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Distributed adaptive synchronization control for complex dynamical networks with nonlinear derivative coupling is proposed.
The distributed adaptive strategies are constituted by directed connections among nodes. By means of the parameters separation,
the nonlinear functions can be transformed into the linearly form. Then effective distributed adaptive techniques are designed
to eliminate the effect of time-varying parameters and made the considered network synchronize a given trajectory in the sense
of square error norm. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible. An example shows the
applicability and feasibility of the approach.

1. Introduction

A complex network is a large set of interconnected nodes,
where the nodes represent individuals in the graph and
the edges represent the connections among them, such as
climate system [1], biological neural networks [2], human
brain system [3]. Many natural and man-made systems
can be modeled and characterized by complex networks
successfully [4]. Such systems may be characterized by a
system with uncertainties, time delays, nonlinearity, neu-
tral properties, hybrid dynamics, distributed dynamics and
chaotic dynamics.

Synchronization phenomena has been found in different
forms in complex networks, such as fireflies in the forest,
description of hearts, and routing messages in the internet.
Thus synchronization is one of meaningful issues in dynam-
ical characteristics of the complex dynamical networks. A
considerable number of papers on this topic have appeared
(see [5–7] and references therein.)

Recently, various control techniques have been reported
to achieve networks synchronization (see [4, 8–16] and
references therein) Some control schemes [8–13] were based
on a solution of the homogenous system, in which it may be
difficult to obtain the state information of an isolated node.

Consequently, utilizing the information from neighborhood
to realize the network synchronization is more reasonable.
Paper [17] introduced the concept of control topology to
describe the whole controller structure. In [18], based on
local information of node dynamics, an effective distributed
adaptive strategy was designed to tune the coupling weights
of a network. A considerable number of controlled synchro-
nization techniques have been derived for complex dynamic
networks based on the assumption which is the coupled
nodes of CDNwith the same dynamics (see the above papers
and the references therein). In reality, complex networks are
more likely to have different nodes for different dynamics.
For example, in a multi-robot system, the robots can have
distinct dynamic structures or different parameters. Recently,
special attention has been focused on the synchronization of
complex dynamical networks with nonidentical nodes [19–
22]. Paper [20] investigated the synchronization problem
of a complex network with nonidentical nodes via open-
loop controllers. The paper [22] considered nonlinearly
coupled networks with non-identical nodes and designed
pinning control to obtain synchronization criteria. On the
other hand, many real-world network systems’ structure
will change over time and contain unknown parameters.
Very recently, some papers studied complex networks with
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unknown time-varying coupling strength [23–26]. In these
results, non-identical nodes were not considered. Only in
[21], the time-varying complex network with non-identical
nodes was investigated, and a criterion of global bounded
synchronization of the maximum state deviation between
nodes was developed.

In other aspects, new complex networks models are pro-
posed to reflect the complexity from the network structure.
Thus, the problem of neutral-type couplings has also been
widely investigated [27–31]. However, in the above studies,
only linear derivative coupling is considered. More recently,
[32] studied the synchronization in a class of dynamical
networks with distributed delays and nonlinear deriva-
tive coupling. Considering the preceding discussion, non-
identical nodes complex dynamic network with nonlinear
derivative coupling, and time-varying coupling strength is
not concerned yet.

Inspired by the aforementioned results, the problem of
adaptive synchronization is studied for complex dynamical
networks with non-identical nodes, nonlinearly derivative
couplings, and unknown time-varying coupling strength.
A prominent feature of this network is that its complexity
originates not only from the nonlinear dynamics of the
nodes, but also from the complex coupling strength. The
difficulty in dealing with the nonlinearly derivative couplings
with unknown time-varying parameters is solved by using
the parameter separation method. The distributed adaptive
learning laws of periodically time-varying and constant
parameters and the distributed adaptive controllers are con-
structed to guarantee that the system is asymptotically stable
and that all closed loop signals are bounded.

The remainder of the paper is organized as follows. The
problem statement and preliminaries are given in Section 2.
Section 3 gives the main results and proofs. In Section 4,
an illustrative example is provided to verify the theoretical
results. Finally, conclusion is given.

2. Problem Statement and Preliminaries

The complex dynamical network is described as
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we shall overcome the obstacle though the domination
technique and the parameters separation principle. Under
later assumption, we can “separate” the parameters from the
nonlinear function.
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and the system (1) is said to be globally asymptotically
synchronized onto state 𝑠(𝑡) if
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To achieve the control objective in (3) and (4), we need
an adaptive control strategy to nodes in network (1). Then,
the controlled network is given by
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Our objective is to design a distributed adaptive control
law 𝑢

𝑖
(𝑡) so as to obtain the convergence of the synchroniza-

tion errors.
In order to derive the main results, the following assump-

tions and lemmas are introduced.
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Assumption 2 (Lipschits condition). For the system (1), there
exist positive constants 𝑙
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Remark 3. For many well-known systems, such as Lorenz’s
system, Chen’s system, and Lü’s system, the above condition
is satisfied.
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where ℎ(⋅, ⋅) is an known nonnegative continuous function
𝜆(⋅) is a unknown nonnegative continuous function,𝑀(⋅) or
𝑀

𝑖
(⋅) is an 𝑛 × 𝑛 unknown nonnegative continuous function

matrix.

Remark 5. It is well known that the estimation of unknown
nonlinear parameters in the systems is a difficult problem.
In this paper, we separate the unknown parameters from
the nonlinear function in (8), according to the separation
principle in [33]; thus, Assumption 4 is reasonable and easily
obtained. By usingAssumption 4, we are able to solve the syn-
chronization problem for a class of nonlinearly parameterized
systems with nonlinear derivative couplings.
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𝑖
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unknown time-varying periodic functions with a known
period 𝑇.

FromAssumption 6, it is easy to see that 𝜆(𝜑
𝑖
(𝑡)) and each

element in𝑀
𝑖
(𝑡) are periodic functions with the same period

𝑇. Suppose

𝜆 (𝜑

𝑖 (
𝑡)) = 𝜙

𝑖 (
𝑡) + 𝜃𝑖

, (9)

where𝜙
𝑖
(𝑡) is an unknown continuous periodic functionwith

a known period 𝑇 and 𝜃
𝑖
is an unknown constant parameter.

Assumption 7. In network (1), the inner couplingmatrix Γ and
ℎ(⋅, ⋅) satisfies

max (‖Γ‖ ,max (


𝛾

𝑖









)) ≤ 𝛾, ℎ (𝑥

𝑖 (
𝑡) , 𝑠 (𝑡)) < 𝐻,

𝑖 = 1, 2, . . . , 𝑁,

(10)

where 𝛾,𝐻 are positive constants.

Assumption 8. Assume that the state and the state derivative
of system (1) are measurable.

Remark 9. This assumption is necessary to design controller
and adaptive laws. Assumption 8 seems to be restrictive. The
observer for state derivative will be considered in the near
future.

Lemma 10 (Young’s inequality). For vectors 𝑥, 𝑦 ∈ 𝑅
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The proof is completed.

3. Adaptive Synchronization of the Complex
Dynamical Networks

In this section, distributed adaptive controller and distributed
adaptive laws are designed to control the given system to
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process is proved.
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and the time-varying distributed periodic adaptive learning
laws as
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The following theorem will give a sufficient condition for

the controlled network in (5) to be asymptotical synchroniza-
tion.

Theorem 14. Under Assumptions 2–7, the control law (13)
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lows:

𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
𝑒

𝑖
+

𝛾𝐻

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏) 𝑑𝜏

+

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

2

+

𝛾

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑓

−1

𝑖
tr (̃𝑀
𝑖 (
𝜏)

̃

𝑀

𝑇

𝑖
(𝜏)) 𝑑𝜏,

𝑡 ∈ [0,∞) ,

(17)

where ̃𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) −

̂

𝜙

𝑖
(𝑡), ̃𝜃
𝑖
(𝑡) = 𝜃

𝑖
−

̂

𝜃

𝑖
(𝑡), ̃𝑀

𝑖
(𝑡) = 𝑀

𝑖
(𝑡) −

̂

𝑀

𝑖
(𝑡), and 𝐿 is a sufficiently large positive constant which will

be determined later.

It should be noted that we define 𝜙
𝑖
(𝑡) = 𝜙

𝑖
(0), 𝑀

𝑖
(𝑡) =

𝑀

𝑖
(0) 𝑡 ∈ [−𝑇, 0); then, from the adaptive laws (15) and (16),

we get
̃

𝜙

2

𝑖
(𝑡 − 𝑇) = 𝜙

2

𝑖
(𝑡 − 𝑇) = 𝜙

2

𝑖
(0) ,

̃

𝑀

𝑖 (
𝑡 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝑡 − 𝑇) = 𝑀

𝑖 (
𝑡 − 𝑇)𝑀

𝑇

𝑖
(𝑡 − 𝑇)

= 𝑀

𝑖 (
0)𝑀

𝑇

𝑖
(0) , 𝑡 ∈ [0, 𝑇] .

(18)

Firstly, the finiteness property of𝑉(𝑡) for the period [0, 𝑇)
is given.

Consider the system (6) and the proposed control laws
(14)–(16); it can be seen that the right-hand side of (6) is
continuous with respect to all arguments. According to the
existence theorem of differential equation, (6) has unique
solution in the interval [0, 𝑇

1
) ⊂ [0, 𝑇) with 0 < 𝑇

1
≤

𝑇. This can guarantee the boundedness of 𝑉(𝑡) over [0, 𝑇
1
).

Therefore, we need only focus in the interval [𝑇
1
, 𝑇).

The derivative of 𝑉(𝑡) with respect to time is given by

̇

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) ̇𝑒

𝑖 (
𝑡)

+

𝛾𝐻

2

𝑁

∑

𝑖=1

[𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡) − 𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡 − 𝑇)]

+ 𝛾𝐻

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

̇

̃

𝜃

𝑖 (
𝑡)

+

𝛾

2

𝑁

∑

𝑖=1

[𝑓

−1

𝑖
tr (̃𝑀
𝑖 (
𝑡)

̃

𝑀

𝑇

𝑖
(𝑡))

− 𝑓

−1

𝑖
tr (̃𝑀
𝑖 (
𝑡 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝑡 − 𝑇))] .

(19)

Let us introduce some notations as
𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝑓𝑖 (

𝑠 (𝑡)) = Φ,

𝑔 (𝑥

𝑗 (
𝑡) , 𝜑𝑖 (

𝑡)) − 𝑔 (𝑠 (𝑡) , 𝜑𝑖 (
𝑡)) = Λ,

𝑘 (�̇�

𝑗 (
𝑡) , 𝛽𝑖 (

𝑡)) − 𝑘 ( ̇𝑠

𝑗 (
𝑡) , 𝛽𝑖 (

𝑡)) = 𝐾.

(20)

From (6) and (13), the first term on the right hand side of
(19) satisfies
𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) ̇𝑒

𝑖 (
𝑡)

=

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡)

[

[

𝑓

𝑖
(𝑥

𝑖 (
𝑡)) +

𝑁

∑

𝑗=1

𝑎

𝑖𝑗
ΓΛ

+

𝑁

∑

𝑗=1

𝑏

𝑖𝑗
Γ𝐾 − ̇𝑠 (𝑡) + 𝑢𝑖 (

𝑡)

]

]

=

𝑁

∑

𝑖=1

(𝑒

𝑇

𝑖
Φ +

𝑁

∑

𝑗=1

𝑎

𝑖𝑗
𝑒

𝑇

𝑖
ΓΛ

+

𝑁

∑

𝑗=1

𝑏

𝑖𝑗
𝑒

𝑇

𝑖
Γ𝐾 − 𝛾𝐻

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
(

̂

𝜙

𝑗 (
𝑡) +

̂

𝜃

𝑗 (
𝑡)) 𝑒

𝑇

𝑖
𝑒

𝑖

−𝛾

𝑁

∑

𝑗=1











𝑏

𝑖𝑗





















𝑒

𝑇

𝑖
(𝑡)











̂

𝑀

𝑖 (
𝑡)











̇𝑒

𝑗 (
𝑡)











) .

(21)
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According to Assumptions 2–7 and Lemma 10, from the
above equation, we get

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) ̇𝑒

𝑖 (
𝑡)

≤

𝑁

∑

𝑖=1

[

[

𝑐𝑒

𝑇

𝑖
𝑒

𝑖
+

1

4𝑐

𝜙

𝑇
𝜙

+

𝑁

∑

𝑗=1

(𝑑𝑒

𝑇

𝑖
𝑒

𝑖
+

1

4𝑑

𝑎

2

𝑖𝑗
Λ

𝑇
Γ

𝑇
ΓΛ)

+ 𝛾

𝑁

∑

𝑗=1











𝑏

𝑖𝑗





















𝑒

𝑇

𝑖











|𝐾|

− 𝛾𝐻

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
(

̂

𝜙

𝑗 (
𝑡) +

̂

𝜃

𝑗 (
𝑡)) 𝑒

𝑇

𝑖
𝑒

𝑖

−𝛾

𝑁

∑

𝑗=1











𝑏

𝑖𝑗





















𝑒

𝑇

𝑖
(𝑡)











̂

𝑀

𝑖 (
𝑡)











̇𝑒

𝑗 (
𝑡)











]

]

≤

𝑁

∑

𝑖=1

[

[

(𝑐 +

𝑙

2

𝑖

4𝑐

) 𝑒

𝑇

𝑖
𝑒

𝑖
+ 𝑁𝑑𝑒

𝑇

𝑖
𝑒

𝑖

+

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
(𝜙

𝑖 (
𝑡) + 𝜃𝑖

)

𝐻𝛾

2

4𝑑

𝑒

𝑇

𝑗
𝑒

𝑗

+ 𝛾

𝑁

∑

𝑗=1











𝑏

𝑖𝑗





















𝑒

𝑇

𝑖
(𝑡)











𝑀

𝑖 (
𝑡)











̇𝑒

𝑗 (
𝑡)











− 𝛾𝐻

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
(

̂

𝜙

𝑗 (
𝑡) +

̂

𝜃

𝑗 (
𝑡)) 𝑒

𝑇

𝑖
𝑒

𝑖

−𝛾

𝑁

∑

𝑗=1











𝑏

𝑖𝑗





















𝑒

𝑇

𝑖
(𝑡)











̂

𝑀

𝑖 (
𝑡)











̇𝑒

𝑗 (
𝑡)











]

]

,

(22)

where 𝑐, 𝑑 are positive constants. Choosing 𝑐 = 1/2, 𝑑 = 𝛾/4,
and according to Lemma 11, we have

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) ̇𝑒

𝑖 (
𝑡)

≤

𝑁

∑

𝑖=1

[

[

(

𝑙

𝑖

2

+

1

2

+

𝑁𝛾

4

+𝛾𝐻

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
(

̃

𝜙

𝑗 (
𝑡) +

̃

𝜃

𝑗 (
𝑡))) 𝑒

𝑇

𝑖
𝑒

𝑖

+𝛾

𝑁

∑

𝑗=1











𝑏

𝑖𝑗





















𝑒

𝑇

𝑖
(𝑡)











̃

𝑀

𝑖 (
𝑡)











̇𝑒

𝑗 (
𝑡)











]

]

=

𝑁

∑

𝑖=1

[

[

(

𝑙

𝑖

2

+

1

2

+

𝑁𝛾

4

+𝛾𝐻

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
(

̃

𝜙

𝑗 (
𝑡) +

̃

𝜃

𝑗 (
𝑡))) 𝑒

𝑇

𝑖
𝑒

𝑖

+𝛾 tr(
𝑁

∑

𝑗=1











𝑏

𝑖𝑗











̃

𝑀

𝑖 (
𝑡)











̇𝑒

𝑗 (
𝑡)





















𝑒

𝑇

𝑖
(𝑡)











)

]

]

=

𝑁

∑

𝑖=1

[

[

(

𝑙

𝑖

2

+

1

2

+

𝑁𝛾

4

+

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
𝛾𝐻(

̃

𝜙

𝑗 (
𝑡) +

̃

𝜃

𝑗 (
𝑡))) 𝑒

𝑇

𝑖
𝑒

𝑖

+𝛾 tr(
𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖 (
𝑡)



















̇𝑒

𝑇

𝑗
(𝑡)











̃

𝑀

𝑇

𝑖
(𝑡))

]

]

.

(23)

Applying (14), the third term on the right-hand side of
(19) satisfies

𝛾𝐻

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

̇

̃

𝜃

𝑖 (
𝑡)

= −𝛾𝐻

𝑁

∑

𝑖=1

(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
𝑒

𝑇

𝑗
𝑒

𝑗
.

(24)

Let us focus on the second and fourth terms on the right-
hand side of (19). In the interval [𝑇

1
, 𝑇), since 𝑞

𝑖0
(𝑡), 𝑓

𝑖0
(𝑡) are

continuous and strictly increasing functions, 𝑞−1
𝑖

≤ 𝑞

−1

𝑖0
(𝑡) <

∞, 𝑓−1
𝑖

≤ 𝑓

−1

𝑖0
(𝑡) < ∞ are ensured, we obtain

𝛾𝐻

2

𝑁

∑

𝑖=1

[𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡) − 𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡 − 𝑇)]

=

𝛾𝐻

2

𝑁

∑

𝑖=1

[𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡) − 𝑞

−1

𝑖
̃

𝜙

2

𝑖
(0)]

≤

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖0
̃

𝜙

2

𝑖
(𝑡)

=

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖0
[𝜙

2

𝑖
(𝑡) + 2

̂

𝜙

2

𝑖
(𝑡)

−2𝜙

𝑖 (
𝑡)

̂

𝜙

𝑖 (
𝑡) −

̂

𝜙

2

𝑖
(𝑡)]

≤

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖0
[𝜙

2

𝑖
(𝑡) + 2

̂

𝜙

2

𝑖
(𝑡)

−2𝜙

𝑖 (
𝑡)

̂

𝜙

𝑖 (
𝑡)]

=

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖0
𝜙

2

𝑖
(𝑡) − 𝛾𝐻

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
̃

𝜙

𝑖 (
𝑡) 𝑒

𝑇

𝑗
𝑒

𝑗
.

(25)
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According to Lemma 11, we can get

tr (̃𝑀
𝑖 (
𝑡)

̃

𝑀

𝑇

𝑖
(𝑡))

= tr [(𝑀
𝑖
−

̂

𝑀

𝑖 (
𝑡)) (𝑀𝑖

−

̂

𝑀

𝑖 (
𝑡))

𝑇

]

= tr (𝑀
𝑖
𝑀

𝑇

𝑖
−𝑀

𝑖
̂

𝑀

𝑇

𝑖
−

̂

𝑀

𝑖
𝑀

𝑇

𝑖
+

̂

𝑀

𝑖
̂

𝑀

𝑇

𝑖
)

= tr (𝑀
𝑖
𝑀

𝑇

𝑖
+ 2

̂

𝑀

𝑖
̂

𝑀

𝑇

𝑖
−𝑀

𝑖
̂

𝑀

𝑇

𝑖
−

̂

𝑀

𝑖
𝑀

𝑇

𝑖
−

̂

𝑀

𝑖
̂

𝑀

𝑇

𝑖
)

≤ tr (𝑀
𝑖
𝑀

𝑇

𝑖
+ 2

̂

𝑀

𝑖
̂

𝑀

𝑇

𝑖
−𝑀

𝑖
̂

𝑀

𝑇

𝑖
−

̂

𝑀

𝑖
𝑀

𝑇

𝑖
)

= tr (𝑀
𝑖
𝑀

𝑇

𝑖
) + 2 tr (̂𝑀

𝑖
̂

𝑀

𝑇

𝑖
−𝑀

𝑖
̂

𝑀

𝑇

𝑖
)

= tr (𝑀
𝑖
𝑀

𝑇

𝑖
) − 2 tr (̃𝑀

𝑖
̂

𝑀

𝑇

𝑖
) .

(26)

Then from (26), the last term on the right-hand side of
(19) satisfies

𝛾

2

𝑁

∑

𝑖=1

[𝑓

−1

𝑖
tr (̃𝑀
𝑖 (
𝑡)

̃

𝑀

𝑇

𝑖
(𝑡))

−𝑓

−1

𝑖
tr (̃𝑀
𝑖 (
𝑡 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝑡 − 𝑇))]

≤

𝛾

2

𝑁

∑

𝑖=1

𝑓

−1

𝑖
tr (̃𝑀
𝑖 (
𝑡)

̃

𝑀

𝑇

𝑖
(𝑡))

≤

𝛾

2

𝑁

∑

𝑖=1

𝑓

−1

𝑖0
[tr (𝑀

𝑖
𝑀

𝑇

𝑖
) − 2 tr (̃𝑀

𝑖
̂

𝑀

𝑇

𝑖
)]

=

𝛾

2

𝑁

∑

𝑖=1

𝑓

−1

𝑖0
tr (𝑀
𝑖
𝑀

𝑇

𝑖
) − 𝛾

𝑁

∑

𝑖=1

tr (𝑓−1
𝑖0
̃

𝑀

𝑖
̂

𝑀

𝑇

𝑖
)

=

𝛾

2

𝑁

∑

𝑖=1

𝑓

−1

𝑖0
tr (𝑀
𝑖
𝑀

𝑇

𝑖
)

− 𝛾

𝑁

∑

𝑖=1

tr(
𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖 (
𝑡)



















̇𝑒

𝑇

𝑗
(𝑡)











̃

𝑀

𝑇

𝑖
(𝑡)) .

(27)

Substituting (23)–(27) into (19) we obtain

̇

𝑉 (𝑡) ≤

𝑁

∑

𝑖=1

(

𝑙

𝑖

2

+

1

2

+

𝑁𝛾

4

− 𝐿

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
)𝑒

𝑇

𝑖
𝑒

𝑖

+

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖0
(𝑡) 𝜙

2

𝑖
(𝑡) +

𝛾

2

𝑁

∑

𝑖=1

𝑓

−1

𝑖0
tr (𝑀
𝑖
𝑀

𝑇

𝑖
)

(28)

It is obvious that there exist sufficiently large positive con-
stants 𝐿 such that

1

2

+

1

2

𝑙

2

𝑖
+

𝑁𝛾

4

− 𝐿

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
< 0, 𝑖 = 1, . . . , 𝑁. (29)

According to (28) we have

̇

𝑉 (𝑡) ≤

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖0
(𝑡) 𝜙

2

𝑖
(𝑡) +

𝛾

2

𝑁

∑

𝑖=1

𝑓

−1

𝑖0
tr (𝑀
𝑖
𝑀

𝑇

𝑖
) ,

𝑡 ∈ [𝑇

1
, 𝑇) .

(30)

For ∀𝑡 ∈ [𝑇

1
, 𝑇), since 𝜙

𝑖
(𝑡) is continuous and periodic

and every element inmatrix𝑀
𝑖
(⋅) is continuous function, the

boundedness of them can be obtained. The boundedness of
𝜙

𝑖
(𝑡) and tr(𝑀

𝑖
𝑀

𝑇

𝑖
) leads to the boundedness of ̇

𝑉(𝑡). That is,
𝑉(𝑡) is bounded in [0, 𝑇). For𝑉(𝑇

1
) is bounded, the finiteness

of 𝑉(𝑡) is obvious by using integral technique, ∀𝑡 ∈ [0, 𝑇).
Next step, the asymptotical convergence of 𝑒(𝑡) is proved.
According to (17), ∀𝑡 ≥ 𝑇, we can get

Δ𝑉 (𝑡) = 𝑉 (𝑡) − 𝑉 (𝑡 − 𝑇)

= −

1

2

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) 𝑒𝑖 (

𝑡)

−

1

2

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡 − 𝑇) 𝑒𝑖 (

𝑡 − 𝑇)

+

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

2

−

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡 − 𝑇) + 𝐿)

2

+

𝛾𝐻

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

[𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏) − 𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏 − 𝑇)] 𝑑𝜏

+

𝛾

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑓

−1

𝑖
[tr (̃𝑀

𝑖 (
𝜏)

̃

𝑀

𝑇

𝑖
(𝜏))

− tr (̃𝑀
𝑖 (
𝜏−𝑇)

̃

𝑀

𝑇

𝑖
(𝜏−𝑇))] 𝑑𝜏.

(31)

WithNewton-Leibniz’s formula, the first two terms on the
right-hand side of (31) satisfied

1

2

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) 𝑒𝑖 (

𝑡) −

1

2

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡 − 𝑇) 𝑒𝑖 (

𝑡 − 𝑇)

=

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑒

𝑇

𝑖
(𝜏) ̇𝑒

𝑖 (
𝜏) 𝑑𝜏

≤

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

(

1

2

+

1

2

𝑙

2

𝑖
+

𝑁𝛾

4

) 𝑒

𝑇

𝑖
(𝜏) 𝑒𝑖 (

𝜏) 𝑑𝜏

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

∫

𝑡

𝑡−𝑇

𝑎

2

𝑗𝑖
𝛾𝐻𝑒

𝑇

𝑖
(𝜏) 𝑒𝑖 (

𝜏) (

̃

𝜙

𝑗 (
𝜏) +

̃

𝜃

𝑗 (
𝜏)) 𝑑𝜏

+

𝑁

∑

𝑖=1

𝑡

∫

𝑡−𝑇











𝑏

𝑖𝑗











𝛾 tr(
𝑁

∑

𝑗=1









𝑒

𝑖 (
𝜏)



















̇𝑒

𝑇

𝑗
(𝜏)











̃

𝑀

𝑇

𝑖
(𝜏))𝑑𝜏.

(32)
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Using the algebraic relation

(𝑎 − 𝑏)

𝑇
𝐺 (𝑎 − 𝑏) − (𝑎 − 𝑐)

𝑇
𝐺 (𝑎 − 𝑐)

= (𝑐 − 𝑏)

𝑇
𝐺 [2 (𝑎 − 𝑏) + (𝑏 − 𝑐)] ,

(33)

where 𝑎, 𝑏, 𝑐 ∈ 𝑅𝑝, 𝐺 ∈ 𝑅

𝑝×𝑝.
After choosing 𝐺 = 1, 𝑎 = 𝜙

𝑖
(𝜏), 𝑏 = ̂

𝜙(𝜏), 𝑎 − 𝑏 = ̃

𝜙

𝑖
(𝜏),

𝜙

𝑖
(𝜏) = 𝜙

𝑖
(𝜏 − 𝑇), 𝑐 = ̂

𝜙

𝑖
(𝜏 − 𝑇), and 𝑎 − 𝑐 = ̃

𝜙

𝑖
(𝜏 − 𝑇), we can

get

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏) −

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏 − 𝑇)

=

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖
[2

̃

𝜙

𝑖 (
𝜏) +

̂

𝜙

𝑖 (
𝜏) −

̂

𝜙

𝑖 (
𝜏 − 𝑇)]

× [

̂

𝜙

𝑖 (
𝜏 − 𝑇) −

̂

𝜙

𝑖 (
𝜏)]

= −𝛾𝐻

𝑁

∑

𝑖=1

(

̃

𝜙

𝑖 (
𝜏) +

1

2

𝑞

𝑖

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
𝑒

𝑇

𝑗
𝑒

𝑗
)

𝑁

∑

𝑘=1

𝑎

2

𝑖𝑘
𝑒

𝑇

𝑘
𝑒

𝑘
.

(34)

From Lemma 11, we have

tr (̃𝑀
𝑖 (
𝜏)

̃

𝑀

𝑇

𝑖
(𝜏)) − tr (̃𝑀

𝑖 (
𝜏 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝜏 − 𝑇))

= tr (̃𝑀
𝑖 (
𝜏)

̃

𝑀

𝑇

𝑖
(𝜏) −

̃

𝑀

𝑖 (
𝜏 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝜏)

+

̃

𝑀

𝑖 (
𝜏 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝜏) −

̃

𝑀

𝑖 (
𝜏 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝜏 − 𝑇))

= tr ([̃𝑀
𝑖 (
𝜏) −

̃

𝑀

𝑖 (
𝜏 − 𝑇)]

̃

𝑀

𝑇

𝑖
(𝜏)

+

̃

𝑀

𝑖 (
𝜏 − 𝑇) [

̃

𝑀

𝑇

𝑖
(𝜏) −

̃

𝑀

𝑇

𝑖
(𝜏 − 𝑇)])

= tr ([̃𝑀
𝑖 (
𝜏) −

̃

𝑀

𝑖 (
𝜏 − 𝑇)] [

̃

𝑀

𝑇

𝑖
(𝜏) +

̃

𝑀

𝑇

𝑖
(𝜏 − 𝑇)])

= tr ( [̃𝑀
𝑖 (
𝜏) −

̃

𝑀

𝑖 (
𝜏 − 𝑇)]

× [2

̃

𝑀

𝑇

𝑖
(𝜏) +

̃

𝑀

𝑇

𝑖
(𝜏 − 𝑇) −

̃

𝑀

𝑇

𝑖
(𝜏)]) .

(35)

According to (34) and (35), the last two terms on the
right-hand side of (31) satisfy

𝛾𝐻

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

[𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏) − 𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝜏 − 𝑇)] 𝑑𝜏

= −𝛾𝐻

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

[

[

̃

𝜙

𝑖 (
𝜏) +

1

2

𝑞

𝑖

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
𝑒

𝑇

𝑗
𝑒

𝑗
]

]

×

𝑁

∑

𝑘=1

𝑎

2

𝑖𝑘
𝑒

𝑇

𝑘
𝑒

𝑘
𝑑𝜏,

(36)

𝛾

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑓

−1

𝑖

× [tr (̃𝑀
𝑖 (
𝜏)

̃

𝑀

𝑇

𝑖
(𝜏))

− tr (̃𝑀
𝑖 (
𝜏 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝜏 − 𝑇))] 𝑑𝜏

=

𝛾

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑓

−1

𝑖

× tr[

[

(𝑓

𝑖

𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖



















̇𝑒

𝑇

𝑗











)

× (2

̃

𝑀

𝑇

𝑖
(𝜏)−(𝑓𝑖

𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖



















̇𝑒

𝑇

𝑗











)

𝑇

)

]

]

𝑑𝜏

= −𝛾

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

tr(
𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖



















̇𝑒

𝑇

𝑗











̃

𝑀

𝑇

𝑖
(𝜏))𝑑𝜏

−

𝛾

2

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑁

∑

𝑖=1

𝑓

𝑖
tr[

[

(

𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖



















̇𝑒

𝑇

𝑗











)

× (

𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖



















̇𝑒

𝑇

𝑗











)

𝑇

]

]

𝑑𝜏.

(37)

The other terms of right-hand side of (31) can be simpli-
fied as follows:

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

2

−

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡 − 𝑇) + 𝐿)

2

= 𝛾𝐻

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝜏) + 𝐿)

̇

̃

𝜃

𝑖 (
𝜏) 𝑑𝜏

= −𝛾𝐻

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

(

̃

𝜃

𝑖 (
𝜏) + 𝐿)

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
𝑒

𝑇

𝑗
(𝜏) 𝑒𝑗 (

𝜏) 𝑑𝜏.

(38)

Substituting (32) and (36)–(38) into (31), we can attain

Δ𝑉 (𝑡) ≤

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑇

(

1

2

+

1

2

𝑙

2

𝑖
+

𝑁𝛾

4

− 𝐿

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
)𝑒

𝑇

𝑖
(𝜏) 𝑒𝑖 (

𝜏) 𝑑𝜏.

(39)

Choosing 1/2 + (1/2)𝑙

2

𝑖
+ 𝑁𝛾/4 − 𝐿∑

𝑁

𝑗=1
𝑎

2

𝑗𝑖
< 0, 𝑖 =

1, . . . , 𝑁, we can obtain

Δ𝑉 (𝑡) < 0. (40)

For any 𝑡 ∈ [𝑙𝑇, (𝑙 + 1)𝑇], 𝑙 = 1, 2, . . ., and denoting 𝑡
0
=

𝑡 − 𝑙𝑇, 𝑡

0
∈ [0, 𝑇), we have

𝑉 (𝑡) = 𝑉 (𝑡

0
) +

𝑙−1

∑

𝑗=0

Δ𝑉 (𝑡 − 𝑗𝑇) . (41)
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Considering 𝑡
0
∈ [0, 𝑇) and the positive of 𝑉(𝑡), accord-

ing to (41), we obtain

𝑉 (𝑡) < max
𝑡0∈[0,𝑇)

𝑉 (𝑡

0
)

−

𝑙−1

∑

𝑗=0

𝑁

∑

𝑖=1

∫

𝑡−𝑗𝑇

𝑡−
(
𝑗+1
)
𝑇

(𝐿

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
−

1

2

−

1

2

𝑙

2

𝑖
−

𝑁𝛾

4

)

× 𝑒

𝑇

𝑖
(𝜏) 𝑒𝑖 (

𝜏) 𝑑𝜏.

(42)

Since𝑉(𝑡
0
) is bounded in the interval [0, 𝑇), according to

the convergence theorem of the sum of series and (42), the
error 𝑒(𝑡) converges to zero asymptotically in 𝐿2

𝑇
norm. That

is to say, we have

lim
𝑡→∞

∫

𝑡

𝑡−𝑇

𝑒

𝑇

𝑖
(𝜏) 𝑒𝑖 (

𝜏) 𝑑𝜏 = 0.
(43)

Finally, we prove that all the closed-loop signals are
bounded. Considering ∀𝑡 ∈ [𝑇,∞), the derivative of 𝑉(𝑡) is

̇

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒

𝑇

𝑖
(𝑡) ̇𝑒

𝑖 (
𝑡) +

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡)

−

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

−1

𝑖
̃

𝜙

2

𝑖
(𝑡 − 𝑇)

+ 𝛾𝐻

𝑁

∑

𝑖=1

𝑟

−1

𝑖
(

̃

𝜃

𝑖 (
𝑡) + 𝐿)

̇

̃

𝜃

𝑖 (
𝑡)

+

𝛾

2

𝑓

−1

𝑖
[ tr (̃𝑀

𝑖 (
𝑡)

̃

𝑀

𝑇

𝑖
(𝑡))

− tr (̃𝑀
𝑖 (
𝑡 − 𝑇)

̃

𝑀

𝑇

𝑖
(𝑡 − 𝑇))]

≤ −

𝛾𝐻

2

𝑁

∑

𝑖=1

𝑞

𝑖
(

𝑁

∑

𝑗=1

𝑎

2

𝑖𝑗
𝑒

𝑇

𝑗
𝑒

𝑗
)

2

−

𝑁

∑

𝑖=1

(𝐿

𝑁

∑

𝑗=1

𝑎

2

𝑗𝑖
−

1

2

−

1

2

𝑙

2

𝑖
−

𝑁𝛾

4

) 𝑒

𝑇

𝑖
𝑒

𝑖

−

𝛾

2

𝑁

∑

𝑖=1

𝑓

𝑖
tr[

[

(

𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖



















̇𝑒

𝑇

𝑗











)

× (

𝑁

∑

𝑗=1











𝑏

𝑖𝑗



















𝑒

𝑖
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𝑇

]

]

.

(44)

Having the two sides of (44) integration, one can obtain

𝑉 (𝑡) ≤ 𝑉 (𝑇) −

𝛾𝐻

2

𝑁

∑

𝑖=1

∫

𝑡

𝑇
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(

𝑁
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𝑒
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𝑗
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−
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−
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𝑖
−

𝑁𝛾

4

) 𝑒
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𝑖
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𝑑𝜏

−
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𝑖
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(
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(45)

Choosing (𝐿 > 1/2 + ((1/2)𝑙

2

𝑖
) + 𝑁𝛾/4)/∑

𝑁

𝑗=1
𝑎

2

𝑗𝑖
, 𝑖 =

1, . . . , 𝑁, we have

𝑉 (𝑡) < 𝑉 (𝑇) . (46)

From the boundedness of 𝑉(𝑡) and (17), we can con-
clude that 𝑒

𝑖
, ∫𝑡
𝑡−𝑇

̃

𝜙

2

𝑖
(𝜏)𝑑𝜏,

̃

𝜃

𝑖
(𝑡) For 𝜃

𝑖
is constant and

∫

𝑡

𝑡−𝑇
tr(̃𝑀
𝑖
(𝜏)

̃

𝑀

𝑇

𝑖
(𝜏))𝑑𝜏 are all bounded., it implies the

boundedness of ̂𝜃
𝑖
(𝑡). According to Lemma 13 and the con-

tinuity of ̃𝜙
𝑖
(𝑡) and ̃

𝑀

𝑖
(𝑡), the boundedness of ̃𝜙

𝑖
(𝑡) and ̃

𝑀

𝑖
(𝑡)

are obviously obtained. As 𝜙
𝑖
(𝑡) is a continuous periodic

function and 𝑀

𝑖
(𝑡) is continuous periodic matrix, we can

get that ̂

𝜙

𝑖
(𝑡),

̂

𝑀

𝑖
(𝑡) are bounded. According to (1), the

boundedness of the control input 𝑢
𝑖
(𝑡) is obtained. Since 𝑒

𝑖
(𝑡)

is bounded, the boundedness of 𝑥
𝑖
(𝑡) is received.The proof is

completed.

It is worth mentioning that when 𝑘(⋅, ⋅) is bounded
function, the boundedness of ̇𝑒

𝑖
(𝑡) can be easy to get. Then,

from Lemma 12 we can obtain the error globally asymptotical
synchronization.

4. Simulation Example

To demonstrate the theoretical result obtained in Section 3,
the following dynamical network with six non-identical
nodes is considered:

�̇�

𝑖 (
𝑡) = 𝑓

𝑖
(𝑥

𝑖 (
𝑡))

+

𝑁

∑

𝑗=1

𝑎

𝑖𝑗
Γ exp(−𝜑

𝑖 (
𝑡)(

𝑥

2

𝑗1
(𝑡)

𝑥

2

𝑗2
(𝑡)

𝑥

2

𝑗3
(𝑡)

))

+

𝑁

∑

𝑗=1

𝑏

𝑖𝑗
Γ(exp(

sin (2𝜋𝑡)
sin (2𝜋𝑡)
sin (2𝜋𝑡)

)

−(

0.1 cos (�̇�
𝑗1 (

𝑡)) sin (2𝜋𝑡)
0.1 cos (�̇�

𝑗2 (
𝑡)) sin (2𝜋𝑡)

0.1 cos (�̇�
𝑗3 (

𝑡)) sin (2𝜋𝑡)
))

+ 𝑢

𝑖 (
𝑡) , 𝑖 = 1, . . . , 6,

(47)
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Figure 1: The evaluations of synchronization errors 𝑒
𝑖
(𝑡), 𝑖 = 1, . . . , 6.
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Nonlinearly parameterized function satisfies
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Figure 2: The curve of control 𝑢
𝑖
(𝑡) with 𝑖 = 1, . . . , 6.
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(49)

We choose ̇𝑠(𝑡) = 𝑓

6
(𝑠(𝑡)), and the parameters are selected

as follows:
𝑁 = 6, 𝑇 = 0.5, 𝛾 = 1, 𝐻 = 5,

𝜙

1 (
𝑡) = 0.2 sin 8𝜋𝑡 + 2, 𝜙

2 (
𝑡) = 2 cos 4𝜋𝑡 + 2,

𝜙

3 (
𝑡) = − sin 8𝜋𝑡 + 2, 𝜙

4 (
𝑡) = cos 8𝜋𝑡 + 2,

𝜙

5 (
𝑡) = −2 sin 8𝜋𝑡 + 2, 𝜙

6 (
𝑡) = 2 sin 4𝜋𝑡 + 2,

𝜃 = (1, 2, 3, 1.1, 1.5, 1.3)

𝑇
.

(50)

In the following simulations, we choose

𝑞

1
= 1, 𝑞

2
= 3, 𝑞

3
= 2, 𝑞

4
= 5,

𝑞

5
= 1, 𝑞

6
= 2, 𝑞

10 (
𝑡) = 2𝑡𝑞

1
, 𝑞

20 (
𝑡) = 2𝑡𝑞

2
,

𝑞

30 (
𝑡) = 2𝑡𝑞

3
, 𝑞

40 (
𝑡) = 2𝑡𝑞

4
,

𝑞

50 (
𝑡) = 2𝑡𝑞

5
, 𝑞

60 (
𝑡) = 2𝑡𝑞

6
.

(51)

The initially estimated values of the unknown parameters
are
̂

𝜙 (0) = (1 1 1 1 1 1)

𝑇
,

̂

𝜃 (0) = (1, 2, 3, 1.1, 1.5, 0)

𝑇
,

(52)

and the initial states are chosen as
𝑥

1
= [0.01 0.03 0.02]

𝑇
, 𝑥

2
= [0.03 0.02 0.03]

𝑇
,

𝑥

3
= [0.04 0.02 0]

𝑇
, 𝑥

4
= [0 0.05 0.03]

𝑇
,

𝑥

5
= [0.1 0 0.03]

𝑇
, 𝑥

6
= [0.1 0.01 0]

𝑇
,

𝑠 = [0.1 0.5 0]

𝑇
.

(53)

According to Theorem 14, the synchronization of the
complex dynamical network can be guaranteed by the dis-
tributed adaptive controllers in (15) and the distributed adap-
tive learning laws when (16)–(18). Figure 1 shows the error
evolutions under the designed controller. In this example,
𝑘(⋅, ⋅) is bounded function, we clearly see that the states of
the network asymptotically synchronizes with the states of
the desired orbit. Figure 2 depicts the time evolution of the
controller, and Figure 3 shows the evolution of the estimated
time-varying parameters. Figures 2 and 3 show that all signals
in the network are bounded. Figures 4 and 5 show that the
time-varying parameters are periodic and bounded.
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Remark 15. It is not difficult to draw the evolution of other
elements in parameter 𝑀

𝑖
(𝑡). Here, we only take the first

row of 𝑀
11
(𝑡) for example. Compared with existing results

[26, 28], the biggest innovation of this paper is the asymp-
totical synchronization ability for the nonlinear neutral-type
coupling complex networks under the designed controller.

5. Conclusion

In this paper, the synchronization problem for a complex
dynamical network with nonlinearly derivative couplings is
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Figure 5: The evaluations of parameters𝑀
1𝑖
(𝑡).

solved via distributed adaptive control method. The adaptive
strategies are concernedwith the networks topology. By com-
bining inequality techniques and the parameter separation,
introducing the composite energy function, the convergence
of the tracking error and the boundedness of the system
signals are derived. Moreover, the coupling matrix is not
assumed to be symmetric or irreducible. Finally, a typical
example was simulated to verify the proposed theoretical
results.
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