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This paper deals with a novel numerical scheme for hyperbolic equations with rapidly changing terms. We are especially interested
in the quasilinear equation u, + au, = f(x)u + g(x)u" and the wave equation u,, = f(x)u,, that have a highly oscillating term like
f(x) =sin(x/e), € < 1. Italso applies to the equations involving rapidly changing or even discontinuous coefficients. The method
is based on the solution interpolation and the underlying idea is to establish a numerical scheme by interpolating numerical data
with a parameterized solution of the equation. While the constructed numerical schemes retain the same stability condition, they
carry both quantitatively and qualitatively better performances than the standard method.

1. Introduction

In the modern theory of partial differential equations (PDEs),
the role of exact solutions is becoming more crucial, espe-
cially for a number of nonlinear equations or systems of
PDEs. Since those problems do not allow many of the
classical techniques in principle, exact solutions serve as
windows revealing correct classes of existence, regularity,
uniqueness, and specific asymptotics [1-4]. From the view
point of numerical analysis, exact solutions are a basis for
developing and testing numerical schemes and computer
algebra software [5-10].

The research on solution interpolation started with the
motivation to construct finite difference schemes, using a set
of exact solutions to given differential equations [11]. The idea
of solution interpolation is that once we find an exact solution
that coincides with the given initial or boundary conditions
onagrid, it can be used to make the numerical approximation
which locally inherits all geometric properties of the original
system, including oscillation embedded in the equation. This
is not feasible over the whole domain in practical situations,
but in the case that there exists a family of known solutions
to the differential equation, we can still construct a finite
difference scheme by interpolating them locally on a grid.
That is, a numerical value at a specific point can be derived by
interpolating the numerical data at around its neighborhood

at the previous time step with some special solutions. Refer to
Figure 1 for illustration of the idea.

In this paper, we first focus on the applications of the
solution interpolation method to the quasilinear equation,

ut+aux=f(x)u+g(x)uk, keZ-{1}. )

The emphasis is placed on the cases where the equation
involves highly oscillating or fast varying terms like f(x) =
sin(x/¢e), ¢ < 1. The conventional numerical schemes have
difficulty in dealing with such terms accurately.

We also develop a numerical scheme for the wave equa-
tion:

u, =cx)u c(x) >0, (2)

xx>

which describes wave propagation and reflection in inho-
mogeneous medium. If the local speed of propagation c(x)
slowly varies, asymptotic solutions can be found using the
WXKB method [12-14]. In the case of strongly inhomogeneous
medium, c¢(x) rapidly changes making both exact solution
and numerical approximation hard to obtain.

In what follows, we will have a brief overview on the
solution interpolation method. Sections 3 and 4 deal with
applications of the method to various cases of (1), (2), and
their numerical results. We will discuss error analysis of those
schemes in the last section.



FIGURE 1: Once a specific solution that embeds three points p;, p,
and p, is found, an approximated point p, can be obtained from the
solution.

2. Solution Interpolation Method

For a given differential equation, suppose there is a family of
exact solutions depending on n parameters. If interpolation
on # points of a given stencil determines a unique function in
this family, this naturally defines an (n + 1)-point numerical
scheme. The scheme by solution interpolation shares geomet-
rical properties with exact solutions such as Lie symmetry.

From here on we adopt common notations for numerical
schemes; u),, is an approximation of u(x, t) at a point (x,,,, t")
on a rectangular grid with the spacial and temporal grid size,
h = X, — X, and k = t"™" — ", respectively. A central
difference operator D is defined as

n n
Dun — U1l ~ Y1
" 2h
n n n (3)
DXy = U1 ~ zum T U
m hz
We also use left and right difference operators,
i n
u,—u
n _ ] m—1
Dyt = =— =,
n i (4)
w = u
n _ mtl j
Dy, =~

To illustrate how the idea of solution interpolation is
implemented, let us take an example of a linear heat equation:

u, =au,,, a>0o0. (5)

To construct an efficient four-point scheme by solution
interpolation, it is natural to choose a set of solutions as
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simple as possible. In fact, the heat equation possesses a series
of polynomial solutions,

¢ =1,

¢, = x* + 2at,

¢ = x,
¢, = x° + 6axt, (6)
$s =,

¢y = x* + 12ax°t + 12a°t%,

out of which we can construct a solution with three parame-
ters as

u(x,t) = Copy + C¢py + Crpy

7)
=C,+Cx+C, (x2 + 2at) .

Interpolation of solution (7) by u), ., u,,, and u, | at

(%15 1"), (x,t"), and (x,,,_;, "), respectively, gives

2
x
Cy =u) — x,,Du, + (7’" - at") Du,

C, = Du! - x,,D’u’, (8)
C, = %Dzufn.
Consequently, the numerical approximation for 1"*" is deter-
mined as
Ut = Cy+Cyx, + Cy ((xm)2 + 2at"™! ) 9)
After simplification, the resulted scheme becomes
ufn“ =u, +akDu,, (10)

which is nothing but the traditional forward central scheme.
Now let us construct a six-point implicit scheme by
the solution interpolation method. We need to interpolate
five values of a function on a usual six-point stencil, using
the first five polynomial solutions ¢,...,¢,. After similar
computation, the corresponding scheme turns out to be

(1—6u) i+ (10 + 12p) ™ + (1 - 6p) !

- 1
m m+ (11)
n
m+1°

=(1+6p)ur_ + (10— 12p)u) + (1 +6p)u
where y is a(k/h?). This scheme is known as the Cran-
dall method, which is unconditionally stable and has error
O(h*, k*) [15].

We call a numerical scheme created from the above
interpolation method a solution interpolation scheme (SI).
For constant-coefficient differential equations like (5), this
approach is no more than traditional discretization based the
Taylor expansion. However, it is no more true if we deal with
even little more complicated equations. One can refer to [11]
to see many cases where simple solutions lead to interesting
nonconventional numerical schemes.
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3. Solution Interpolation for
Quasilinear Equations

Equation (1) is known to have a general solution in the form

of
g(x)
> x )JH( o
(12)

u ™ (x,t) = H(x) ¢ (x — at)+<l

where ¢(x) is an arbitrary differentiable function and H(x) =
exp(((1 — k)/a) f f(x)dx). Note that we can easily derive a
family of special solutions of (1) by setting ¢ as a certain
parameterized function.

In this section, we apply the solution interpolation
method to several cases of convection equation (1) as

nonhomogeneous equation: u, + au, = f (x),

varying-coeflicient equation: u, + au, = f (x)u

(13)
quasilinear varying-coefficient equation:

u, +au, = f (x) u?,

to construct the corresponding SIs. The numerical per-
formances of the schemes will be compared to those of
conventional schemes, the upwind scheme, and the Lax-
Wendroft scheme.

The solution interpolation scheme often seemingly
involves a function F(x), an antiderivative of f(x) that is
in a coeflicient or a nonhomogeneous term of the original
differential equation. But it is important to note that the
schemes do not necessarily require F(x) in an explicit form.
Since F(x) only appears with the difference operator D in
the schemes, one can manage with numerical integration
of f(x) instead. For example, DF(x,,) and D2F(xm) can be
approximated as

DE[%,] = —= (f () +4f (11
+2f (xm) + 4f (xm—l/Z) + f (xm—l)) >
DF ] = - (F (o) + 47 ()

f(xm—l/z) _f(xm—l))’

(14)

it Simpson’s rule is adopted. We call the scheme using sub-
stitution (14) an approximate solution interpolation scheme
(ASID), to tell from SI using F(x) explicitly.

Throughout the examples, we assume that the coefficient
a is fixed at 1 and the function f is given as

f(x) =sin (E), (15)

with & varying between 0 and 1. We want to see how
oscillation in the equations affects the performance of

the scheme. In all examples, the spacial and temporal step
sizes are fixed at h = 0.01 and k = 0.005, respectively.

Example 1. Nonhomogeneous linear convection equation:
u, +au, = f (x). (16)
This equation has a general solution,

u=¢(x—at)+éF(x), 17)

where ¢ is an arbitrary differentiable function. Choosing
¢(x) = Cy+C,x+C,x*, we solve the interpolation equations,
1
=¢(x;—at")+-F(x), l=m-1,mm+1. (18)
a

Considering that (16) does not involve ¢, we can set t” = 0 in
(18) without losing generality. Then the solution is

Co = (1 ~x,D+ @Dz) (ufn - iF(xm)),

C, :(D_x_mD2> (“"m—éF(xm)>, (19)

2

Plugging this result into
1
't = ¢ (x,, —ak) + —F(x,,) (20)
a

gives the solution interpolation scheme,

a*k?
u:’n“ =u, + (—akD + TDZ) (u"m +

The scheme might be similar in appearance to the Lax-

azzkz D2) ul
(k%) £ ).

However, there is significant difference between two schemes
in numerical performance, which is illustrated in Figure 2.
One can easily confirm that SI and ASI excel the upwind and
the Lax-Wendroff schemes. More interestingly in Figure 2(b),
SI and ASI maintain almost the same accuracy even with
sever oscillation (¢ = 0.01), while two others fail.

1r (xm)) @)

Wendroft scheme,

m

u"t = u, + (—akD +

(22)

Example 2. Linear convection equation with a varying coef-
ficient:

u, +au, = f (x)u. (23)



log,llerror|
I
w

9 . . . .
0 0.2 0.4 0.6 0.8 1
Time t
—— Sol. intp. -—-- Lax-Wendroff
--- App.sol.intpl. oo Upwind

(a) e=1
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log,llerror|
|
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0 0.2 0.4 0.6 0.8 1
Time t

-—-— Lax-Wendroff
<<<<<< Upwind

(b) £ =0.01

—— Sol. intp.
--- App. sol. intpl.

FIGURE 2: Numerical solutions for u, + au, = sin(x/e): a solution u = (x —t)(sin(x —t) + 2)7' —gcos(x/e) is used to generate initial/boundary

conditions and measure errors.
A general solution for (23) is

"= exp(éF(x))(/)(x—at). (24)

The choice of the same function ¢(x) = Cy + C,x + C,x* as
in the previous example eventually leads to the scheme

n+1 n n n
um = (xum+1 + ﬁum + Yum—l’ (25)

where the coefficients «, 3, and y are determined as
o =al (-1 +ad)exp (-hD,F [x,,]),

p=1- a*)\?,
y =al(1+al)exp (hD/F [x,,]).

(26)

Here A denotes a Courant number k/h. The performance of
the scheme is shown in Figure 3. One can see that ST and ASI
are just as good as the Lax-Wendroff scheme when ¢ = 1. But
in contrast to the Lax-Wendroff that suffers from oscillation
term in (b), two schemes keep their accuracy level regardless
of oscillation intensity.

Example 3. Quasilinear convection equation with a varying
coeflicient:

u, +au, = f(x)u’. (27)
The equation has a general solution,
1 -1
u= <¢(x —at) - —F(x)) . (28)
a

We take the same parameterized function ¢ as in two previous
examples and apply the solution interpolation. After some
algebraic work, the scheme is derived as

= (it )

a2k2 2
n n n n n n
x|, + | akS + TS Uy, + Uy, Uy U

272 -1
x (—akD+ %#)F(xm)) .

(29)
Here, we use an additional difference operator S as
n n n_n
S n o _ um+1um B umum—l
m = 2h ’
(30)
n n n n n n
um+1um B 2umum—l + umum—l

2 . n

S*u,, = 2 >

for a simplified expression. Once again, it is shown in Figure 4

that SI and ASI overwhelm two others, especially when

there is severe spatial oscillation generated by the coefficient
sin(x/e), € = 0.01.

4. Solution Interpolation for Wave Equations

In this section, we apply the solution interpolation method
to the wave equation (2) with variable coefficient c(x). It is
known that (2) has two families of particular solutions as
follows [16]. Solutions with even powers of t are

1
w (o)=Y ¢ ()0, 1=0,1,2,..., (@D
k=0
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log,,llerror||
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0 0.2 0.4 0.6 0.8 1
Time t
—— Sol. intp. -—-- Lax-Wendroft
--- App.sol.intpl. - Upwind
(a)e=1

_3 | e e e

log,,llerror||
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0 0.2 0.4 0.6 0.8 1
Time t
—— Sol. intp. -—-- Lax-Wendroft
--- App.sol.intpl. Upwind
(b) £=0.01

FIGURE 3: Numerical solutions for u, +au,, = sin(x/e)u: asolution u = exp(—e cos(x/e)—x+t)\/(x — £)? + lisused to generate initial/boundary

conditions and measure errors.

log,llerror|
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0 0.2 0.4 0.6 0.8 1
Time t
—— Sol. intp. -=-- Lax-Wendroft
--- App.sol.intpl. - Upwind
(a) e=1

FIGURE 4: Numerical solutions for u, + au, = sin(x/e)u’: a solution u
generate initial/boundary conditions and measure errors.

where the function ¢ = ¢ (x) is defined by the recurrence
relations

¢y (x) = Ayx + By,

by () = Apx + B +2(1— k) (21 - 2k - 1)

> k=1,2,...,l_1.
(32)

[,
a c(s)

log,llerror|

-9 . . . .
0 0.2 0.4 0.6 0.8 1
Time t
—— Sol. intp. -—-- Lax-Wendroft
--- App.sol.intpl. oo Upwind
(b) €=0.01

= (x® = 2xt + 2 + 1)(1 + e(x® — 2xt + 2 + 1) cos(x/e)) " is used to

Here A, By, and a are arbitrary constants. Similarly, there is
another family of particular solutions with odd powers of t as

!
w (x,t) = Z(pk (x) 224 (33)
k=0

where the function ¢ = @, (x) is defined by the recurrence
relations:

@ (x) = Agx + By,



Qe (X) = Ax+ B +2(1-k) (2l -2k +1)

XJ Gl G N N A
" c(s)

(34)

Again, A, By, and a are arbitrary constants.
Among the above solutions, let us choose a four-
parameter solution,

u(x.1) =Co+C1x+Czt+C3t2+2C3j e
0o c(s)

out of which we construct a five-point scheme for the
equation. Since (2) does not explicitly depend on time ¢, we
can assume t” = 0 without loss of generality. Interpolating
. -1 . .
the numerical datau), ,,u,,u, ,,andu, = on the grid with
solution (35) determines the parameters as

ds, (35)

C, = (F (x,,) D’ + x,,D°F (x,,) Du",

~u' D’F(x,,) - x,,D*u: DF (xm))
X (DzF(xm))_l,

_ D’u}, DF (x,,) - D’F (x,,) Du,,

1 D2F (xm) > (36)
o KD*! +2 (u”m - u:’n_l) D’F (x,,)
? 2kD?F (x,,) ’
C. - Dzu:’n
> 2D?F(x,,)’

where F(x) = I;((x —s)/c(s))ds. We plug this result to u"m” =
u(x,,,t") in (35) and then eventually obtain the scheme:
DX
n+1 n n-1 2 m
=2u, — + kN ——, 37
e M
after simplification. Note that we do not have to integrate (x—
s)/c(s) and find F(x) explicitly. Instead, by using numerical
integration method, we can replace the factor involving
F(x,,) with values of c¢(x) on some points. For example,
adopting Simpson’s rule gives
1 1 1

DF () = 3<c<xm_l,z> " o)t G ) o

One can easily see from (37) similarity and difference
between the approximate solution interpolation scheme and
the standard central forward scheme (CF). Both schemes
share the same form:

n+l _
=

2 —u T+ Ko, Dl (39)
where

a,, =c(x,,): CF,
&y = (3C (xmfl/z) ¢ (xm) ¢ (xm+1/2))
(40)

x(c (xm—l/z) c(x,) +c (‘xm—l/z) ¢ (xm+1/2)

-1
+c (xm) ¢ (xm+1/2)) : ASL
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Now let us show the performances of ASI in comparison
to CF, focusing especially on the cases where the propagation
speed c(x) changes rapidly or discontinuously.

Example 4. Wave equation with exponentially decreasing
speed:

X
U, = exp (—;) Uyse (41)

We apply two schemes ASI and CF to this equation with
two different values of e. Figure 5(a) shows that there are
no qualitative differences between two schemes for ¢ = 1.
However, when ¢ is 0.05 and the local propagation speed
rapidly diminishes along the x-axis, one can see that ASI
yields much better result while CF loses its accuracy quickly
as time goes.

Example 5. Wave equation with oscillating speed:

1

U, = ——U,,. 42
"7 2 4 sin(—x/e) (42)

This equation involves oscillation in the wave speed because
of the sine function in the denominator. Once again, if
€ = 1 and therefore the speed changes slowly, two schemes
show little qualitative differences. The outstanding difference
occurs when & drops to 0.01 and the propagation speed
undergoes severe oscillation. It is obvious from Figure 6(b)
that CF suffers from rapid change, but ASI successfully
captures the solution in numerical simulation. Even more
interestingly, the error of ASI with oscillation in (b) slightly
decreases, compared to that in (a).

Example 6. Wave equation with discontinuous speed:
Uy =C (X) Usesr (43)
where c(x) is a step function as

if x <0,

1
€)= {2 if x > 0. (44)

Equation (43) describes the propagation of waves across
two different types of medium and its solution may be
discontinuous. Applications of ASI and CF to the equation
with two different initial/boundary conditions are illustrated
in Figure 7. In both cases, CF fails to reproduce this dis-
continuity and loses sharp transition layer, even generating
spurious oscillation. On the contrary, ASI well captures the
qualitative aspect of the exact solutions, handling disconti-
nuity successfully.

5. Analysis of Solution Interpolation Schemes

The examples from the last two sections confirm that the
schemes based on the solution interpolation methods achieve
generally better, or compatible performances at the least,
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log,llerror|

Time ¢

—— App. sol. intpl.
- -~ Central forward

(a)e=1

FIGURE 5: Time evolution of the errors in numerical solutions for u,, = exp(—x/e)u

log,llerror|
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Time t

0.8 1

—— App. sol. intpl.
--- Central forward

(b) £ =0.05

0 < x < 1. The exact solution u = (1 + x)t* + xf + x +

xx>

2(=€® +26 + (—e + )x + (2 - 26° + £2%) exp(x/e)) is used to generate the initial/boundary conditions and measure the errors.

-5
=557

log,llerror||
R S-S
w O (92} [ee) wu N wu N

|
—
S

Time t

—— App. sol. intpl.
- -~ Central forward

(@A) e=1

-5

| |
| N | o
~ (5] )} wl
RN
P
N
2
N
-
-
N

|
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log,,llerror||
4
w

0.4 0.6 0.8 1

Time t

0.2

—— App. sol. intpl.
- -~ Central forward

(b) £ =0.01

FIGURE 6: Time evolution of the errors in numerical solutions for u,, = (2 + sin(—x/ e) 'u,,, 0 < x < 1. The exact solution u = (1 + x)t* +

xx>

xt+x+2(28 + ex + x* +x°/3 - 2¢> cos(x/e) — €*(1 + x) sin(x/¢)) is used to generate the initial/boundary conditions and measure the errors.

in comparison to the conventional schemes. Consistency of
those schemes is guaranteed by the fact that they are created
from solutions. In fact, Taylor expansion of schemes (21),
(25), and (29) shows that they are of the second order, just
as the Lax-Wendroff scheme. Likewise, solution interpolation
scheme (37) has the same order of error as the central forward
method.

Now, let us investigate the stability conditions for the
solution interpolation schemes. In order to handle a nonho-
mogeneous term, it is helpful to modify usual notations for

s . n n+1
the von Neumann stability analysis. We replace u,, and v

in a scheme with g(t")eime and g(t" + k)e™®, respectively.

The scheme is stable as long as the amplification factor g(t)
satisfies

lg(t"+k)| <|g (") for —m<O<m k>0.

(45)

In fact, this stability condition can be relaxed as

for —m<0<m k>0.
(46)

lg(t" + k)| < |g ()| + O (k)
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-1 -08 -06 -04 -02 0 02 04 06 08 1

—— App. sol. intpl.
--- Central forward
»»»»»» Exact solution

()

FIGURE 7: Snapshots of numerical solutions for (43) at t = 0.3. In (a), the exact solution is u = exp(x — t) — exp(-x + t)/2 if x < 0 and
u = exp(—x/V2 — t) — exp(x/ V2 + t)/2 otherwise. In (b), the exact solution is u = exp(x + t) — exp(—x — t) if x < 0 and u = exp(x/V2 —t) +

exp(—x/\ﬁ + t) otherwise.

We use the above substitution and rewrite scheme (21) as

g(t"+k)e™ = g(t") ™
B % (g(") ™10 — g (¢7) )
O
£ (") ei(m—l)@)
+ (—akD + §D2> F(x,,),
(47)

where A = k/h. This can be simplified and reorganized as
g("+k) = ag (") + B, (48)
where

a=1-a’A*(1 - cosH) —ia)sin®,

' 272 (49)
B=em (—akD + %Dz) F(x,,).
If we assume || < 1, then
g (t" +K)| = |ag (") + B|
< lal |g (t")] +|B] (50)
< g (") + 1Bl

and since § = O(k), the scheme would be stable. By the way,

2
o] (1 — 2a*A*sin’ (g)) + (adsin)*

(51)

1 - 4a*)? (1 - azAz) sin* <g>

Therefore we see |a| < 1 & (1 —a?A?) > 0, and this implies
that the stability condition for scheme (21) is

la)| < 1. (52)

In the same way, we can confirm that the Lax-Wendroft
scheme (22) shares the same condition for stability.

Scheme (29) also has the identical stability region because
it can be viewed as a numerical scheme for the same equation
v, +av, = f(x) after substitution v = 1/u. Similarly, scheme
(25) can be converted to another solution interpolation
scheme for the homogeneous advection equation:

v, +av, =0, (53)

by substitution of v = exp(—1/aF(x))u. Note that this sub-
stitution does not affect the stability region. The solution
interpolation scheme for (53) is

aZ k2
I/l::jl = u"m + (—akD + TD2> u;, (54)
which is nothing but the Lax-Wendroff scheme and is stable
if |aA| < 1. Therefore, scheme (25) has the same numerical
stability too.

For the variable coeflicient wave equation (2), the general
procedure is to regard c(x) as a frozen coefficient for each
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x, t values in question. If the scheme is stable for each frozen
coefficient, then the scheme is guaranteed to be stable. The
corresponding CFL condition for the central forward scheme
is

1
le ()

In the case of the solution interpolation scheme (37), one can
show that the condition becomes

1 2
<

A< |C(x)|+o(h), (56)
which is almost the same as the original stability condition.
This is derived by expanding the coefficient functions in (40)
in a Taylor series. The condition is based on assumption that
c(x) is differentiable. However, the analysis is valid regardless
of its differentiability since the scheme approximates c(x)
with polynomials locally.

Since the schemes based on solution interpolation share
the same consistency and stability with the conventional
schemes, the reason why those are more robust against
oscillation or rapid change embedded in the equation should
be sought elsewhere. One of the possible explanations is
that we utilize analytic information on the equations in the
scheme construction. Solution interpolation makes numer-
ical schemes reflect the additional structures of differential
equations that are likely lost in usual discretization tech-
niques.

Let us discuss characteristic lines of the equations, as
an example of the structure which is successfully inherited
to numerical schemes through the solution interpolation
method. The following differential equations of increasing
order can be derived one by one from (16) as

[c(x)]A<1 or A<

(55)

2 !
Upp = A Uy = _af (x),
3 2 cN
Uy T 0 Uy = 4 f (x) 4
4 3 pm
Uty = @ Uyyxx = —4 f (x), (57)

5 4 0
Upperr T A Uyyxxx = —4 f (X)

Suppose u(x,,, t"") is the exact value of a solution and u/*"!

is the value obtained from scheme (21). Application of the
Taylor expansion to u(x,,, t"*"') — u*" at (x,,, t") gives
u (xm’ tn+1) _ unm+l

= (u; +au, — f (x))k

1
+ 3 (”n - azuxx + af' (x)) K

1 a 1 .y 3
+ 6 (“ztt + Fuxxx - ﬁf (x)> k (58)

1 a’ a . 4
+ ﬂ <utttt - ﬁuxxxx + ﬁf (x) k

a | 5
+ E (uttttt + Fuxxxxx - Ff (x)) k

+...'

Note that the first two terms on the right hand side are always
zero. This indicates that the error of the scheme is O(k*, h*k).
Now, also suppose A = 1/a and compare the differential
equations in the list in (57) and the terms in the series (58).
We can see that the third, fourth, and fifth terms become zero
as well. In fact, a little bit of algebraic work shows that all
terms in the series vanish simultaneously with A = 1/a, which
implies that """ which we found is exact.

It is no wonder this happens since /""" is on the same
characteristic line with «, when A = 1/a. In this case, change
of u along this line can be traced by solving a simple ordinary

differential equation and especially at (x,,, #"*"), we obtain

u (xm,t””) =u(x,_;,t")+ J

X,

Xm

f (x)dx. (59)

This is in fact exactly what we get from scheme (21) with & =
ak,
Wt =+ DF (x,,). (60)

m

The similar situation occurs with schemes (25) and (29). Note
that this observation holds as long as a characteristic line
connects the nodes of the grid. However, for general A, we
can view the solution interpolation method as a natural way
to extend characteristic lines and find an approximate value
at the target point.
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