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This paper focuses on the identification problem ofWiener nonlinear systems.The application of the key-term separation principle
provides a simplified form of the estimated parameter model. To solve the identification problem of Wiener nonlinear systems
with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the
unmeasurable variables in the information vector with their corresponding iterative estimates. The simulation results indicate that
the proposed algorithm is effective.

1. Introduction

Wiener systems are typical nonlinear systems [1], which can
represent a nonlinear dynamic system with a dynamic linear
block followed by a nonlinear static function.Wiener systems
have been used inmodeling a glutamate fermentation process
[2]. Recently, great attention has been paid to the identifica-
tion issues for Wiener systems, and many studies have been
performed. In much existing work, some assume that the
nonlinear part of Wiener systems has an invertible function
representation over the operating range of interest [3]. Wang
and Ding presented least squares-based and gradient-based
iterative identification algorithms for Wiener nonlinear sys-
tems [4]; Chen studied identification problems for Wiener
systems with saturation and dead-zone nonlinearities [5].
Zhou et al. derived an auxiliary model-based gradient iter-
ative algorithm forWiener nonlinear output error systems by
using the key-term decomposition principle [6].

The least-squares-based iterative algorithm is a class of
basic identification algorithms in the field of system identifi-
cation [7] and used in studying different types of systems, for
example, multivariable systems [8–12] and multirate systems
[13–16]. To estimate the parameters of systems in which the
information vector contains unknown variables, the least-
squares-based iterative algorithms are usually used [17–22].

Ding et al. developed a least-squares-based iterative algo-
rithm to estimate the parameters for a multi-input multi-
output system with colored ARMA noise from input-output
data [23]. On the basis of the work in [6, 24–26], this paper
presents a least-squares-based iterative estimation algorithm
for Wiener nonlinear systems.

The rest of this paper is organized as follows. Section 2
derives the identificationmodel ofWiener nonlinear systems.
Section 3 presents a least squares based iterative algorithm
forWiener nonlinear systems. Section 4 provides an example
to illustrate the effectiveness of the proposed algorithm. The
conclusions of the paper are summarized in Section 5.

2. Problem Formation

Let us firstly introduce some notations [27, 28]. The super-
script T denotes the matrix transpose; I stands for an identity
matrix of appropriate sizes; 1

𝑛
represents an 𝑛-dimensional

column vector whose elements are 1; the norm of a matrix X
is defined by ‖X‖2 := tr[XXT

]; ̂X(𝑡) stands for the estimate of
X at time 𝑡.

TheWiener nonlinear system consists of a linear dynamic
subsystem followed by a static nonlinear block as shown in
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Figure 1: TheWiener nonlinear system.

Figure 1 [25, 26]. The linear dynamic subsystem can be given
as

𝑥 (𝑡) =

𝐵 (𝑧)

𝐴 (𝑧)

𝑢 (𝑡) , (1)

where𝑢(𝑡) and𝑥(𝑡) are the input and the inner output, respec-
tively, and 𝐴(𝑧) and 𝐵(𝑧) are polynomials in 𝑧

−1, defined as

𝐴 (𝑧) := 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑎

𝑧
−𝑛
𝑎

,

𝐵 (𝑧) := 1 + 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
𝑏

𝑧
−𝑛
𝑏

.

(2)

The static nonlinear block is generally assumed to be the sum
of the nonlinear basis functions of a known basis f := (𝑓

1
,

𝑓
2
, . . . , 𝑓

𝑛
) as follows:

𝑦 (𝑡) = 𝑓 (𝑥 (𝑡))

= 𝛾
1
𝑓
1
(𝑥 (𝑡)) + 𝛾

2
𝑓
2
(𝑥 (𝑡)) + ⋅ ⋅ ⋅ + 𝛾

𝑛
𝛾

𝑓
𝑛
𝛾

(𝑥 (𝑡))

= f (𝑥 (𝑡)) 𝛾.

(3)

In this paper, we assume that the nonlinear function 𝑓(⋅) can
be expressed by the polynomial of the order 𝑛

𝛾
as follows:

𝑓 (𝑥 (𝑡)) = 𝛾
1
𝑥 (𝑡) + 𝛾

2
𝑥
2

(𝑡) + ⋅ ⋅ ⋅ + 𝛾
𝑛
𝛾

𝑥
𝑛
𝛾

(𝑡) , (4)

and the polynomial orders 𝑛
𝛾
are known.Without loss of gen-

erality, we introduce a stochastic white noise V(𝑡) with zero
mean and variance 𝜎2 to system output and have

𝑦 (𝑡) = 𝑓 (𝑥 (𝑡)) + V (𝑡) . (5)

The linear block output 𝑥(𝑡) is identical with the nonlinear
block input. A direct substitution of 𝑥(𝑡) from (1) into (5)
would result in a very complex expression containing cross-
multiplied parameters and variables. To simplify this prob-
lem, the key-term separation principle can be applied [29].
We fix a coefficient of the nonlinear blocks. For example, let
the first coefficient of 𝛾 be unity; that is, 𝛾

1
= 1. Equation (1)

can be rewritten to be

𝑥 (𝑡) = [1 − 𝐴 (𝑧)] 𝑥 (𝑡) + 𝐵 (𝑧) 𝑢 (𝑡) , (6)

and then substituting (6) into (5) for the separated 𝑥(𝑡), the
system output is given in the form

𝑦 (𝑡) = [1 − 𝐴 (𝑧)] 𝑥 (𝑡) + 𝐵 (𝑧) 𝑢 (𝑡) +

𝑛
𝛾

∑

𝑖=2

𝛾
𝑖
𝑥
𝑖

(𝑡) + V (𝑡) .

(7)

Define the information vectors and the parameter vectors

𝜑
𝑠
(𝑡) := [−𝑥 (𝑡 − 1) , −𝑥 (𝑡 − 2) , . . . , −𝑥 (𝑡 − 𝑛

𝑎
) ,

𝑢(𝑡 − 1), 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛
𝑏
)]

T
∈ R
𝑛
𝑎
+𝑛
𝑏

,

𝜑
𝛾
(𝑡) := [𝑥

2

(𝑡) , 𝑥
3

(𝑡) , . . . , 𝑥
𝑛
𝛾

(𝑡)]

T
∈ R
𝑛
𝛾
−1

,

𝜑 (𝑡) := [

𝜑
𝑠
(𝑡)

𝜑
𝛾
(𝑡)

] ∈ R
𝑛
0

, 𝑛
0
= 𝑛
𝑎
+ 𝑛
𝑏
+ 𝑛
𝛾
− 1,

𝜃
𝑠
:= [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
𝑎

, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
𝑏

]

T
∈ R
𝑛
𝑎
+𝑛
𝑏

,

𝜃
𝛾
:= [𝛾
2
, 𝛾
3
, . . . , 𝛾

𝑛
𝛾

]

T
∈ R
𝑛
𝛾
−1

,

𝜃 := [

𝜃
𝑠

𝜃
𝛾

] ∈ R
𝑛
0

.

(8)

Thus, (6) can be written in a vector form as

𝑥 (𝑡) = 𝜑
T
𝑠
(𝑡) 𝜃
𝑠
. (9)

Using (9), from (7), we can obtain the following identification
model:

𝑦 (𝑡) = 𝜑
T
𝑠
(𝑡) 𝜃
𝑠
+ 𝜑

T
𝛾
(𝑡) 𝜃
𝛾
+ V (𝑡)

= 𝜑
T
(𝑡) 𝜃 + V (𝑡) .

(10)

The objective of this paper is to present a least squares based
iterative algorithm to estimate the parameters 𝑎

𝑖
, 𝑏
𝑖
, 𝛾
𝑖
for the

Wiener nonlinear system.

3. The Least-Squares-Based
Iterative Algorithm

Based on the methods in [18, 20, 24] for linear systems and
Hammerstein nonlinear systems, we derive a least-squares-
based iterative algorithm for the Wiener model. Define the
stacked output vector Y(𝐿), the stacked information vector
Φ(𝐿), and the white noise vector V(𝐿) as

Y (𝐿) := [𝑦(𝐿), 𝑦(𝐿 − 1), . . . , 𝑦(1)]
T
∈ R
𝐿

,

Φ (𝐿) := [𝜑(𝐿),𝜑(𝐿 − 1), . . . ,𝜑(1)]
T
∈ R
𝐿×𝑛
0

,

V (𝐿) := [V(𝐿), V(𝐿 − 1), . . . , V(1)]
T
∈ R
𝐿

.

(11)

Define a quadratic criterion function

𝐽 (𝜃) := ‖Y (𝐿) −Φ (𝐿) 𝜃‖ . (12)

To minimize 𝐽(𝜃), letting its partial differential with respect
to 𝜃 be zero gives the least squares estimate of 𝜃 as follows:

̂𝜃 = [Φ
T
(𝐿)Φ(𝐿)]

−1

Φ
T
(𝐿)Y (𝐿) . (13)

Since Φ(𝐿) in (13) containing unknown inner variable 𝑥(𝑡)

leads to a difficulty that the iterative solution ̂𝜃
𝑘
of 𝜃 is
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impossible to compute. In order to solve this difficulty, the
approach here is based on the auxiliary model idea [30–32].
Let 𝑥

𝑘
(𝑡) be the estimate of 𝑥(𝑡) at iteration 𝑘 and 𝜑̂

𝑘
(𝑡)

the information vector 𝜑
𝑘
(𝑡) obtained by replacing 𝑥(𝑡) with

𝑥
𝑘
(𝑡); that is,

𝜑̂
𝑘
(𝑡) = [

𝜑̂
𝑠,𝑘

(𝑡)

𝜑̂
𝛾,𝑘

(𝑡)
] , (14)

with
𝜑̂
𝑠,𝑘

(𝑡) = [−𝑥
𝑘−1

(𝑡 − 1) , −𝑥
𝑘−1

(𝑡 − 2) , . . . , −𝑥
𝑘−1

(𝑡 − 𝑛
𝑎
) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢(𝑡 − 𝑛
𝑏
)]

T
,

𝜑̂
𝛾,𝑘

(𝑡) = [𝑥
2

𝑘−1
(𝑡) , 𝑥
3

𝑘−1
(𝑡) , . . . , 𝑥

𝑛
𝛾

𝑘−1
(𝑡)]

T
.

(15)

Replacing𝜑
𝑠
(𝑡) and 𝜃

𝑠
in (9) with 𝜑̂

𝑠,𝑘
(𝑡) and ̂𝜃

𝑠,𝑘
, respectively,

the iterative estimate 𝑥
𝑘
(𝑡) can be obtained by the following

auxiliary model:

𝑥
𝑘
(𝑡) = 𝜑̂

T
𝑠,𝑘

(𝑡)
̂𝜃
𝑠,𝑘
, 𝑡 = 1, 2, . . . , 𝐿. (16)

Define

Φ̂
𝑘
(𝐿) := [𝜑̂

𝑘
(𝐿), 𝜑̂

𝑘
(𝐿 − 1), . . . , 𝜑̂

𝑘
(1)]

T
∈ R
𝐿×𝑛
0

. (17)

Let ̂𝜃
𝑘
= [

̂𝜃
𝑠,𝑘

̂𝜃
𝛾,𝑘

] be the estimate of 𝜃
𝑘
= [
𝜃
𝑠

𝜃
𝛾

] at iteration 𝑘.

Using Φ̂
𝑘
(𝐿) in place ofΦ(𝐿) in (13), we have

̂𝜃
𝑘
= [Φ̂

T
𝑘
(𝐿)Φ̂
𝑘
(𝐿)]

−1

Φ̂
T
𝑘
(𝐿)Y (𝐿) . (18)

Equations (13)–(18) form the least-squares-based iterative
(LSI) identification algorithm for the Wiener nonlinear sys-
tem, which can be summarized as [1]

̂𝜃
𝑘
= [Φ̂

T
𝑘
(𝐿) Φ̂
𝑘
(𝐿)]

−1

Φ̂
T
𝑘
(𝐿)Y (𝐿) , (19)

Φ̂
𝑘
(𝐿) = [𝜑̂

𝑘
(𝐿) , 𝜑̂

𝑘
(𝐿 − 1) , . . . , 𝜑̂

𝑘
(1)]

T
, (20)

Y (𝐿) = [𝑦(𝐿), 𝑦(𝐿 − 1), . . . , 𝑦(1)]
T
, (21)

̂𝜃
𝑘
= [

̂𝜃
𝑠,𝑘
,
̂𝜃
𝛾,𝑘
]

T
, (22)

𝜑̂
𝑘
(𝑡) = [𝜑̂

𝑠,𝑘
(𝑡), 𝜑̂
𝛾,𝑘
(𝑡)]

T
,

𝜑̂
𝑠,𝑘

(𝑡) = [−𝑥
𝑘−1

(𝑡 − 1) , −𝑥
𝑘−1

(𝑡 − 2) , . . . ,

− 𝑥
𝑘−1

(𝑡 − 𝑛
𝑎
) , 𝑢 (𝑡 − 1) ,

𝑢(𝑡 − 2), . . . , 𝑢(𝑡 − 𝑛
𝑏
)]

T
,

𝜑̂
𝛾,𝑘

(𝑡) = [𝑥
2

𝑘−1
(𝑡), 𝑥
3

𝑘−1
(𝑡), . . . , 𝑥

𝑛
𝛾

𝑘−1
(𝑡)]

T
,

(23)

𝑥
𝑘
(𝑡) = 𝜑̂

T
𝑠,𝑘

(𝑡)
̂𝜃
𝑠,𝑘
, 𝑡 = 1, 2, . . . , 𝐿. (24)

The flowchart of computing the parameter estimate ̂𝜃
𝑘
is

shown in Figure 2. The steps involved in computing the pa-
rameter estimate ̂𝜃

𝑘
in the LSI algorithm using a fixed data

batch with the data length 𝐿 are listed as follows.

Start

End

Yes

𝑡 = 1, 2, . . . , 𝐿}

and form 𝑌(𝐿)

Initialize: 𝑘 = 1

(𝑡) and Φ̂𝑘(𝑡)

Choose 𝜇𝑘 and update 𝜃̂𝑘

Compute 𝑥̂𝑘(𝑡)

‖𝜃̂𝑘 − 𝜃̂𝑘−1‖ > 𝜀

Obtain 𝑘 and 𝜃̂𝑘

𝑘 := 𝑘 + 1

Collect {𝑢(𝑡), 𝑦(𝑡):

Form 𝜑̂𝑘

Figure 2: The flowchart of computing the LSI estimate ̂𝜃
𝑘
.

(1) Collect the input-output data {𝑢(𝑡), 𝑦(𝑡) : 𝑡 = 0, 1, 2,

. . . , 𝐿} and form 𝑌(𝐿) by (21).
(2) To initialize, let 𝑘 = 1, ̂𝜃

0
= 10
−61
𝑛
0

, and 𝑥
0
(𝑡) = 10

−6

for all 𝑡, and form 𝜑̂
0
(𝑡) by (23).

(3) Form 𝜑̂
𝑘
(𝑡) by (23) and Φ̂

𝑘
(𝑡) by (20).

(4) Update the estimate ̂𝜃
𝑘
by (19).

(5) Compute 𝑥
𝑘
(𝑡) by (24).

(6) For some preset small 𝜀, if ‖̂𝜃
𝑘
−
̂𝜃
𝑘−1

‖

2

⩽ 𝜀, then ter-
minate the procedure and obtain the iterative times 𝑘
and estimate 𝜃

𝑘
; otherwise, increment 𝑘 by 1 and go

to step 3.

4. Example

Consider the following Wiener nonlinear system with the
linear subsystem

𝑥 (𝑡) =

𝐵 (𝑧)

𝐴 (𝑧)

𝑢 (𝑡) ,

𝐴 (𝑧) = 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

= 1 − 0.18𝑧
−1

+ 0.44𝑧
−2

,

𝐵 (𝑧) = 1 + 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

= 1 + 0.58𝑧
−1

+ 0.41𝑧
−2

,

(25)

and the nonlinearity is given by

𝑓 (𝑥 (𝑡)) = 𝛾
1
𝑥 (𝑡) + 𝛾

2
𝑥
2

(𝑡) + 𝛾
3
𝑥
3

(𝑡) + V (𝑡)

= 𝑥 (𝑡) − 0.45𝑥
2

(𝑡) + 0.25𝑥
3

(𝑡) + V (𝑡) .
(26)
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Table 1: The parameter estimates (𝑎
𝑖
, 𝑏
𝑖
, 𝛾
𝑖
) and their errors (𝜎2 = 0.10

2).

𝑘 𝑎
1

𝑎
2

𝑏
1

𝑏
2

𝛾
2

𝛾
3

𝛿 (%)

1 0.01390 0.05092 0.83611 0.74933 −0.08844 −0.00426 75.27308

2 −0.25018 0.48270 0.60412 0.32843 −0.23432 0.09158 29.18831

5 −0.19276 0.43981 0.58302 0.40929 −0.46012 0.25770 1.73908

10 −0.16452 0.43173 0.58218 0.42255 −0.45226 0.25192 2.37195

20 −0.17048 0.43263 0.58262 0.41964 −0.45268 0.25202 1.76755

30 −0.17101 0.43273 0.58265 0.41937 −0.45271 0.25203 1.71538

40 −0.17106 0.43273 0.58265 0.41935 −0.45271 0.25203 1.71092

50 −0.17106 0.43273 0.58265 0.41935 −0.45271 0.25203 1.71053

True values −0.18100 0.44000 0.58300 0.40800 −0.45000 0.25000

Table 2: The parameter estimates (𝑎
𝑖
, 𝑏
𝑖
, 𝛾
𝑖
) and their errors (𝜎2 = 0.20

2).

𝑘 𝑎
1

𝑎
2

𝑏
1

𝑏
2

𝛾
2

𝛾
3

𝛿 (%)

1 0.01254 0.05414 0.83538 0.75541 −0.08800 −0.00425 75.34758

2 −0.23806 0.47597 0.60817 0.34779 −0.23179 0.08885 28.73714

5 −0.17964 0.43318 0.58596 0.42400 −0.45097 0.24847 1.78072

10 −0.15914 0.42794 0.58447 0.43252 −0.44475 0.24437 3.59012

20 −0.16374 0.42887 0.58476 0.43020 −0.44497 0.24442 3.12454

30 −0.16407 0.42894 0.58478 0.43003 −0.44499 0.24443 3.09113

40 −0.16410 0.42895 0.58478 0.43001 −0.44499 0.24443 3.08873

50 −0.16410 0.42895 0.58478 0.43001 −0.44499 0.24443 3.08856

True values −0.18100 0.44000 0.58300 0.40800 −0.45000 0.25000

For this example system, {𝑢(𝑡)} are taken as persistent excita-
tion signal sequences with zero mean and unit variance and
{V(𝑡)} as a white noise process with zero mean and constant
variances 𝜎2 = 0.10

2 and 𝜎
2

= 0.20
2, separately. Taking the

data length 𝐿 = 1000, we apply the proposed LSI algorithm in
(19)–(24) to estimate the parameters (𝑎

𝑖
, 𝑏
𝑖
, 𝛾
𝑖
) of this system

the parameter estimates and their errors with different noise
variances are shown in Tables 1 and 2, and the parameter es-
timation errors 𝛿 versus 𝑘 are shown in Figure 3, where 𝛿 :=

‖
̂𝜃
𝑘
(𝑡) − 𝜃‖/‖𝜃‖.
From Tables 1 and 2 and Figure 3, we can draw the fol-

lowing conclusions.

(i) The parameter estimation errors given by the pro-
posed approach gradually become smaller as the it-
eration 𝑘 increases; see the error curves of the algo-
rithm in Figure 3 and the estimation errors of the last
columns of Tables 1 and 2.

(ii) As the variance of the noise decreases, the parameter
estimation errors given by the proposed approach be-
come smaller; see Tables 1 and 2.

5. Conclusions

In this paper, we have presented a least-squares-based itera-
tive identification algorithm for Wiener nonlinear systems.
Using the key-term separation principle, we construct the
identification model of Wiener nonlinear systems. The pro-
posed algorithm can directly estimate the parameters of the

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 50

𝜎2 = 0.102

𝜎2 = 0.202

𝑘

𝛿

Figure 3: The estimation errors 𝛿 versus 𝑘.

linear subsystem and nonlinear part ofWiener nonlinear sys-
tems. The simulation results verified the effectiveness of the
proposed algorithm. The proposed method for Wiener non-
linear systems can combine the auxiliary model identifica-
tion idea [33–37], the multi-innovation identification theory
[38–44], the bias compensation methods [45–48], and the
maximum likelihoodprinciple [49–52] to study identification
problems of linear or nonlinear systems with colored noise
and Hammerstein nonlinear systems [53–59].
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