 7

1

6𝑙 + 5

1

6𝑙 + 3

⋅ ⋅ ⋅

1

4𝑙 + 5

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(110)

Note that by the first equation of (109) there only exist
𝛼
1
, 𝛼
2
, . . . , 𝛼l+1 such that

󵄨
󵄨
󵄨
󵄨
𝐵
2

󵄨
󵄨
󵄨
󵄨
= [

1

6𝑙 + 5

− (

𝛼
1

6𝑙 + 3

+

𝛼
2

6𝑙 + 1

+ ⋅ ⋅ ⋅ +

𝛼
𝑙+1

4𝑙 + 3

)] |𝐶|

=

−2

6𝑙 + 5

[

𝛼
1

6𝑙 + 3

+

2𝛼
2

6𝑙 + 1

+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼
𝑙+1

4𝑙 + 3

] |𝐶|

(111)

since 𝛼
1

+ 𝛼
2

+ ⋅ ⋅ ⋅ + 𝛼l+1 = 1, where 𝐶 is given in (109). If
|𝐵
2
| = 0, then we can obtain that from (109) and (111)

𝛼
1

6𝑙 + 3

+

2𝛼
2

6𝑙 + 1

+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼
𝑙+1

4𝑙 + 3

= 0. (112)

Note that
𝛼
1

4𝑙 + 3

+

𝛼
2

4𝑙 + 1

+ ⋅ ⋅ ⋅ +

𝛼
𝑙+1

2𝑙 + 3

=

1

4𝑙 + 5

,

𝛼
1

4𝑙 + 5

+

𝛼
2

4𝑙 + 3

+ ⋅ ⋅ ⋅ +

𝛼
𝑙+1

2𝑙 + 5

=

1

4𝑙 + 7

,

...
𝛼
1

6𝑙 + 1

+

𝛼
2

6𝑙 − 1

+ ⋅ ⋅ ⋅ +

𝛼
𝑙+1

4𝑙 + 1

=

1

6𝑙 + 3

,

(113)

which follows that, together with (112)
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𝛼
1

4𝑙 + 3

+

2𝛼
2

4𝑙 + 1

+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼
𝑙+1

2𝑙 + 3

= 0,

𝛼
1

4𝑙 + 5

+

2𝛼
2

4𝑙 + 3

+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼
𝑙+1

2𝑙 + 5

= 0,

...
𝛼
1

6𝑙 + 1

+

2𝛼
2

6𝑙 − 1

+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼
𝑙+1

4𝑙 + 1

= 0,

𝛼
1

6𝑙 + 3

+

2𝛼
2

6𝑙 + 1

+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼
𝑙+1

4𝑙 + 3

= 0.

(114)

By the second equation in (109) and the above formula, we
have

𝛼
1
= 𝛼

2
= ⋅ ⋅ ⋅ = 𝛼l+1 = 0. (115)

This is a contradiction with 𝛼
1
+ 𝛼

2
+ ⋅ ⋅ ⋅ + 𝛼

𝑙+1
= 1. Hence

𝛼
1
/(6𝑙 + 3) + 2𝛼

2
/(6𝑙 + 1) + ⋅ ⋅ ⋅ + (𝑙 + 1)𝛼

𝑙+1
/(4𝑙 + 3) ̸= 0, which

means that (106) holds for 𝑛 = 2𝑙 + 1. Since |𝐵
2
| ̸= 0 in (110),

there only exist 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑙+1
such that

𝛽
1
+

𝛽
2

4𝑙 + 5

+

𝛽
3

4𝑙 + 7

+ ⋅ ⋅ ⋅ +

𝛽
𝑙+1

6𝑙 + 5

=

1

6𝑙 + 7

,

𝛽
1
+

𝛽
2

4𝑙 + 3

+

𝛽
3

4𝑙 + 5

+ ⋅ ⋅ ⋅ +

𝛽
𝑙+1

6𝑙 + 3

=

1

6𝑙 + 5

,

...

𝛽
1
+

𝛽
2

2𝑙 + 3

+

𝛽
3

2𝑙 + 5

+ ⋅ ⋅ ⋅ +

𝛽
𝑙+1

4𝑙 + 3

=

1

4𝑙 + 5

,

(116)

with 𝛽
1

̸= 0 since the last row in the second formula of (110)
is linearly independent with all rows in the first formula of
(110), which means that (107) holds for 𝑛 = 2𝑙 + 1. In a
similar way, we can prove (106) and (107) hold for 𝑛 = 2𝑙 + 2.
Hence, the claim holds. So, from (99) we can know that
𝑎
−

00
, 𝑎
−

10
, . . . , 𝑎

−

𝑛0
, 𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
can be taken as free

parameters. So we can choose these values such that

V
𝑖
V
𝑖+1

< 0, 𝑖 = 0, 1, . . . , 𝑛 + [

(𝑛 − 1)

2

] ,

0 <
󵄨
󵄨
󵄨
󵄨
V
0

󵄨
󵄨
󵄨
󵄨
≪

󵄨
󵄨
󵄨
󵄨
V
1

󵄨
󵄨
󵄨
󵄨
≪ ⋅ ⋅ ⋅ ≪

󵄨
󵄨
󵄨
󵄨
V
𝑛+[(𝑛+1)/2]

󵄨
󵄨
󵄨
󵄨
≪ 1,

(117)

which yields that by (97) and (96)𝑀(ℎ, 𝛿) can appear 𝑛+[(𝑛+

1)/2] positive zeros for ℎ > 0 small. We also can know that
𝑁(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2]. Hence, the conclusion is proved.

Subcase 5. 𝑎
1

> 0, 𝑎
0

> 0, 𝑏
1

> 0, 𝑏
0

= 0 By (36) and (67),
one can see that

𝑀(ℎ, 𝛿) = √ℎ𝜓
+

[𝑛/2]
(ℎ, 𝛿) + (2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)(

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

)

+ √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐴
−

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

= √ℎ𝑔
[𝑛/2]

(ℎ, 𝛿) + 𝑔
[(𝑛+1)/2]

(ℎ, 𝛿)

+ (2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

),

(118)

where

𝑔
[𝑛/2]

(ℎ, 𝛿) = 𝜓
+

[𝑛/2]
(ℎ, 𝛿) +

[𝑛/2]

∑

𝑙=0

∑

𝑖+2𝑘=2𝑙

𝐴
−

𝑖,2𝑘
ℎ
l
,

𝑔
[(𝑛+1)/2]

(ℎ, 𝛿) =

[(𝑛−1)/2]

∑

𝑙=0

∑

𝑖+2𝑘=2𝑙+1

𝐴
−

𝑖,2𝑘
ℎ
𝑙+1

, 𝑛 ≥ 1.

(119)

For convenience, we denote by 𝑔
𝑛
any polynomial of degree

𝑛 although its coefficients may be different when it appears in
different place.Then, we claim that for any 2 ≤ 𝑘 ≤ [(𝑛−1)/2]

𝑑
𝑘
𝑀(ℎ, 𝛿)

𝑑ℎ
𝑘

=

𝑘

∑

𝑗=0

ℎ
1/2−𝑘+𝑗

𝑔
[𝑛/2]−𝑗

+

𝑑
𝑘
𝑔
[(𝑛+1)/2]

𝑑ℎ
𝑘

+

𝑘−2

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑎
2

0

𝑎
1

)

−𝑗−1

+

𝑑
𝑘

𝑑ℎ
𝑘

[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

).

(120)
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Now, we verify this claim by induction on 𝑘. For 𝑘 = 2, by
(118) we can obtain that

𝑑𝑀(ℎ, 𝛿)

𝑑ℎ

=

1

2

ℎ
−1/2

𝑔
[𝑛/2]

(ℎ, 𝛿)

+ ℎ
1/2

𝑑𝑔
[𝑛/2]

(ℎ, 𝛿)

𝑑ℎ

+

𝑑𝑔
[(𝑛+1)/2]

𝑑ℎ

+

𝑑

𝑑ℎ

[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

)

+ (2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)

𝑎
0

√2𝑎
1
√ℎ (2ℎ + 𝑎

2

0
/𝑎
1
)

= ℎ
−1/2

𝑔
[𝑛/2]

+ ℎ
1/2

𝑔
[𝑛/2]−1

+

𝑑𝑔
[(𝑛+1)/2]

𝑑ℎ

+

𝑑

𝑑ℎ

[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
a
0

√2a
1
ℎ + a2

0

),

(121)

which follows that

𝑑
2
𝑀(ℎ, 𝛿)

𝑑ℎ
2

= ℎ
−3/2

𝑔
[𝑛/2]

+ ℎ
−1/2

𝑔
[𝑛/2]−1

+ℎ
1/2

𝑔
[𝑛/2]−2

+

𝑑
2
𝑔
[(𝑛+1)/2]

𝑑ℎ
2

+

𝑔
0

√ℎ (2ℎ + 𝑎
2

0
/𝑎
1
)

+

𝑑
2

𝑑ℎ
2
[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

).

(122)

Hence, (120) holds for 𝑘 = 2. Suppose (120) holds for 𝑘, 2 ≤

𝑘 ≤ [(𝑛 − 1)/2] − 1. Then for 𝑘 + 1, we have

𝑑
𝑘+1

𝑀(ℎ, 𝛿)

𝑑ℎ
𝑘+1

=

𝑘

∑

𝑗=0

(

1

2

− 𝑘 + 𝑗) ℎ
1/2−(𝑘+1)+𝑗

𝑔
[𝑛/2]−𝑗

+

𝑘

∑

𝑗=0

ℎ
1/2−𝑘+𝑗

𝑔
[𝑛/2]−1−𝑗

+

𝑑
𝑘+1

𝑔
[(𝑛+1)/2]

𝑑ℎ
𝑘+1

+

𝑑
𝑘+1

𝑑ℎ
𝑘+1

[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

)

+

𝑑
𝑘

𝑑ℎ
𝑘

[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

×

𝑎
0

√2𝑎
1
√ℎ (2ℎ + 𝑎

2

0
/𝑎
1
)

+

𝑘−2

∑

𝑗=0

(ℎ(2ℎ +

𝑎
2

0

𝑎
1

)

𝑑

𝑑ℎ

𝑔
𝑗

−𝑔
𝑗
[2 (𝑗 + 1) ℎ + (𝑗 +

1

2

)(2ℎ +

𝑎
2

0

𝑎
1

)])

× (ℎ
𝑗+3/2

(2ℎ +

𝑎
2

0

𝑎
1

)

𝑗+2

)

−1

,

(123)

which implies that (120) holds for 𝑘 + 1. Thus, the claim is
proved. Then, taking 𝑘 = [(𝑛 − 1)/2], we can obtain that by
differentiating it

𝑑
[(𝑛+1)/2]

𝑀(ℎ, 𝛿)

𝑑ℎ
[(𝑛+1)/2]

=

[𝑛/2]

∑

𝑗=0

ℎ
1/2−[(𝑛+1)/2]+𝑗

𝑔
[𝑛/2]−𝑗

+

[(𝑛+1)/2]−2

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑎
2

0

𝑎
1

)

−𝑗−1

+

𝑑
[(𝑛+1)/2]

𝑔
[(𝑛+1)/2]

𝑑ℎ
[(𝑛+1)/2]

+

𝑑
[(𝑛+1)/2]

𝑑ℎ
[(𝑛+1)/2]

× [(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

).

(124)

One can find that

𝑑
[(𝑛+1)/2]+1

𝑀(ℎ, 𝛿)

𝑑ℎ
[(𝑛+1)/2]+1

=

[𝑛/2]

∑

𝑗=0

ℎ
1/2−[(𝑛+1)/2]−1+𝑗

𝑔
[𝑛/2]−𝑗

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑎
2

0

𝑎
1

)

−𝑗−1
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= ℎ
−[(𝑛+1)/2]−1/2

× (2ℎ +

𝑎
2

0

𝑎
1

)

−[(𝑛+1)/2]

𝐹 (ℎ, 𝛿) ,

(125)

where

𝐹 (ℎ, 𝛿) = (2ℎ +

𝑎
2

0

𝑎
1

)

[(𝑛+1)/2] [𝑛/2]

∑

𝑗=0

ℎ
𝑗
𝑔
[𝑛/2]−𝑗

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔
𝑗
ℎ
[(𝑛+1)/2]−𝑗

× (2ℎ +

𝑎
2

0

𝑎
1

)

[(𝑛+1)/2]−𝑗−1

,

(126)

where 𝐹 is a polynomial of degree [𝑛/2] + [(𝑛 + 1)/2]. Since
𝑀(0, 𝛿) = 0 from (118), it is easy to see that 𝑀(ℎ, 𝛿) has at
most [𝑛/2] + 2[(𝑛 + 1)/2] = 𝑛 + [(𝑛 + 1)/2] zeros for ℎ >

0 by Rolle theorem. As the above discussion, we only prove
𝑍(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2] as ℎ > 0 small, which implies 𝑁(𝑛) ≥

𝑛+[(𝑛+1)/2]. For the purpose, take 𝑏
−

𝑖𝑗
= 𝑎

+

𝑖𝑗
= 0, 𝑎

−

𝑖𝑗
= 0, 𝑗 ≥

1, 𝑏
+

𝑖𝑗
= 0, 𝑖 ≥ 1. Then using (49), (51), we can write 𝑀(ℎ, 𝛿)

in (12) as

𝑀(ℎ, 𝛿) = √ℎ
[

[

−2√2𝑎
−

00
+

𝑛

∑

𝑖=1

2(√2)

𝑖+1

𝑖

(√𝑏
1
)

𝑖
𝑎
−

𝑖0

× ∫

0

−𝜋/2

sin𝑖−1𝜃cos2 𝜃 𝑑𝜃(√ℎ)

𝑖

+

𝑛−1

∑

2𝑘=0

𝑏
+

0,2𝑘+1
𝜓
+

0𝑘
(ℎ)

+

𝑛−1

∑

2𝑘=0

2
𝑘+1

𝛼
+

00𝑘
√

2𝑎
1

𝑎
2

0

𝑏
+

0,2𝑘+1

× (ℎ +

𝑎
2

0

2𝑎
1

)

𝑘
+∞

∑

𝑚=0

𝐶
𝑚
(

2𝑎
1

𝑎
2

0

)

𝑚

ℎ
𝑚+1

]

]

.

(127)

For 𝑛 = 2𝑙, 𝑙 ≥ 1, (127) can be written as

𝑀(ℎ, 𝛿) = √ℎ[

2𝑙

∑

𝑖=0

V
𝑖
(√ℎ)

𝑖

+ ∑

𝑖≥0

V
2𝑙+1+𝑖

ℎ
𝑙+1+𝑖

] , (128)

where

V
0
= −2√2𝑎

−

00
.

V
2𝑖+1

=

2(√2)

2𝑖+2

(2𝑖 + 1)

(√𝑏
1
)

2𝑖+1
𝑎
−

2𝑖+1,0

× ∫

0

−𝜋/2

sin2𝑖𝜃cos2 𝜃 𝑑𝜃, 𝑖 = 0, 1, . . . , 𝑙 − 1,

V
2𝑖

=

2(√2)

2𝑖+1

2𝑖

(√𝑏
1
)

2𝑖
𝑎
−

2𝑖,0
∫

0

−𝜋/2

sin2𝑖−1𝜃cos2𝜃 𝑑𝜃

+ 𝐿
2𝑖

(𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
) , 𝑖 = 1, 2, . . . , 𝑙,

V
2𝑙+1+𝑖

=

𝑙−1

∑

𝑘=0

2
𝑘+1

𝛼
+

00𝑘
(

2𝑎
1

𝑎
2

0

)

𝑙−𝑘+𝑖+1/2

× 𝑏
+

0,2𝑘+1

𝑘

∑

𝑟=0

𝐶
𝑟

𝑘
𝐶
𝑙+𝑖−𝑟

, 𝑖 = 0, 1, . . . , [

𝑛 − 1

2

] ,

(129)

which implies that 𝑀(ℎ, 𝛿) can appear 𝑛 + [(𝑛 + 1)/2] zeros
in ℎ > 0 small by using the same method with the Subcase 4.
For 𝑛 = 2𝑙+1, 𝑙 = 0, 1, . . ., we can discuss by (127) in a similar
way. Hence, the conclusion holds.

Subcase 6. 𝑎
1

> 0, 𝑎
0

> 0, 𝑏
1

> 0, 𝑏
0

< 0. We have as the
above

𝑀(ℎ, 𝛿) = √ℎ (𝜓
+

[𝑛/2]
(ℎ, 𝛿) + 𝜓

−

[𝑛/2]
(ℎ, 𝛿))

+ (2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(ℎ, 𝛿)

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

)

+ (2ℎ +

𝑏
2

0

𝑏
1

)𝜑
−

[(𝑛−1)/2]
(ℎ, 𝛿)

× (

𝜋

2

+ arcsin
𝑏
0

√2𝑏
1
ℎ + 𝑏

2

0

).

(130)

Similar to the Subcase 5, we can prove that for any 2 ≤ 𝑘 ≤

[(𝑛 − 1)/2]

𝑑
𝑘
𝑀(ℎ, 𝛿)

𝑑ℎ
𝑘

=

𝑘

∑

𝑗=0

ℎ
1/2−𝑘+𝑗

𝑔
[𝑛/2]−𝑗
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+

𝑘−2

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑎
2

0

𝑎
1

)

−𝑗−1

+

𝑘−2

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑏
2

0

𝑏
1

)

−𝑗−1

+

𝑑
𝑘

𝑑ℎ
𝑘

[(2ℎ +

𝑎
2

0

𝑎
1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎
1

, 𝛿)]

× (

𝜋

2

− arcsin
𝑎
0

√2𝑎
1
ℎ + 𝑎

2

0

)

+

𝑑
𝑘

𝑑ℎ
𝑘

[

[

[

[

(2ℎ +

𝑏
2

0

𝑏
1

)𝜑
+

[

[

(𝑛 − 1)

2

]

]

(2ℎ +

𝑏
2

0

𝑎
1

, 𝛿)

]

]

]

]

× (

𝜋

2

− arcsin
𝑏
0

√2𝑏
1
ℎ + 𝑏

2

0

).

(131)

Taking 𝑘 = [(𝑛 − 1)/2] and differentiating the above twice
follow that

𝑑
[(𝑛+1)/2]+1

𝑀(ℎ, 𝛿)

𝑑ℎ
[(𝑛+1)/2]+1

=

[𝑛/2]

∑

𝑗=0

ℎ
1/2−[(𝑛+1)/2]−1+𝑗

𝑔
[𝑛/2]−𝑗

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑎
2

0

𝑎
1

)

−𝑗−1

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔
𝑗
ℎ
−𝑗−1/2

(2ℎ +

𝑏
2

0

𝑏
1

)

−𝑗−1

.

(132)

If 𝑎2
0
/𝑎
1

= 𝑏
2

0
/𝑏
1
, then it is easy to see that (132) has the same

formwith (125). Hence, we can know that𝑀(ℎ, 𝛿) has atmost
[𝑛/2]+2[(𝑛+1)/2] zeros for ℎ ∈ (0, +∞). If 𝑎2

0
/𝑎
1

̸= 𝑏
2

0
/𝑏
1
, then

(132) can be written as

𝑑
[(𝑛+1)/2]+1

𝑀(ℎ, 𝛿)

𝑑ℎ
[(𝑛+1)/2]+1

= ℎ
−[(𝑛+1)/2]−1/2

(2ℎ +

𝑎
2

0

𝑎
1

)

−[(𝑛+1)/2]

× (2ℎ +

𝑏
2

0

𝑏
1

)

−[(𝑛+1)/2]

𝐹 (ℎ, 𝛿) ,

(133)

where

𝐹 (ℎ, 𝛿) = (2ℎ +

𝑎
2

0

𝑎
1

)

[(𝑛+1)/2]

(2ℎ +

𝑏
2

0

𝑏
1

)

[(𝑛+1)/2]

×

[𝑛/2]

∑

𝑗=0

ℎ
𝑗
𝑔
[𝑛/2]−𝑗

+ (2ℎ +

𝑏
2

0

𝑏
1

)

[(𝑛+1)/2] [(𝑛+1)/2]−1

∑

𝑗=0

𝑔
𝑗
ℎ
[(𝑛+1)/2]−𝑗

× (2ℎ +

𝑎
2

0

𝑎
1

)

[(𝑛+1)/2]−𝑗−1

+ (2ℎ +

𝑎
2

0

𝑎
1

)

[(𝑛+1)/2] [(𝑛+1)/2]−1

∑

𝑗=0

𝑔
𝑗
ℎ
[(𝑛+1)/2]−𝑗

× (2ℎ +

𝑏
2

0

𝑏
1

)

[(𝑛+1)/2]−𝑗−1

,

(134)

where 𝐹 is a polynomial of degree [𝑛/2]+2[(𝑛+1)/2] in ℎ. By
Rolle theorem, we can obtain that𝑀(ℎ, 𝛿) has at most [𝑛/2]+
3[(𝑛 + 1)/2] zeros for ℎ > 0 since 𝑀(0, 𝛿) = 0. Now, we only
need to prove 𝑍(𝑛) ≥ 𝑛. Take 𝑎

−

𝑖𝑗
= 𝑏

−

𝑖𝑗
= 0, 𝑎

+

𝑖𝑗
= 𝑏

+

𝑖𝑗
= 0, 𝑖 ≥

1. Then, by Lemmas 4, 5, one can see that for ℎ > 0 small

𝑀(ℎ, 𝛿) = √ℎ[

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1

ℎ
𝑘
+

𝑛−1

∑

2𝑘=0

𝑏
+

0,2𝑘+1
𝜓
+

0𝑘
(ℎ)

+

𝑛−1

∑

2𝑘=0

2
𝑘+1

𝛼
+

00𝑘
√

2𝑎
1

𝑎
2

0

𝑏
+

0,2𝑘+1
(ℎ +

𝑎
2

0

2𝑎
1

)

𝑘

×

+∞

∑

𝑚=0

𝐶
𝑚
(

2𝑎
1

𝑎
2

0

)

𝑚

ℎ
𝑚+1

] .

(135)

Similarly, we can discuss the above formula such that such
that 𝑀(ℎ, 𝛿) can appear 𝑛 zeros for ℎ > 0 small. Hence, the
conclusion is proved.
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