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We introduce amethod based on distancemeasures for group decisionmaking under uncertain linguistic environment.We develop
some uncertain linguistic aggregation distance measures called the uncertain linguistic weighted distance (ULWD) measure,
the uncertain linguistic ordered weighted distance (ULOWD) measure, and the uncertain linguistic hybrid weighted distance
(ULHWD) measure. We study some of their characteristic, and we prove that the ULWD and the ULOWD are special cases of the
ULHWD measure. Finally, we develop an application of the ULHWD measure in a group decision making problem concerning
the evaluation of university faculty for tenure and promotion with uncertain linguistic information.

1. Introduction

As a common tool for measuring the deviations of different
arguments, distance measures are fundamentally important
in a variety of scientific fields such as decision making, pat-
tern recognition, machine learning, and market prediction.
A variety of distance measures have been introduced and
investigated in the past several decades [1–11]. Most exist-
ing distance measures are the weighted distance measures,
including some well-known distance measures such as the
weighted Hamming distance and the weighted Euclidean
distance. One problem of these distance measures is that they
take the importance of the given individual distances into
consideration, and then aggregate the difference elements
together with their weights. Recently,motivated by the idea of
the ordered weighted averaging (OWA) operator [12], Xu and
Chen [13] introduced the ordered weighted distance (OWD)
measure, which emphasizes the importance of the ordered
position of the given individual distances instead ofweighting
arguments themselves. The prominent characteristic of the
OWD is that it can relieve (or intensify) the influence of
unduly large or unduly small deviations on the aggregation
results by assigning them low (or high)weights.This desirable
characteristic makes the OWD very useful in many actual

fields such as group decisionmaking, medical diagnosis, data
mining, and pattern recognition. Since it was introduced,
the OWD has been studied by many authors. Yager [14]
generalized the OWD and provided a variety of ordered
weighted averaging norms, based on which he proposed
several similarity measures. Merigó and Gil-Lafuente [15]
introduced an ordered weighted averaging distance (OWAD)
operator and gave its application in the selection of financial
products.TheOWDmeasures are generally used to deal with
situations where the input data are expressed in exact numer-
ical values. Zeng and Su [16] extended the OWD to uncertain
situation with intuitionistic fuzzy information [17] and devel-
oped an intuitionistic fuzzy OWD (IFOWD) operator. Zeng
[18] developed some intuitionistic fuzzy aggregation distance
measures, such as the intuitionistic fuzzy ordered weighted
distance (IFOWD) measure, interval-valued intuitionistic
fuzzy ordered weighted distance (IVIFOWD) measure, intu-
itionistic fuzzy hybrid weighted distance (IFHWD) mea-
sure, and interval-valued intuitionistic fuzzy hybrid weighted
distance (IVIFHWD) measure and applied them to group
decision making. Xu [19] developed some fuzzy ordered
distancemeasures, including linguistic ordered weighted dis-
tancemeasure, uncertain orderedweighted distancemeasure,
linguistic hybrid weighted distance measure, and uncertain
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hybrid weighted distance measure. For further research on
the use of the OWA operator in distance measures, see, for
example, [10, 20–23].

In many complicated practical situations, the decision
makers are willing or able to provide only uncertain linguistic
information because of time pressure, lack of knowledge,
or data, and their limited expertise related to the problem
domain [24–28]. Therefore, it is necessary to pay atten-
tion to this issue. In this paper, we will develop some
uncertain linguistic aggregation distance measures including
the uncertain linguistic weighted distance (ULWD), the
uncertain linguistic ordered weighted distance (ULOWD)
measure, and uncertain linguistic hybrid weighted distance
(ULHWD) measure. The fundamental aspect of the ULWD
measure is that it only takes the importance of the given
individual distances into consideration, and then aggregates
these difference elements together with their weights. The
ULOWD andULHWDmeasures are extensions of the OWD
with uncertain linguistic variables.Themain advantage of the
ULOWDandULHWD is that they can alleviate the influence
of unduly large (or small) deviations on the aggregation
results by assigning them low (or high) weights. We have
proved that the ULWD and the ULOWD are specials of the
ULHWD measure. Moreover, we will apply the ULHWD
measure to group decision making with uncertain linguistic
information.

This paper is organized as follows. In Section 2, we briefly
describe some basic aggregation operators and distance mea-
sures. In Section 3, we introduce the uncertain linguistic vari-
ables and the ULWD measure. In Section 4, we present the
ULOWD and ULHWD measure in Section 5. In Section 6,
we briefly describe the decision making process based on
the ULHWD measure and we give a numerical example in
Section 7. Section 8 summarizes the main conclusions of the
paper.

2. Preliminaries

In this section we briefly review some basic distance mea-
sures, the OWA operator and the OWDmeasure.

Among the existing weighted distance measures, the
weighted Hamming distance and the weighted Euclidean
distance are the two most widely used ones, which can be
described as follows.
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(2) the weighted Euclidean distance is
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Obviously, the above two weighted distance measures
only take the importance of each difference element of data
into consideration and then aggregate the difference elements
together with their weights.

The ordered weighted averaging (OWA) operator intro-
duced by Yager [12] provides a parameterized family of
aggregation operators that include the maximum, the min-
imum, and the average criteria. The fundamental aspect of
the OWA operator is the reordering step: it first reorders all
the given arguments in descending order and then weights
these ordered arguments and finally aggregates all these
ordered weighted arguments into a collective one. Since its
appearance, the OWA operator has been studied in a wide
range of studies [29–44]. It can be defined as follows.

Definition 1. An OWA operator of dimension 𝑛 is a mapping
OWA: 𝑅𝑛 → 𝑅, which has an associated weighting 𝑊 with
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Recently, motivated by the idea of the OWA operator,
Xu and Chen [13] developed an ordered weighted distance
measure (OWD).
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is called an ordered weighted distance (OWD) between 𝛼 and
𝛽, where 𝜆 > 0, (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is any permutation of
(1, 2, . . . , 𝑛), such that
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Especially, if 𝜆 = 1, then the OWD measure is called an
ordered weighted Hamming distance (OWHD) measure:
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In the case of 𝜆 = 2, then the OWDmeasure is reduced to
the ordered weighted Euclidean distance (OWED) measure:
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𝑛

∑

𝑗=1

𝑤
𝑗
(𝑑 (𝛼
𝜎(𝑗)

, 𝛽
𝜎(𝑗)

))

2

)

1/2

. (7)

The OWD measure is very suitable to be used in many
actual fields, including group decisionmaking, medical diag-
nosis, datamining, and pattern recognition [13, 18]. However,
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theOWDmeasure ismainly used to aggregate ormeasure the
data taking the form of exact numerical; in what follows, we
extend the OWD to accommodate the situation in which the
input data is provided with uncertain linguistic information.

3. Uncertain Linguistic Variables and
Uncertain Linguistic Weighted Distance
(ULWD) Measure

The linguistic approach is an approximate technique which
represents qualitative aspects as linguistic values by means
of linguistic variables [8, 24, 45, 46]. Suppose that 𝑆 = {𝑠

𝛼
|

𝛼 = −𝑡, . . . , 0, 1, . . . , 𝑡} is a finite and totally ordered discrete
term set, where 𝑠

𝛼
represents a possible value for a linguistic
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To preserve all the given information, Xu [8] extended
the discrete term set 𝑆 to a continuous term set 𝑆 = {𝑠

𝛼
|

𝛼 ∈ [−𝑡, 𝑡]}, whose elements also meet all the characteristics
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term, otherwise, we call 𝑠
𝛼
the virtual term; In general, the

decision maker uses the original linguistic terms to evaluate
alternatives, and the virtual linguistic terms can only appear
in operation [8, 26].

In many situations, the decision information is expressed
in the form of uncertain linguistic variables [24–28] because
of time pressure, lack of knowledge or data, and their limited
expertise related to the problem domain. Let 𝑠 = [𝑠
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is called an uncertain linguistic distance (ULD) between 𝑠
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2
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Based on the above information, now we can define the
following uncertain linguistic weighted distance.
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which is called an uncertain linguistic weighted distance
(ULWD)between𝐴 and𝐵. Specially, if𝜆 = 1, then theULWD
measure is reduced to the ULWHD measure (10). If 𝜆 = 2,
then the ULWDmeasure is reduced to the ULWEDmeasure
(11).
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Suppose that 𝑤 = (0.2, 0.3, 0.3, 0.2), and without loss of
generality, let 𝜆 = 2, then by (12), we can get the weighted
distance between 𝐴 and 𝐵 as follows
ULWD (𝐴, 𝐵)

= (0.2 × 1
2
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2
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The fundamental aspect of the ULWD measure is that it
only takes the importance of the given individual distances
into consideration, and then aggregates these difference
elements together with their weights under the parameter 𝜆.

4. Uncertain Linguistic OWD
(ULOWD) Measure

Based on the (7) and (12), we define an uncertain linguistic
ordered weighted distance measure as follows.
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generality, let 𝜆 = 2, then by (16), we can get the ordered
weighted distance between 𝐴 and 𝐵 as follows

ULOWD (𝐴, 𝐵)

= (0.2 × 1.5
2
+ 0.3 × 1

2
+ 0.3 × 1

2
+ 0.2 × 0.5

2
)

1/2

= 1.1.

(23)

From the above definitions, we know that the ULWD
measure takes the importance of given individual distances
into consideration, while the ULOWDmeasure only empha-
sizes the importance of the ordered position of the given
individual distances, it weights the ordered position of the
given individual distances instead of weighting arguments
themselves. Therefore, weights represent different aspects in
both the ULWD and ULOWD measures. However, both the
ULWD and ULOWD operators consider only one of them.
To solve this drawback, in the following, we will propose
an uncertain linguistic hybrid weighted distance (ULHWD)
measure.

5. Uncertain Linguistic Hybrid Weighted
Distance (ULHWD) Measure

Definition 9. Let𝐴 = (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) and 𝐵 = (𝑠



1
, 𝑠


2
, . . . , 𝑠



𝑛
) be

two collections of uncertain linguistic labels, and let 𝑑(𝑠
𝑗
, 𝑠


𝑗
)

be the distance between 𝑠
𝑗
= [𝑠
𝛼
𝑗

, 𝑠
𝛽
𝑗

] and 𝑠


𝑗
= [𝑠


𝛼
𝑗

, 𝑠


𝛽
𝑗

], then

ULHWD (𝐴, 𝐵) = (

𝑛

∑

𝑗=1

𝑤
𝑗

̇
𝑑 (𝑎
𝜎(𝑗)

, 𝑎
𝜎(𝑗)

))

1/𝜆

(24)

is called an uncertain linguistic hybrid weighted distance
(ULHWD) between 𝐴 and 𝐵, where ̇

𝑑(𝑠
𝜎(𝑗)

, 𝑠


𝜎(𝑗)
) represents

the 𝑗th largest of the weighted distance ̇
𝑑(𝑠
𝑗
, 𝑠


𝑗
) (here

̇
𝑑(𝑠
𝑗
, 𝑠


𝑗
) = 𝑛𝜔

𝑗
(𝑑(𝑠
𝑗
, 𝑠


𝑗
))

𝜆, 𝑗 = 1, 2, . . . , 𝑛), 𝑤 = (𝑤
1
, 𝑤
2
, . . . ,

𝑤
𝑛
) is the weighting vector associated with the ULHWD

measure, 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weighting vector

of the 𝑑(𝑠
𝑗
, 𝑠


𝑗
), with 𝜔

𝑖
∈ [0, 1] and the the sum of

the weights is 1. 𝑛 is the balancing coefficient, which
plays a role of balance (in such a case, if the vector
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) approaches (1/𝑛, 1/𝑛, . . . , 1/𝑛), then

(𝑛𝜔
1
|𝑠
1
− 𝑠


1
|

𝜆

, 𝑛𝜔
2
|𝑠
2
− 𝑠


2
|

𝜆

, . . . , 𝑛𝜔
𝑛
|𝑠
𝑛
− 𝑠


𝑛
|

𝜆

) approaches
(|𝑠
1
− 𝑠


1
|

𝜆

, |𝑠
2
− 𝑠


2
|

𝜆

, . . . , |𝑠
𝑛
− 𝑠


𝑛
|

𝜆

).

Example 10. Let 𝐴 = (𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
) = ([𝑠

1
, 𝑠
3
], [𝑠
−1
, 𝑠
2
],

[𝑠
0
, 𝑠
2
], [𝑠
−2
, 𝑠
0
], [𝑠
−1
, 𝑠
3
]), 𝐵 = (𝑠

1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
) = ([𝑠

3
, 𝑠
4
], [𝑠
0
,

𝑠
1
], [𝑠
−2
, 𝑠
2
], [𝑠
−1
, 𝑠
2
], [𝑠
0
, 𝑠
3
]) be two collections of uncertain

linguistic labels, then

𝑑 (𝑠
1
, 𝑠


1
) =

1

2

(|1 − 3| + |3 − 4|) = 1.5. (25)
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Similarly, we can get

𝑑 (𝑠
2
, 𝑠


2
) = 1, 𝑑 (𝑠

3
, 𝑠


3
) = 1,

𝑑 (𝑠
4
, 𝑠


4
) = 1.5, 𝑑 (𝑠

5
, 𝑠


5
) = 0.5.

(26)

Suppose that 𝜔 = (0.10, 0.15, 0.25, 0.30, 0.20), and without
loss of generality, let 𝜆 = 2, then we can get

̇
𝑑 (𝑠
1
, 𝑠


1
) = 5 × 0.10 × 1.5

2
= 1.125. (27)

Similarly, we can have

̇
𝑑 (𝑠
2
, 𝑠


2
) = 0.75,

̇
𝑑 (𝑠
3
, 𝑠


3
) = 1.25,

̇
𝑑 (𝑠
4
, 𝑠


4
) = 3.375,

̇
𝑑 (𝑠
5
, 𝑠


5
) = 0.25.

(28)

Reordering the above weighted distances in descending
order, then we get

̇
𝑑 (𝑠
𝜎(1)

, 𝑠


𝜎(1)
) = 3.375,

̇
𝑑 (𝑠
𝜎(2)

, 𝑠


𝜎(2)
) = 1.25,

̇
𝑑 (𝑠
𝜎(3)

, 𝑠


𝜎(3)
) = 1.125,

̇
𝑑 (𝑠
𝜎(4)

, 𝑠


𝜎(4)
) = 0.75,

̇
𝑑 (𝑠
𝜎(5)

, 𝑠


𝜎(5)
) = 0.25.

(29)

Let the weighting vector associating with the ULHWD
measure be𝑤 = (0.11, 0.24, 0.30, 0.24, 0.11), which is derived
by the normal distribution based method [37], then by (24),
we can get the hybrid weighted distance between 𝐴 and 𝐵:

ULHWD (𝐴, 𝐵)

= (0.11 × 3.375 + 0.24 × 1.25 + 0.30 × 1.125

+ 0.24 × 0.75 + 0.11 × 0.25)
1/2

= 1.1028.

(30)

Theorem 11. The ULWD measure is a special case of the
ULHWDmeasure.

Proof. Let 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛), then

ULHWD (𝐴, 𝐵) = (

𝑛

∑

𝑗=1

𝑤
𝑗

̇
𝑑 (𝑠
𝜎(𝑗)

, 𝑠


𝜎(𝑗)
))

1/𝜆

= (

1

𝑛

𝑛

∑

𝑗=1

̇
𝑑 (𝑠
𝑗
, 𝑠


𝑗
))

1/𝜆

= (

1

𝑛

𝑛

∑

𝑗=1

𝑛𝜔
𝑗
(𝑑 (𝑠
𝑗
, 𝑠


𝑗
))

𝜆

)

1/𝜆

= (

𝑛

∑

𝑗=1

𝜔
𝑗
(𝑑 (𝑠
𝑗
, 𝑠


𝑗
))

𝜆

)

1/𝜆

= ULWD (𝐴, 𝐵)

(31)

which completes the proof of Theorem 11.

Theorem 12. The ULOWD measure is a special case of the
ULHWDmeasure.

Proof. Let 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛), then

̇
𝑑 (𝑠
𝜎(𝑗)

, 𝑠


𝜎(𝑗)
) = 𝑛𝜔

𝑗
(𝑑 (𝑠
𝜎(𝑗)

, 𝑠


𝜎(𝑗)
))

𝜆

= (𝑑 (𝑠
𝜎(𝑗)

, 𝑠


𝜎(𝑗)
))

𝜆

(32)

which completes the proof of Theorem 12.

FromDefinition 9 and the above theorems, we know that

(1) the ULHWDmeasure first weights the given individ-
ual distances, and then reorders the weighted individ-
ual distances in descending order and weights these
ordered individual distances by the ULHWDweights
and finally aggregates these individual distances into
a collective one under the parameter 𝜆;

(2) the ULHWD measure generalizes both the ULWD
and ULOWD measure and reflects the importance
degrees of both the given individual distances and
their ordered positions.

In addition, a prominent characteristic of the ULHWD
measure is that it can relieve (or intensify) the influence
of unduly large or unduly small difference elements on the
aggregation results by assigning them low (or high) weights.

6. An Approach to Group Decision Making
Based on the ULHWD Measure

For a group decisionmaking problem, let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}

be a finite set of alternatives, let and 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
}

be the set of decision makers (whose weight vector is V =

(V
1
, V
2
, . . . , V

𝑚
), V
𝑘

≥ 0,∑
𝑚

𝑘=1
V
𝑘

= 1). The decision makers
𝑒
𝑘
(𝑘 = 1, 2, . . . , 𝑚) provide their preferences with uncertain

linguistic labels 𝑎
𝑘𝑗

(𝑘 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛) over all
the alternatives 𝑥

𝑗
(𝑗 = 1, 2, . . . , 𝑛) in respect to a criterion.

For convenience, we denote the preference vectors of all the
decision makers 𝑒

𝑘
(𝑘 = 1, 2, . . . , 𝑚) as

𝐴
𝑘
= (𝑎
𝑘1
, 𝑎
𝑘2
, . . . , 𝑎

𝑘𝑛
) , 𝑘 = 1, 2, . . . , 𝑚. (33)

Based on the above decision information, we can utilize
the ULHWD measure to develop an approach to reaching
consensus of group opinions, which can be summarized as
follows [18].

Step 1. Calculate the collective preference vector 𝐴
0

=

(𝑎
01
, 𝑎
02
, . . . , 𝑎

0𝑛
) by using the uncertain linguistic weighted

averaging (ULWA) operator [26], where

𝑎
0𝑗

= V
1
𝑎
1𝑗
⊕ V
2
𝑎
2𝑗
⊕ ⋅ ⋅ ⋅ V

𝑚
𝑎
𝑚𝑗
, 𝑗 = 1, 2, . . . 𝑛. (34)

Step 2. By (24), we calculate

ULHWD (𝐴
𝑘
, 𝐴
0
) = (

𝑛

∑

𝑗=1

𝑤
𝑘𝑗

̇
𝑑 (𝑎
𝜎(𝑘𝑗)

, 𝑎
𝜎(0𝑗)

))

1/𝜆

(35)



6 Journal of Applied Mathematics

Table 1: The decision makers’ preferences.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑒
1

[𝑠
1
, 𝑠
2
] [𝑠

0
, 𝑠
2
] [𝑠

1
, 𝑠
2
] [𝑠

2
, 𝑠
3
] [𝑠

2
, 𝑠
3
] [𝑠

0
, 𝑠
2
] [𝑠

2
, 𝑠
3
]

𝑒
2

[𝑠
0
, 𝑠
2
] [𝑠

1
, 𝑠
3
] [𝑠

2
, 𝑠
3
] [𝑠

0
, 𝑠
1
] [𝑠

1
, 𝑠
2
] [𝑠

1
, 𝑠
2
] [𝑠

1
, 𝑠
3
]

𝑒
3

[𝑠
1
, 𝑠
2
] [𝑠

0
, 𝑠
2
] [𝑠

1
, 𝑠
3
] [𝑠

1
, 𝑠
2
] [𝑠

2
, 𝑠
3
] [𝑠

1
, 𝑠
2
] [𝑠

0
, 𝑠
2
]

𝑒
4

[𝑠
1
, 𝑠
2
] [𝑠

2
, 𝑠
3
] [𝑠

0
, 𝑠
2
] [𝑠

0
, 𝑠
1
] [𝑠

2
, 𝑠
4
] [𝑠

1
, 𝑠
2
] [𝑠

2
, 𝑠
3
]

𝑒
5

[𝑠
0
, 𝑠
1
] [𝑠

1
, 𝑠
2
] [𝑠

1
, 𝑠
2
] [𝑠

0
, 𝑠
1
] [𝑠

0
, 𝑠
3
] [𝑠

2
, 𝑠
3
] [𝑠

1
, 𝑠
2
]

which is the distance between the preference vectors 𝐴
𝑘
and

𝐴
0
, where ̇

𝑑(𝑎
𝜎(𝑘𝑗)

, 𝑎
𝜎(0𝑗)

) is the 𝑗th largest of the ̇
𝑑(𝑎
𝑘𝑗
, 𝑎
0𝑗
)

(here ̇
𝑑(𝑎
𝑘𝑗
, 𝑎
0𝑗
) = 𝑛𝜔

𝑗
𝑑(𝑎
𝑘𝑗
, 𝑎
0𝑗
)), 𝑗 = 1, 2, . . . , 𝑛, the

weighting vector associating with the ULHWD measure can
be derived by using some determining methods like the
normal distribution based method, see [37] for more details.

Step 3. If all ULHWD(𝐴
𝑘
, 𝐴
0
) ≤ 𝜂 (𝑘 = 1, 2, . . . , 𝑚), then

the group is of acceptable consensus, where 𝜂 is the threshold
value of acceptable consensus, which can be determined
by the group in practical applications. Otherwise, if there
exists some 𝑘

0
, such that ULHWD(𝐴

𝑘
0

, 𝐴
0
) > 𝜂, then we

will return 𝐴
𝑘
0

(together with 𝐴
0
as a reference) to the

decision maker 𝑒
𝑘
for revaluation and repeat this procedure

until ULHWD(𝐴
𝑘
0

, 𝐴
0
) ≤ 𝜂 or the process will stop as the

repetition times reach the maximum number predefined by
the group.

7. Illustrative Example

A group decision problem of evaluating university faculty
for tenure and promotion (adapted from [13]) is used to
illustrate the developed approach. One main criterion used is
“teaching.” There are five decision makers 𝑒

𝑘
(𝑘 = 1, 2, . . . , 5)

(whose weighting vector is V = (0.20, 0.15, 0.25, 0.30, 0.10))
and there are seven faculty candidates (alternatives) 𝑥

𝑗
(𝑗 =

1, 2, . . . , 7). By using linguistic label set (8), each decision
maker 𝑒

𝑘
provides his/her preferences 𝑎

𝑘𝑗
∈ 𝑆 (𝑗 = 1, 2, . . . , 7)

over all the faculty candidates 𝑥
𝑗
(𝑗 = 1, 2, . . . , 7), shown in

Table 1.
For convenience, we denote the preferences of all the

decision makers 𝑒
𝑘
(𝑘 = 1, 2, . . . , 5) in the vector forms:

𝐴
1
= (𝑎
11
, 𝑎
12
, . . . , 𝑎

17
)

= ([𝑠
1
, 𝑠
2
] , [𝑠
0
, 𝑠
2
] , [𝑠
1
, 𝑠
2
] , [𝑠
2
, 𝑠
3
] ,

[𝑠
2
, 𝑠
3
] , [𝑠
0
, 𝑠
2
] , [𝑠
2
, 𝑠
3
]) ,

𝐴
2
= (𝑎
21
, 𝑎
22
, . . . , 𝑎

27
)

= ([𝑠
0
, 𝑠
2
] , [𝑠
1
, 𝑠
3
] , [𝑠
2
, 𝑠
3
] , [𝑠
0
, 𝑠
1
] ,

[𝑠
1
, 𝑠
2
] , [𝑠
1
, 𝑠
2
] , [𝑠
1
, 𝑠
3
]) ,

𝐴
3
= (𝑎
31
, 𝑎
32
, . . . , 𝑎

37
)

= ([𝑠
1
, 𝑠
2
] , [𝑠
0
, 𝑠
2
] , [𝑠
1
, 𝑠
3
] , [𝑠
1
, 𝑠
2
] ,

[𝑠
2
, 𝑠
3
] , [𝑠
1
, 𝑠
2
] , [𝑠
0
, 𝑠
2
]) ,

𝐴
4
= (𝑎
41
, 𝑎
42
, . . . , 𝑎

47
)

= ([𝑠
1
, 𝑠
2
] , [𝑠
2
, 𝑠
3
] , [𝑠
0
, 𝑠
2
] , [𝑠
0
, 𝑠
1
] ,

[𝑠
2
, 𝑠
4
] , [𝑠
1
, 𝑠
2
] , [𝑠
2
, 𝑠
3
]) ,

𝐴
5
= (𝑎
51
, 𝑎
52
, . . . , 𝑎

57
)

= ([𝑠
0
, 𝑠
1
] , [𝑠
1
, 𝑠
2
] , [𝑠
1
, 𝑠
2
] , [𝑠
0
, 𝑠
1
] ,

[𝑠
0
, 𝑠
3
] , [𝑠
2
, 𝑠
3
] , [𝑠
1
, 𝑠
2
]) .

(36)

Then, we can calculate the collective preference vector by
using (34):

𝐴
0
= (𝑎
01
, 𝑎
02
, . . . , 𝑎

07
)

= ([𝑠
0.75

, 𝑠
1.9
] , [𝑠
0.85

, 𝑠
2.45

] , [𝑠
0.85

, 𝑠
2.4
] ,

[𝑠
0.65

, 𝑠
1.65

] , [𝑠
1.65

, 𝑠
3.75

] , [𝑠
0.90

, 𝑠
2.1
] , [𝑠
1.25

, 𝑠
2.65

]) .

(37)

Then, utilize (9) to calculate the distance 𝑑(𝑎
𝑘𝑗
, 𝑎
0𝑗
) of the

corresponding collective preference value 𝑎
0𝑗
and the corre-

sponding preference value 𝑎
𝑘𝑗
provided by the decisionmaker

𝑒
𝑘
:

𝑑 (𝑎
11
, 𝑎
01
) = 0.175, 𝑑 (𝑎

12
, 𝑎
02
) = 0.75,

𝑑 (𝑎
13
, 𝑎
03
) = 0.275

𝑑 (𝑎
14
, 𝑎
04
) = 1.35, 𝑑 (𝑎

15
, 𝑎
05
) = 0.55,

𝑑 (𝑎
16
, 𝑎
06
) = 0.50

𝑑 (𝑎
17
, 𝑎
07
) = 0.55, 𝑑 (𝑎

21
, 𝑎
01
) = 0.425,

𝑑 (𝑎
22
, 𝑎
02
) = 0.35

𝑑 (𝑎
23
, 𝑎
03
) = 0.875, 𝑑 (𝑎

24
, 𝑎
04
) = 0.65,

𝑑 (𝑎
25
, 𝑎
05
) = 1.20

𝑑 (𝑎
26
, 𝑎
06
) = 0.10, 𝑑 (𝑎

27
, 𝑎
07
) = 0.30,

𝑑 (𝑎
31
, 𝑎
01
) = 0.175

𝑑 (𝑎
32
, 𝑎
02
) = 0.75, 𝑑 (𝑎

33
, 𝑎
03
) = 0.325,

𝑑 (𝑎
34
, 𝑎
04
) = 0.35

𝑑 (𝑎
35
, 𝑎
05
) = 0.55, 𝑑 (𝑎

36
, 𝑎
06
) = 0.10,

𝑑 (𝑎
37
, 𝑎
07
) = 0.95

𝑑 (𝑎
41
, 𝑎
01
) = 0.175, 𝑑 (𝑎

42
, 𝑎
02
) = 0.85,

𝑑 (𝑎
43
, 𝑎
03
) = 0.625

𝑑 (𝑎
44
, 𝑎
04
) = 0.65, 𝑑 (𝑎

45
, 𝑎
05
) = 0.30,
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𝑑 (𝑎
46
, 𝑎
06
) = 0.10

𝑑 (𝑎
47
, 𝑎
07
) = 0.55, 𝑑 (𝑎

51
, 𝑎
01
) = 0.825,

𝑑 (𝑎
52
, 𝑎
02
) = 0.30

𝑑 (𝑎
53
, 𝑎
03
) = 0.275, 𝑑 (𝑎

54
, 𝑎
04
) = 0.65,

𝑑 (𝑎
55
, 𝑎
05
) = 1.20

𝑑 (𝑎
56
, 𝑎
06
) = 1.0, 𝑑 (𝑎

57
, 𝑎
07
) = 0.45.

(38)

Without loss of generality, let 𝜆 = 1 and 𝜔 = (0.12, 0.15,

0.10, 0.13, 0.14, 0.20, 0.16), suppose that the weighting vector
associating with the ULHWD measure is 𝑤 = (0.07, 0.13,

0.19, 0.22, 0.19, 0.13, 0.07), which is derived by using the
normal distribution based method [37], then we calculate
distance ULHWD(𝐴

𝑘
, 𝐴
0
) between the preference vectors

𝐴
𝑘
and 𝐴

0
:

ULHWD (𝐴
1
, 𝐴
0
) = 0.59, ULHWD (𝐴

2
, 𝐴
0
) = 0.48,

ULHWD (𝐴
3
, 𝐴
0
) = 0.42, ULHWD (𝐴

4
, 𝐴
0
) = 0.44,

ULHWD (𝐴
5
, 𝐴
0
) = 0.66.

(39)

Let us suppose the threshold value of acceptable consen-
sus is 𝜂 = 0.60, then ULHWD(𝐴

𝑘
, 𝐴
0
) < 0.60 (𝑘 = 1, 2, 3, 4),

ULHWD(𝐴
5
, 𝐴
0
) > 0.60, and thus, we need to return 𝐴

5

(together with𝐴
0
as a reference) to the decision maker 𝑒

5
for

revaluation. Suppose that the revaluated 𝐴
5
is

𝐴
5
= (𝑎
51
, 𝑎
52
, . . . , 𝑎

57
)

= ([𝑠
0
, 𝑠
1
] , [𝑠
1
, 𝑠
2
] , [𝑠
1
, 𝑠
2
] , [𝑠
0
, 𝑠
1
] ,

[𝑠
0
, 𝑠
2
] , [𝑠
1
, 𝑠
2
] , [𝑠
1
, 𝑠
2
]) .

(40)

Then, we can calculate the collective preference vector by
using (34):

𝐴
0
= (𝑎
01
, 𝑎
02
, . . . , 𝑎

07
)

= ([𝑠
0.75

, 𝑠
1.9
] , [𝑠
0.85

, 𝑠
2.45

] , [𝑠
0.85

, 𝑠
2.4
] ,

[𝑠
0.65

, 𝑠
1.65

] , [𝑠
1.65

, 𝑠
3.05

] , [𝑠
0.80

, 𝑠
2.0
] , [𝑠
1.25

, 𝑠
2.65

]) .

(41)

Respectively, then by (9) and (24) (let 𝜆 = 1), we get

ULHWD (𝐴
1
, 𝐴
0
) = 0.50, ULHWD (𝐴

2
, 𝐴
0
) = 0.45,

ULHWD (𝐴
3
, 𝐴
0
) = 0.35, ULHWD (𝐴

4
, 𝐴
0
) = 0.49,

ULHWD (𝐴
5
, 𝐴
0
) = 0.51.

(42)

Thus, all the distances ULHWD(𝐴
𝑘
, 𝐴
0
) (𝑘 = 1, 2, 3, 4, 5)

are 1ess than 0.60, which indicates that the group reaches
consensus.

8. Conclusions

In this paper,we have suggested several extensions of the
OWD measure when dealing with uncertain situations. The
increasing complexity of the socioeconomic environment
makes it more suitable for a decisionmaker to express his/her
preferences over alternatives with uncertain linguistic infor-
mation instead of exact numerical values.We have developed
some uncertain linguistic aggregation distance measures.
such as the uncertain linguistic weighted distance measure
(ULWD), the uncertain linguistic ordered weighted distance
measure (ULOWD), and the uncertain linguistic hybrid
weighted distance measure (ULHWD). These developed
distance measures are very suitable to deal with the situation
where the input data is represented in uncertain linguistic
information. We have analyzed that the ULHWD measure
generalizes both the ULWD and ULOWD measure, and
reflects the importance degrees of both the given difference
element and their ordered positions. Finally, based on the
ULHWD measure, we have proposed a consensus reaching
process for group decision making with uncertain linguistic
preference information.
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