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We introduce and study a new system of generalized𝐻(⋅, ⋅)−𝜂-cocoercive operator inclusions in Banach spaces. Using the resolvent
operator technique associatedwith𝐻(⋅, ⋅)−𝜂-cocoercive operators, we suggest and analyze a new generalized algorithmof nonlinear
set-valued variational inclusions and establish strong convergence of iterative sequences produced by the method.We highlight the
applicability of our results by examples in function spaces.

1. Introduction

The resolvent operator technique is a powerful tool to
study the approximation solvability of nonlinear variational
inequalities and variational inclusions, which have been
applied widely to optimization and control, mechanics and
physics, economics and transportation equilibrium, and
engineering sciences, see, for example, [1–4] and the refer-
ences therein.

In a series of papers [5–8], the authors investigated
(𝐴, 𝜂)-accretive and 𝐻(⋅, ⋅)-accretive operators for solving
variational inclusions in Banach spaces. Convergence and
stability of iterative algorithms for the systems of (𝐴, 𝜂)-
accretive operators have been studied in [9, 10]. The notion
of (𝐻, 𝜙) − 𝜂-monotone operators has been introduced and
investigated by the authors in [11]. Generalized mixed vari-
ational inclusions involving (𝐻(⋅, ⋅), 𝜂)-monotone operators
have been discussed in [12]. Some results on 𝐻((⋅, ⋅), 𝜂)-
accretive operators and application for solving set-valued
variational inclusions in Banach spaces have been proved in
[7]. Some other related articles on the variational inclusion
problems can be found in [13–22].

Very recently, Ahmad et al. [23] introduced a new𝐻(⋅, ⋅)−

𝜂-cocoercive operator and its resolvent operator in the setting
of Banach spaces. The authors proposed concrete examples
in support of 𝐻(⋅, ⋅) − 𝜂-cocoercive operators and they
also proved the Lipschitz continuity of resolvent operator
associated with 𝐻(⋅, ⋅) − 𝜂-cocoercive operator. Motivated
and inspired by the research works mentioned above, in this
paper, we introduce and study a new system of 𝐻(⋅, ⋅) −

𝜂-cocoercive mapping inclusions in Banach spaces. Using
the resolvent operator associated with 𝐻(⋅, ⋅) − 𝜂-cocoercive
mapping, we suggest and analyze a new general algorithm
and establish the existence and uniqueness of solutions for
this system of𝐻(⋅, ⋅) − 𝜂-cocoercive mappings.

2. Preliminaries

Throughout this paper, we denote the set of positive integers
byN. Let𝑋 be a Banach spacewith the norm ‖ ⋅ ‖ and the dual
space 𝑋

∗. For any 𝑥 ∈ 𝑋, we denote the value of 𝑥∗ ∈ 𝑋
∗ at

𝑥 by ⟨𝑥, 𝑥
∗

⟩. When {𝑥
𝑛
} is a sequence in 𝑋, we denote the

strong convergence of {𝑥
𝑛
} to 𝑥 ∈ 𝑋 by 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞.

We denote by 2
𝑋 the family of all nonempty subsets of𝑋. Let
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𝐶𝐵(𝑋) be the family of all nonempty, closed, and bounded
subsets of 𝑋. The Hausdörff metric on 𝐶𝐵(𝑋) [24] is defined
by

𝐷 (𝐴, 𝐵) = max{sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵) , sup
𝑦∈𝐵

𝑑 (𝐴, 𝑦)} ,

𝐴, 𝐵 ∈ 𝐶𝐵 (𝑋) ,

(1)

where 𝑑(𝑥, 𝐵) = inf
𝑏∈𝐵

‖𝑥 − 𝑏‖ and 𝑑(𝐴, 𝑦) = inf
𝑎∈𝐴

‖𝑎 − 𝑦‖.

Definition 1 (see [25]). A continuous and strictly increasing
function 𝜙 : [0, +∞) → [0,∞) such that 𝜙(0) = 0 and
lim

𝑡→∞
𝜙(𝑡) = ∞ is called a gauge function.

Definition 2 (see [25]). Let 𝑋 be a Banach space. Given a
gauge function 𝜙, the mapping 𝐽

𝜙
: 𝑋 → 2

𝑋
∗

corresponding
to 𝜙 defined by

𝐽
𝜙
(𝑥) = {𝑥

∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
󵄩󵄩󵄩󵄩𝑥

∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 = 𝜙 (‖𝑥‖)} , ∀𝑥 ∈ 𝑋,

(2)

is called the duality mapping with gauge function 𝜙.
In particular, if 𝜙(𝑡) = 𝑡, the duality map 𝐽 = 𝐽

𝜙
is called

the normalized duality mapping.

Lemma 3 (see [26]). Let 𝑋 be a real Banach space and 𝐽 :

𝑋 → 2
𝑋
∗

be the normalized duality mapping. Then, for any
𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ , (3)

for all 𝑗(𝑥 + 𝑦) ∈ 𝐽(𝑥 + 𝑦).

Definition 4. Let 𝑋 be a Banach space. Let 𝐴 : 𝑋 → 𝑋 and
𝜂 : 𝑋 × 𝑋 → 𝑋 be two mappings and 𝐽 : 𝑋 → 2

𝑋
∗

be the
normalized duality mapping. Then, 𝐴 is called

(i) 𝜂-cocoercive, if there exists a constant 𝜇
1

> 0 such
that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝜂 (𝑥, 𝑦))⟩ ≥ 𝜇
1

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝑋,

𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) ,

(4)

(ii) 𝜂-accretive, if

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝜂 (𝑥, 𝑦))⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋,

𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) ,

(5)

(iii) 𝜂-strongly accretive, if there exists a constant 𝛽
1
> 0

such that
⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝜂 (𝑥, 𝑦))⟩ ≥ 𝛽

1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝑋,

𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) ,

(6)

(iv) 𝜂-relaxed cocoercive, if there exists a constant 𝛾
1
> 0

such that
⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝜂 (𝑥, 𝑦))⟩ ≥ (−𝛾

1
)
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝑋,

𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) ,

(7)

(v) Lipschitz continuous, if there exists a constant 𝜆
𝐴

> 0

such that
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩 ≤ 𝜆
𝐴

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑋, (8)

(vi) 𝛼-expansive, if there exists a constant 𝛼 > 0 such that
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩 ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑋, (9)

(vii) 𝜂 is said to be Lipschitz continuous, if there exists a
constant 𝜏 > 0 such that

󵄩󵄩󵄩󵄩𝜂 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜏

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑋. (10)

Definition 5. Let𝑋 be a Banach space. Let𝐴, 𝐵 : 𝑋 → 𝑋,𝐻 :

𝑋×𝑋 → 𝑋, 𝜂 : 𝑋×𝑋 → 𝑋 be four single-valuedmappings
and 𝐽 : 𝑋 → 2

𝑋
∗

be the normalized duality mapping. Then,

(i) 𝐻(𝐴, ⋅) is said to be 𝜂-cocoercive with respect to 𝐴, if
there exists a constant 𝜇 > 0 such that

⟨𝐻 (𝐴𝑥, 𝑢) − 𝐻 (𝐴𝑦, 𝑢) , 𝑗 (𝜂 (𝑥, 𝑦))⟩

≥ 𝜇
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦, 𝑢 ∈ 𝑋,

𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) ,

(11)

(ii) 𝐻(⋅, 𝐵) is said to be 𝜂-relaxed cocoercive with respect
to 𝐵, if there exists a constant 𝛾 > 0 such that

⟨𝐻 (𝑢, 𝐵𝑥) − 𝐻 (𝑢, 𝐵𝑦) , 𝑗 (𝜂 (𝑥, 𝑦))⟩

≥ (−𝛾)
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦, 𝑢 ∈ 𝑋,

𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) ,

(12)

(iii) 𝐻(𝐴, ⋅) is said to be 𝑟
1
-Lipschitz continuous with

respect to𝐴, if there exists a constant 𝑟
1
> 0 such that

󵄩󵄩󵄩󵄩𝐻 (𝐴𝑥, 𝑢) − 𝐻 (𝐴𝑦, 𝑢)
󵄩󵄩󵄩󵄩 ≤ 𝑟

1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦, 𝑢 ∈ 𝑋, (13)

(iv) 𝐻(⋅, 𝐵) is said to be 𝑟
2
-Lipschitz continuous with

respect to 𝐵, if there exists a constant 𝑟
2
> 0 such that

󵄩󵄩󵄩󵄩𝐻 (𝑢, 𝐵𝑥) − 𝐻 (𝑢, 𝐵𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑟

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦, 𝑢 ∈ 𝑋. (14)

Definition 6. Let𝑋 be a Banach space. A set-valued mapping
𝑀 : 𝑋 → 2

𝑋 is said to be 𝜂-cocoercive, if there exists a
constant 𝜇

2
> 0 such that

⟨𝑢 − V, 𝑗 (𝜂 (𝑥, 𝑦))⟩ ≥ 𝜇
2
‖𝑢 − V‖2, ∀𝑥, 𝑦 ∈ 𝑋,

𝑢 ∈ 𝑀 (𝑥) , V ∈ 𝑀(𝑦) , 𝑗 (𝜂 (𝑥, 𝑦)) ∈ 𝐽 (𝜂 (𝑥, 𝑦)) .

(15)

Definition 7. Let 𝑋 be a Banach space. A mapping 𝑇 : 𝑋 →

𝐶𝐵(𝑋) is said to be D-Lipschitz continuous, if there exists a
constant 𝜆

𝑇
> 0 such that

D (𝑇𝑥, 𝑇𝑦) ≤ 𝜆
𝑇

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋. (16)
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Definition 8. Let 𝑋 be a Banach space. Let 𝑇,𝑄 : 𝑋 →

𝐶𝐵(𝑋) be the mappings. A mapping 𝑁 : 𝑋 × 𝑋 → 𝑋 is
said to be

(i) Lipschitz continuous in the first argument with
respect to 𝑇, if there exists a constant 𝑡

1
> 0 such that

󵄩󵄩󵄩󵄩𝑁 (𝑤
1
, ⋅) − 𝑁 (𝑤

2
, ⋅)

󵄩󵄩󵄩󵄩 ≤ 𝑡
1

󵄩󵄩󵄩󵄩𝑤1
− 𝑤

2

󵄩󵄩󵄩󵄩 , ∀𝑢
1
, 𝑢

2
∈ 𝑋,

𝑤
1
∈ 𝑇 (𝑢

1
) , 𝑤

2
∈ 𝑇 (𝑢

2
) ,

(17)

(ii) Lipschitz continuous in the second argument with
respect to𝑄, if there exists a constant 𝑡

2
> 0 such that

󵄩󵄩󵄩󵄩𝑁 (⋅, V
1
) − 𝑁 (⋅, V

2
)
󵄩󵄩󵄩󵄩 ≤ 𝑡

2

󵄩󵄩󵄩󵄩V1 − V
2

󵄩󵄩󵄩󵄩 , ∀𝑢
1
, 𝑢

2
∈ 𝑋,

V
1
∈ 𝑄 (𝑢

1
) , V

2
∈ 𝑄 (𝑢

2
) ,

(18)

(iii) 𝜂-relaxed Lipschitz in the first argument with respect
to 𝑇, if there exists a constant 𝜏

1
> 0 such that

⟨𝑁 (𝑤
1
, ⋅) − 𝑁 (𝑤

2
, ⋅) , 𝑗 (𝜂 (𝑢

1
, 𝑢

2
))⟩

≤ (−𝜏
1
)
󵄩󵄩󵄩󵄩𝑢1 − 𝑢

2

󵄩󵄩󵄩󵄩

2

, ∀𝑢
1
, 𝑢

2
∈ 𝑋,

𝑤
1
∈ 𝑇 (𝑢

1
) , 𝑤

2
∈ 𝑇 (𝑢

2
) ,

𝑗 (𝜂 (𝑢
1
, 𝑢

2
)) ∈ 𝐽 (𝜂 (𝑢

1
, 𝑢

2
)) ,

(19)

(iv) 𝜂-relaxed Lipschitz in the second argument with
respect to𝑄, if there exists a constant 𝜏

2
> 0 such that

⟨𝑁 (⋅, V
1
) − 𝑁 (⋅, V

2
) , 𝑗 (𝜂 (𝑢

1
, 𝑢

2
))⟩

≤ (−𝜏
2
)
󵄩󵄩󵄩󵄩𝑢1 − 𝑢

2

󵄩󵄩󵄩󵄩

2

, ∀𝑢
1
, 𝑢

2
∈ 𝑋, V

1
∈ 𝑄 (𝑢

1
) ,

V
2
∈ 𝑄 (𝑢

2
) , 𝑗 (𝜂 (𝑢

1
, 𝑢

2
)) ∈ 𝐽 (𝜂 (𝑢

1
, 𝑢

2
)) .

(20)

Definition 9. Let 𝑋 be a Banach space. Let 𝐴, 𝐵 : 𝑋 → 𝑋,
𝐻 : 𝑋 × 𝑋 → 𝑋, 𝜂 : 𝑋 × 𝑋 → 𝑋 be four single-valued
mappings. Let 𝑀 : 𝑋 → 2

𝑋 be a set-valued mapping. 𝑀
is said to be 𝐻(⋅, ⋅) − 𝜂-cocoercive operator with respect to 𝐴

and 𝐵, if𝑀 is 𝜂-cocoercive and (𝐻(𝐴, 𝐵) + 𝜆𝑀)(𝑋) = 𝑋, for
every 𝜆 > 0.

Example 10. Let𝑋 = R×R and𝐴, 𝐵 : 𝑋 → 𝑋 be defined by

𝐴 (𝑥
1
, 𝑥

2
) = (2𝑥

1
− 𝑥

2
, 𝑥

1
− 𝑥

2
) ,

𝐵 (𝑦
1
, 𝑦

2
) = (−2𝑦

2
, 𝑦

1
− 𝑦

2
) , ∀ (𝑥

1
, 𝑥

2
) , (𝑦

1
, 𝑦

2
) ∈ 𝑋.

(21)

Assume now that𝐻(𝐴, 𝐵), 𝜂 : 𝑋 × 𝑋 → 𝑋 are defined by

𝐻(𝐴𝑥, 𝐵𝑦) = 𝐴𝑥 + 𝐵𝑦, 𝜂 (𝑥, 𝑦) = 𝑥 − 𝑦, ∀𝑥, 𝑦 ∈ 𝑋.

(22)

Let 𝑀 = 𝐼, where 𝐼 is the identity mapping. Then, 𝑀 is
𝐻(⋅, ⋅) − 𝜂-cocoercive with respect to 𝐴 and 𝐵.

Example 11. Let 𝑋 = 𝐶[0, 1], the space of all real valued
continuous functions defined on closed interval [0, 1] with
the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = max

𝑡∈[0,1]

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 . (23)

Let 𝐴, 𝐵 : 𝑋 → 𝑋 be defined by

𝐴 (𝑓) = sin2 (𝑓) , 𝐵 (𝑔) = cos2 (𝑔) , ∀𝑓, 𝑔 ∈ 𝑋. (24)

Let𝐻(𝐴, 𝐵) : 𝑋 × 𝑋 → 𝑋 be defined by

𝐻(𝐴 (𝑓) , 𝐵 (𝑔)) = 𝐴 (𝑓) + 𝐵 (𝑔) , ∀𝑓, 𝑔 ∈ 𝑋. (25)

Suppose that 𝑀(𝑓) = 𝑓
2, where 𝑓

2

(𝑡) = 𝑓(𝑡)𝑓(𝑡) for all 𝑡 ∈

[0, 1]. Then, for 𝜆 = 1, we conclude that
󵄩󵄩󵄩󵄩(𝐻 (𝐴, 𝐵) + 𝑀) (𝑓)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝐴 (𝑓) + 𝐵 (𝑓) + 𝑓

2
󵄩󵄩󵄩󵄩󵄩

= max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨
sin2 (𝑓 (𝑡)) + cos2 (𝑓 (𝑡)) + 𝑓

2

(𝑡)
󵄨󵄨󵄨󵄨󵄨

= 1 + 𝑓
2

(𝑡) > 0.

(26)

This proves that 0 ∉ (𝐻(𝐴, 𝐵)+𝑀)(𝑋) and𝑀 is not𝐻(𝐴, 𝐵)−

𝜂-cocoercive with respect to 𝐴 and 𝐵.

Proposition 12 (see [23]). Let 𝐻(𝐴, 𝐵) be 𝜂-cocoercive with
respect to 𝐴 with constant 𝜇 > 0 and 𝜂-relaxed cocoercive with
respect to 𝐵 with constant 𝛾 > 0, 𝐴 be 𝛼-expansive and 𝐵 be
𝛽-Lipschitz continuous 𝜇 > 𝛾 and 𝛼 > 𝛽. Let 𝑀 : 𝑋 → 2

𝑋 be
𝐻(𝐴, 𝐵) − 𝜂-cocoercive operator. Suppose that

⟨𝑥 − 𝑦, 𝑗 (𝜂 (𝑢, V))⟩ ≥ 0, ∀ (V, 𝑦) ∈ 𝐺𝑟𝑎𝑝ℎ (𝑀) ,

𝑗 (𝜂 (𝑢, V)) ∈ 𝐽 (𝜂 (𝑢, V)) .
(27)

Then,𝑥 ∈ 𝑀𝑢, where𝐺𝑟𝑎𝑝ℎ(𝑀) = {(𝑢, 𝑥) ∈ 𝑋×𝑋 : 𝑥 ∈ 𝑀𝑢}.

Theorem 13 (see [23]). Let 𝐻(𝐴, 𝐵) be 𝜂-cocoercive with
respect to 𝐴 with constant 𝜇 > 0 and 𝜂-relaxed cocoercive
with respect to 𝐵 with constant 𝛾 > 0, 𝐴 be 𝛼-expansive and
𝐵 be 𝛽-Lipschitz continuous, 𝜇 > 𝛾 and 𝛼 > 𝛽. Let 𝑀 be an
𝐻(⋅, ⋅) − 𝜂-cocoercive operator with respect to 𝐴 and 𝐵. Then,
for each 𝜆 > 0, the operator (𝐻(𝐴, 𝐵)+𝜆𝑀)

−1 is single-valued.

Definition 14. Let 𝑋 be a Banach space. Let 𝐻(𝐴, 𝐵) be 𝜂-
cocoercive with respect to 𝐴 with constant 𝜇 > 0 and 𝜂-
relaxed cocoercive with respect to 𝐵 with constant 𝛾 > 0,
𝐴 be 𝛼-expansive 𝐵 be 𝛽-Lipschitz continuous and 𝜂 be 𝛽-
Lipschitz continuous, 𝜇 > 𝛾, and 𝛼 > 𝛽. Let 𝑀 be a
𝐻(⋅, ⋅) − 𝜂-cocoercive operator with respect to𝐴 and 𝐵. Then,
the resolvent 𝑅𝐻(⋅,⋅)−𝜂

𝜆,𝑀
: 𝑋 → 𝑋 is defined by

𝑅
𝐻(⋅,⋅)−𝜂

𝜆,𝑀
(𝑢) = (𝐻 (𝐴, 𝐵) + 𝜆𝑀)

−1

(𝑢) , ∀𝑢 ∈ 𝑋. (28)

Theorem 15 (see [23]). Let𝑋 be a Banach space. Let𝐻(𝐴, 𝐵)

be 𝜂-cocoercive with respect to 𝐴 with constant 𝜇 > 0 and 𝜂-
relaxed cocoercive with respect to 𝐵 with constant 𝛾 > 0, 𝐴 be
𝛼-expansive 𝐵 be 𝛽-Lipschitz continuous, and 𝜂 be 𝜌-Lipschitz
continuous; 𝜇 > 𝛾 and 𝛼 > 𝛽. Let 𝑀 be 𝐻(⋅, ⋅) − 𝜂-cocoercive
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operator with respect to 𝐴 and 𝐵. Then, the resolvent operator
𝑅
𝐻(⋅,⋅)−𝜂

𝜆,𝑀
: 𝑋 → 𝑋 is 𝜌/(𝜇𝛼2 − 𝛾𝛽

2

)-Lipschitz continuous, that
is,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻(⋅,⋅)−𝜂

𝜆,𝑀
(𝑢) − 𝑅

𝐻(⋅,⋅)−𝜂

𝜆,𝑀
(V)

󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝜌

𝜇𝛼2 − 𝛾𝛽2
‖𝑢 − V‖ , ∀𝑢, V ∈ 𝑋.

(29)

3. Strong Convergence Theorem

In this section, using the resolvent operator technique asso-
ciated with 𝐻(⋅, ⋅) − 𝜂-cocoercive operators, we propose a
new generalized algorithm of nonlinear set-valued varia-
tional inclusions and establish strong convergence of iterative
sequences produced by the method.

For 𝑖 = 1, 2, let 𝑋
𝑖
be real Banach spaces with the norm

‖ ⋅ ‖
𝑖
. Let 𝐴

𝑖
, 𝐵

𝑖
: 𝑋

𝑖
→ 𝑋

𝑖
, 𝐻

𝑖
: 𝑋

𝑖
× 𝑋

𝑖
→ 𝑋

𝑖
, 𝜂

𝑖
: 𝑋

𝑖
×

𝑋
𝑖
→ 𝑋

𝑖
, 𝐹 : 𝑋

1
× 𝑋

2
→ 𝑋

1
, and 𝐺 : 𝑋

1
× 𝑋

2
→ 𝑋

2
be

single-valued mappings, and 𝑇 : 𝑋
1

→ 𝐶𝐵(𝑋
1
), 𝑄 : 𝑋

2
→

𝐶𝐵(𝑋
2
) be set-valued mappings. Let 𝑀 : 𝑋

1
× 𝑋

1
→ 2

𝑋
1 ,

𝑁 : 𝑋
2
× 𝑋

2
→ 2

𝑋
2 be𝐻

1
(⋅, ⋅) − 𝜂

1
-cocoercive and𝐻

2
(⋅, ⋅) −

𝜂
2
-cocoercive operators with respect to (𝐴

1
, 𝐵

1
) and (𝐴

2
, 𝐵

2
),

respectively. We consider the following problem.
Find (𝑥, 𝑦) ∈ 𝑋

1
× 𝑋

2
, 𝑤 ∈ 𝑇(𝑥), and V ∈ 𝑄(𝑦) such that

0 ∈ 𝑀 (𝑥, 𝑥) + 𝐹 (𝑤, V) ,

0 ∈ 𝑁 (𝑦, 𝑦) + 𝐺 (𝑤, V) .
(30)

We call problem (30) a system of generalized 𝐻(⋅, ⋅) − 𝜂-
cocoercive operator inclusions.

Under the assumptions mentioned above, we have the
following key and simple lemma.

Lemma 16. (𝑥, 𝑦) ∈ 𝑋
1
×𝑋

2
,𝑤 ∈ 𝑇(𝑥), V ∈ 𝑄(𝑦) is a solution

of problem (30) if and only if

𝑥 = 𝑅
𝐻
1
(⋅,⋅)−𝜂

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)] ,

𝑦 = 𝑅
𝐻
2
(⋅,⋅)−𝜂

𝜆
2
,𝑁(⋅,𝑦)

[𝐻
2
(𝐴

2
𝑦, 𝐵

2
𝑦) − 𝜆

2
𝐺 (𝑤, V)] ,

(31)

where 𝑅
𝐻
1
(⋅,⋅)−𝜂

𝜆
1
,𝑀(⋅,𝑥)

= (𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) + 𝜆

1
𝑀(⋅, 𝑥))

−1, 𝑅𝐻
2
(⋅,⋅)−𝜂

𝜆
1
,𝑁(⋅,𝑦)

=

(𝐻
2
(𝐴

2
𝑦, 𝐵

2
𝑦) + 𝜆

2
𝑁(⋅, 𝑦))

−1, and 𝜆
1
, 𝜆

2
> 0 are constants.

Proof . This is an easy and direct consequence of
Definition 14.

Algorithm 17. For 𝑖 = 1, 2, let 𝑋
𝑖
be real Banach spaces with

the norm ‖ ⋅ ‖
𝑖
. Let 𝐴

𝑖
, 𝐵

𝑖
: 𝑋

𝑖
→ 𝑋

𝑖
, 𝐻

𝑖
: 𝑋

𝑖
× 𝑋

𝑖
→ 𝑋

𝑖
,

𝜂
𝑖
: 𝑋

𝑖
×𝑋

𝑖
→ 𝑋

𝑖
,𝐹 : 𝑋

1
×𝑋

2
→ 𝑋

1
, and𝐺 : 𝑋

1
×𝑋

2
→ 𝑋

2

be single-valued mappings, and 𝑇 : 𝑋
1

→ 𝐶𝐵(𝑋
1
), 𝑄 :

𝑋
2

→ 𝐶𝐵(𝑋
2
) be set-valued mappings. Let𝑀 : 𝑋

1
× 𝑋

1
→

→ 2
𝑋
1 , 𝑁 : 𝑋

2
× 𝑋

2
→ 2

𝑋
2 be such that, for each fixed

𝑥 ∈ 𝑋
1
,𝑦 ∈ 𝑋

2
,𝑀(⋅, 𝑥) and𝑁(⋅, 𝑦) are𝐻

1
(⋅, ⋅)−𝜂

1
-cocoercive

and𝐻
2
(⋅, ⋅)−𝜂

2
-cocoercive operators with respect to (𝐴

1
, 𝐵

1
)

and (𝐴
2
, 𝐵

2
), respectively. For any given constants 𝜆

𝑖
> 0

(𝑖 = 1, 2), define the mappings 𝑆
1

: 𝑋
1
× 𝑋

2
→ 𝑋

1
and

𝑆
2
: 𝑋

1
× 𝑋

2
→ 𝑋

2
by

𝑆
1
(𝑥, 𝑦)

= ⋃

𝑤∈𝑇(𝑥)

⋃

V∈𝑄(𝑦)

𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)] ,

𝑆
2
(𝑥, 𝑦)

= ⋃

𝑤∈𝑇(𝑥)

⋃

V∈𝑄(𝑦)

𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦)

[𝐻
2
(𝐴

2
𝑦, 𝐵

2
𝑦) − 𝜆

2
𝐺 (𝑤, V)] .

(32)

For any given (𝑥
0
, 𝑦

0
) ∈ 𝑋

1
× 𝑋

2
, 𝑤

0
∈ 𝑇(𝑥

0
), V

0
∈ 𝑄(𝑦

0
), let

𝑧
0
= 𝑅

𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥0)

× [𝐻
1
(𝐴

1
𝑥
0
, 𝐵

1
𝑥
0
) − 𝜆

1
𝐹 (𝑤

0
, V

0
)] ∈ 𝑆

1
(𝑥

0
, 𝑦

0
) ,

𝑢
0
= 𝑅

𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦0)

× [𝐻
2
(𝐴

2
𝑦
0
, 𝐵

2
𝑦
0
) − 𝜆

2
𝐺 (𝑤

0
, V

0
)] ∈ 𝑆

2
(𝑥

0
, 𝑦

0
) .

(33)

Since 𝑤
0
∈ 𝑇(𝑥

0
) ⊂ 𝐶𝐵(𝑋

1
) and V

0
∈ 𝑄(𝑦

0
) ⊂ 𝐶𝐵(𝑋

2
), in

view of Nadler’s theorem [24], there exist 𝑤
1

∈ 𝑇(𝑥
1
) and

V
1
∈ 𝑄(𝑦

1
) such that
󵄩󵄩󵄩󵄩𝑤1

− 𝑤
0

󵄩󵄩󵄩󵄩1
≤ (1 + 1)𝐷 (𝑇 (𝑥

1
) , 𝑇 (𝑥

0
)) ,

󵄩󵄩󵄩󵄩V1 − V
0

󵄩󵄩󵄩󵄩2
≤ (1 + 1)𝐷 (𝑄 (𝑦

1
) , 𝑄 (𝑦

0
)) .

(34)

By induction, we define iterative sequences {𝑥
𝑛
}, {𝑦

𝑛
}, {𝑤

𝑛
},

and {V
𝑛
} as follows:

𝑥
𝑛+1

= 𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛)

× [𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)] ∈ 𝑆

1
(𝑥

𝑛
, 𝑦

𝑛
) ,

𝑦
𝑛+1

= 𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦𝑛)

× [𝐻
2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝜆

2
𝐺 (𝑤

𝑛
, V

𝑛
)] ∈ 𝑆

2
(𝑥

𝑛
, 𝑦

𝑛
) ,

𝑤
𝑛
∈ 𝑇 (𝑥

𝑛
) ,

󵄩󵄩󵄩󵄩𝑤𝑛+1
− 𝑤

𝑛

󵄩󵄩󵄩󵄩1
≤ (1 +

1

𝑛 + 1
)𝐷 (𝑇 (𝑥

𝑛+1
) , 𝑇 (𝑥

𝑛
)) ,

V
𝑛
∈ 𝑄 (𝑦

𝑛
) ,

󵄩󵄩󵄩󵄩V𝑛+1 − V
𝑛

󵄩󵄩󵄩󵄩2
≤ (1 +

1

𝑛 + 1
)𝐷 (𝑄 (𝑦

𝑛+1
) , 𝑄 (𝑦

𝑛
)) ,

(35)

where 𝑛 = 0, 1, 2, . . ., and 𝜆
1
, 𝜆

2
> 0 are constants.

Theorem 18. For 𝑖 = 1, 2, let 𝑋
𝑖
be real Banach spaces with

the norm ‖ ⋅ ‖
𝑖
. Let 𝐴

𝑖
, 𝐵

𝑖
: 𝑋

𝑖
→ 𝑋

𝑖
, 𝐻

𝑖
: 𝑋

𝑖
× 𝑋

𝑖
→ 𝑋

𝑖
,

𝜂
𝑖
: 𝑋

𝑖
×𝑋

𝑖
→ 𝑋

𝑖
,𝐹 : 𝑋

1
×𝑋

2
→ 𝑋

1,
and𝐺 : 𝑋

1
×𝑋

2
→ 𝑋

2

be single-valuedmappings, and𝑇 : 𝑋
1

→ 𝐶𝐵(𝑋
1
),𝑄 : 𝑋

2
→
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𝐶𝐵(𝑋
2
) be set-valued mappings. Let 𝑀 : 𝑋

1
× 𝑋

1
→ 2

𝑋
1

and 𝑁 : 𝑋
2
× 𝑋

2
→ 2

𝑋
2 be such that, for each fixed 𝑥 ∈

𝑋
1
, 𝑦 ∈ 𝑋

2
,𝑀(⋅, 𝑥) and𝑁(⋅, 𝑦) are𝐻

1
(⋅, ⋅)−𝜂

1
-cocoercive and

𝐻
2
(⋅, ⋅) − 𝜂

2
-cocoercive operators with respect to (𝐴

1
, 𝐵

1
) and

(𝐴
2
, 𝐵

2
), respectively. Suppose that the following conditions are

satisfied.

(i) 𝐻
𝑖
(𝐴

𝑖
, 𝐵

𝑖
) is 𝜂

𝑖
-cocoercive with respect to 𝐴

𝑖
with

constant 𝜇
𝑖
and 𝜂

𝑖
-relaxed cocoercive with respect to 𝐵

𝑖

with constant 𝛾
𝑖
, 𝑖 = 1, 2.

(ii) 𝐴
𝑖
is𝛼

𝑖
-expansive and𝐵

𝑖
is𝛽

𝑖
-Lipschitz continuous, 𝑖 =

1, 2.

(iii) 𝐻
𝑖
(𝐴

𝑖
, 𝐵

𝑖
) is 𝑟

𝑖
-Lipschitz continuous with respect to 𝐴

𝑖

and 𝑠
𝑖
-Lipschitz continuous with respect to 𝐵

𝑖
, 𝑖 = 1, 2.

(iv) 𝑇 is 𝐷-Lipschitz continuous with constant 𝜆
𝑇
and 𝑄 is

𝐷-Lipschitz continuous with constant 𝜆
𝑄
.

(v) 𝐹 is 𝑡
1
-Lipschitz continuous with respect to𝑇 in the first

argument and 𝑡
2
-Lipschitz continuous with respect to𝑄

in the second argument.

(vi) 𝐺 is 𝑙
1
-Lipschitz continuous with respect to𝑇 in the first

argument and 𝑙
2
-Lipschitz continuous with respect to𝑄

in the second argument.

(vii) 𝜂
𝑖
is 𝜌

𝑖
-Lipschitz continuous, 𝑖 = 1, 2.

(viii) 𝐹 is 𝜂
1
-relaxed Lipschitz continuous with respect to𝑇 in

the first argument and 𝜂
1
-relaxed Lipschitz continuous

with respect to𝑄 in the second argument with constants
𝜏
1
and 𝜏

2
, respectively.

(ix) 𝐺 is 𝜂
2
-relaxed Lipschitz continuouswith respect to𝑇 in

the first argument and 𝜂
2
-relaxed Lipschitz continuous

with respect to𝑄 in the second argument with constants
𝜖
1
and 𝜖

2
, respectively. Furthermore, assume that there

exist constants 𝜎
1
, 𝜎

2
> 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥1)

(𝑥) − 𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥2)

(𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
2

󵄩󵄩󵄩󵄩1
, ∀𝑥, 𝑥

1
, 𝑥

2
∈ 𝑋

1
,

(36)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦1)

(𝑦) − 𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦2)

(𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝜎
2

󵄩󵄩󵄩󵄩𝑦1 − 𝑦
2

󵄩󵄩󵄩󵄩2
, ∀𝑦, 𝑦

1
, 𝑦

2
∈ 𝑋

2
,

(37)

and𝜆
1
, 𝜆

2
> 0 are constants satisfying the following conditions:

𝑝
0
= √𝑟

2

1
+ 2𝜆

1
𝑡
1
𝜆
𝑇
[𝑟
1
+ 𝜆

1
𝑡
1
𝜆
𝑇
+ 𝜌

1
] − 2𝜆

1
𝜏
1
,

𝑞
0
= √𝑟

2

2
+ 2𝜆

2
𝑙
2
𝜆
𝑄
[𝑟
2
+ 𝜆

2
𝑙
2
𝜆
𝑄
+ 𝜌

2
] − 2𝜆

2
𝜖
2
,

𝑟
2

1
+ 2𝜆

1
𝑡
1
𝜆
𝑇
[𝑟
1
+ 𝜆

1
𝑡
1
𝜆
𝑇
+ 𝜌

1
] > 2𝜆

1
𝜏
1
,

𝑟
2

2
+ 2𝜆

2
𝑙
2
𝜆
𝑄
[𝑟
2
+ 𝜆

2
𝑙
2
𝜆
𝑄
+ 𝜌

2
] > 2𝜆

2
𝜖
2
,

𝜇
𝑖
> 𝛾

𝑖
, 𝛼

𝑖
> 𝛽

𝑖
, 𝑖 = 1, 2,

𝜃
1
=

𝜌
1

𝜇
1
𝛼
2

1
− 𝛾

1
𝛽
2

1

, 𝜃
2
=

𝜌
2

𝜇
2
𝛼
2

2
− 𝛾

2
𝛽
2

2

,

𝜎
1
+ 𝜃

1
𝑝
0
+ 𝜃

1
𝑠
1
+ 𝜆

2
𝜃
2
𝑙
1
𝜆
𝑇
< 1,

𝜎
2
+ 𝜃

2
𝑞
0
+ 𝜃

2
𝑠
2
+ 𝜆

1
𝜃
1
𝑡
2
𝜆
𝑄

< 1.

(38)

Then, the iterative sequences {𝑥
𝑛
}, {𝑦

𝑛
}, {𝑤

𝑛
}, and {V

𝑛
} gen-

erated by Algorithm 17 converge strongly to 𝑥, 𝑦, 𝑤, and V,
respectively, and (𝑥, 𝑦, 𝑤, V) is a solution of problem (30).

Proof. In view ofTheorem 13, the resolvent operator𝑅𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀

is 𝜃
1
-Lipschitz continuous. This, together with Algorithm 17

and (36), implies that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩1

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

− 𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛−1)

× [𝐻
1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛−1

) − 𝜆
1
𝐹 (𝑤

𝑛−1
, V

𝑛−1
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩1

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

−𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛−1)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛−1)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

−𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛−1)

× [𝐻
1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛−1

)−𝜆
1
𝐹 (𝑤

𝑛−1
, V

𝑛−1
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1

+ 𝜃
1

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛−1

)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛−1
))
󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1

+ 𝜃
1

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛−1

)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
))
󵄩󵄩󵄩󵄩1

+ 𝜆
1
𝜃
1

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛−1

, V
𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛−1
)
󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1

+ 𝜃
1

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
))
󵄩󵄩󵄩󵄩1
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+ 𝜃
1

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩1

+ 𝜆
1
𝜃
1

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛−1

, V
𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛−1
)
󵄩󵄩󵄩󵄩1
.

(39)

Since 𝐹 is 𝑡
1
-Lipschitz continuous with respect to 𝑇 in the

first argument and 𝑡
2
-Lipschitz continuous in the second

argument, 𝑇 is 𝜆
𝑇
-Lipschitz continuous, and 𝑄 is 𝜆

𝑄
-

Lipschitz continuous, by Algorithm 17, we get

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
)
󵄩󵄩󵄩󵄩1

≤ 𝑡
1

󵄩󵄩󵄩󵄩𝑤𝑛
− 𝑤

𝑛−1

󵄩󵄩󵄩󵄩1

≤ 𝑡
1
(1 +

1

𝑛
)𝐷 (𝑇 (𝑥

𝑛
) , 𝑇 (𝑥

𝑛−1
))

≤ 𝑡
1
𝜆
𝑇
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1
,

(40)

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛−1

, V
𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛−1
)
󵄩󵄩󵄩󵄩1

≤ 𝑡
2

󵄩󵄩󵄩󵄩V𝑛 − V
𝑛−1

󵄩󵄩󵄩󵄩2

≤ 𝑡
2
(1 +

1

𝑛
)𝐷 (𝑄 (𝑦

𝑛
) , 𝑄 (𝑦

𝑛−1
))

≤ 𝑡
2
𝜆
𝑄
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩2
.

(41)

As 𝐻
1
(⋅, ⋅) is 𝑟

1
-Lipschitz continuous with respect to 𝐴

1
, we

obtain

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩1

≤ 𝑟
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
.

(42)

Since 𝜂
1
is 𝜌

1
-Lipschitz continuous, we conclude that

󵄩󵄩󵄩󵄩𝜂1 (𝑥𝑛, 𝑥𝑛−1)
󵄩󵄩󵄩󵄩1

≤ 𝜌
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
. (43)

Since 𝐻
1
(⋅, ⋅) is 𝜂

1
-relaxed Lipschitz continuous with

respect to𝑇 and 𝜂
2
-relaxed Lipschitz continuous with respect

to 𝑄 in the first and second arguments with constants 𝜏
1
and

𝜏
2
, respectively, we have

⟨𝐹 (𝑤
𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
) , 𝑗 (𝜂

1
(𝑥

𝑛
, 𝑥

𝑛−1
))⟩

≤ −𝜏
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

2

1
.

(44)

Employing Lemma 3 and taking into account (39)–(44), we
obtain

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
))
󵄩󵄩󵄩󵄩

2

1

≤
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

1

− 2𝜆
1
⟨𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
) ,

𝑗 [𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
))] ⟩

=
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

1

− 2𝜆
1
⟨𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
) ,

𝑗 [𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
))]

+𝑗 (𝜂
1
(𝑥

𝑛
, 𝑥

𝑛−1
)) ⟩

+ 2𝜆
1
⟨𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
) , 𝑗 (𝜂

1
(𝑥

𝑛
, 𝑥

𝑛−1
))⟩

≤
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

1

+ 2𝜆
1

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
)
󵄩󵄩󵄩󵄩1

× [
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩1

+ 𝜆
1

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝜂1 (𝑥𝑛, 𝑥𝑛−1)

󵄩󵄩󵄩󵄩1
]

+ 2𝜆
1
⟨𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
) , 𝑗 (𝜂

1
(𝑥

𝑛
, 𝑥

𝑛−1
))⟩

≤ 𝑟
2

1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

2

1
+ 2𝜆

1
𝑡
1
𝜆
𝑇
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1

× [𝑟
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
+ 𝜆

1
𝑡
1
𝜆
𝑇
(1 +

1

𝑛
)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1
+ 𝜌

1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
]

− 2𝜆
1
𝜏
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

2

1

= [𝑟
2

1
+ 2𝜆

1
𝑡
1
𝜆
𝑇
(1 +

1

𝑛
)

× [𝑟
1
+𝜆

1
𝑡
1
𝜆
𝑇
(1+

1

𝑛
)+𝜌

1
] − 2𝜆

1
𝜏
1
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

2

1
.

(45)

This implies that
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
)

−𝜆
1
(𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤

𝑛−1
, V

𝑛
))
󵄩󵄩󵄩󵄩1

≤ √𝑟
2

1
+2𝜆

1
𝑡
1
𝜆
𝑇
(1+

1

𝑛
) [𝑟

1
+𝜆

1
𝑡
1
𝜆
𝑇
(1+

1

𝑛
)+𝜌

1
]−2𝜆

1
𝜏
1

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1

= 𝑝
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
,

(46)

where
𝑝
𝑛

= √𝑟
2

1
+ 2𝜆

1
𝑡
1
𝜆
𝑇
(1 +

1

𝑛

) [[𝑟
1
+ 𝜆

1
𝑡
1
𝜆
𝑇
(1 +

1

𝑛

) + 𝜌
1
] − 2𝜆

1
𝜏
1
].

(47)
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Using 𝑠
1
-Lipschitz continuity of𝐻

1
(⋅, ⋅)with respect to𝐵

1
,

we deduce that

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥
𝑛−1

, 𝐵
1
𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩1

≤ 𝑠
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
.

(48)

In view of (41), (46), (48), (39) becomes

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
+ 𝜃

1
𝑝
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1

+ 𝜃
1
𝑠
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1

+ 𝜆
1
𝜃
1
𝑡
2
𝜆
𝑄
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩2

= (𝜎
1
+ 𝜃

1
𝑝
𝑛
+ 𝜃

1
𝑠
1
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1

+ 𝜆
1
𝜃
1
𝑡
2
𝜆
𝑄
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩2
.

(49)

Similarly, we have

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦𝑛)

[𝐻
2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝜆

2
𝐺 (𝑤

𝑛
, V

𝑛
)]

− 𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦𝑛−1)

[𝐻
2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛−1

)

− 𝜆
2
𝐺 (𝑤

𝑛−1
, V

𝑛−1
) ]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦𝑛)

[𝐻
2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝜆

2
𝐺 (𝑤

𝑛
, V

𝑛
)]

− 𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦𝑛−1)

[𝐻
2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝜆

2
𝐺 (𝑤

𝑛
, V

𝑛
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦

𝑛−1
)
[𝐻

2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝜆

2
𝐺 (𝑤

𝑛
, V

𝑛
)]

− 𝑅
𝐻
2
(⋅,⋅)−𝜂

2

𝜆
2
,𝑁(⋅,𝑦𝑛−1)

[𝐻
2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛−1

)

− 𝜆
2
𝐺 (𝑤

𝑛−1
, V

𝑛−1
) ]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝜎
2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2

+ 𝜃
2

󵄩󵄩󵄩󵄩𝐻2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝐻

2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛−1

)

− 𝜆
2
(𝐺 (𝑤

𝑛
, V

𝑛
) − 𝐺 (𝑤

𝑛−1
, V

𝑛−1
))
󵄩󵄩󵄩󵄩2

≤ 𝜎
2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2

+ 𝜃
2

󵄩󵄩󵄩󵄩𝐻2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝐻

2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛−1

)

− 𝜆
2
(𝐺 (𝑤

𝑛
, V

𝑛
) − 𝐺 (𝑤

𝑛
, V

𝑛−1
))
󵄩󵄩󵄩󵄩2

+ 𝜆
2
𝜃
2

󵄩󵄩󵄩󵄩𝐺 (𝑤
𝑛
, V

𝑛−1
) − 𝐺 (𝑤

𝑛−1
, V

𝑛−1
)
󵄩󵄩󵄩󵄩2

≤ 𝜎
2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2

+ 𝜃
2

󵄩󵄩󵄩󵄩𝐻2
(𝐴

2
𝑦
𝑛
, 𝐵

2
𝑦
𝑛
) − 𝐻

2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛
)

− 𝜆
2
(𝐺 (𝑤

𝑛
, V

𝑛
) − 𝐺 (𝑤

𝑛
, V

𝑛−1
))
󵄩󵄩󵄩󵄩2

+ 𝜃
2

󵄩󵄩󵄩󵄩𝐻2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛
) − 𝐻

2
(𝐴

2
𝑦
𝑛−1

, 𝐵
2
𝑦
𝑛−1

)
󵄩󵄩󵄩󵄩2

+ 𝜆
2
𝜃
2

󵄩󵄩󵄩󵄩𝐺 (𝑤
𝑛
, V

𝑛−1
) − 𝐺 (𝑤

𝑛−1
, V

𝑛−1
)
󵄩󵄩󵄩󵄩2

≤ 𝜎
2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2
+ 𝜃

2
𝑞
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2
+ 𝜃

2
𝑠
2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2

+ 𝜆
2
𝜃
2
𝑡
1
𝜆
𝑇
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1

= (𝜎
2
+ 𝜃

2
𝑞
𝑛
+ 𝜃

2
𝑠
2
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩2

+ 𝜆
2
𝜃
2
𝑙
1
𝜆
𝑇
(1 +

1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1
,

(50)

where

𝑞
𝑛

= √𝑟
2

2
+ 2𝜆

2
𝑙
2
𝜆
𝑄
(1 +

1

𝑛

) [𝑟
2
+ 𝜆

2
𝑙
2
𝜆
𝑄
(1 +

1

𝑛

) + 𝜌
2
] − 2𝜆

2
𝜖
2
.

(51)

In view of (49) and (50), we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩2

≤ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
+ 𝑑

𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2

≤ 𝑘
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩2
) ,

(52)

where 𝑐
𝑛
= 𝜎

1
+ 𝜃

1
𝑝
𝑛
+ 𝜃

1
𝑠
1
+ 𝜆

2
𝜃
2
𝑙
1
𝜆
𝑇
(1 + 1/𝑛), 𝑑

𝑛
= 𝜎

2
+

𝜃
2
𝑞
𝑛
+ 𝜃

2
𝑠
2
+ 𝜆

1
𝜃
1
𝑡
2
𝜆
𝑄
(1 + 1/𝑛), and 𝑘

𝑛
= max{𝑐

𝑛
, 𝑑

𝑛
}.

Letting 𝑛 → ∞, we obtain 𝑘
𝑛

→ 𝑘, where

𝑘 = max {𝜎
1
+ 𝜃

1
𝑝
0
+ 𝜃

1
𝑠
1
+ 𝜆

2
𝜃
2
𝑙
1
𝜆
𝑇
,

𝜎
2
+𝜃

2
𝑞
0
+ 𝜃

2
𝑠
2
+ 𝜆

1
𝜃
1
𝑡
2
𝜆
𝑄
} .

(53)

Next, we define the norm ‖ ⋅ ‖ on𝑋
1
× 𝑋

2
by

󵄩󵄩󵄩󵄩(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 = ‖𝑥‖

1
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩2
, (𝑥, 𝑦) ∈ 𝑋

1
× 𝑋

2
. (54)

One can easily check that (𝑋
1
× 𝑋

2
, ‖ ⋅ ‖) is a Banach space.

Define 𝑎
𝑛+1

= (𝑥
𝑛+1

, 𝑦
𝑛+1

). Then, we have

󵄩󵄩󵄩󵄩𝑎𝑛+1 − 𝑎
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩2
. (55)

In view of (38), we conclude that 0 < 𝑘 < 1. This implies
that there exist 𝑛

0
∈ N and 𝑘

0
∈ (0, 1) such that 𝑘

𝑛
≤ 𝑘

0
for all

𝑛 ≥ 𝑛
0
. It follows from (52) and (54) that

󵄩󵄩󵄩󵄩𝑎𝑛+1 − 𝑎
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑘
0

󵄩󵄩󵄩󵄩𝑎𝑛 − 𝑎
𝑛−1

󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 𝑛
0
. (56)

In view of (56), we obtain

󵄩󵄩󵄩󵄩𝑎𝑛+1 − 𝑎
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑘
𝑛−𝑛
0

0

󵄩󵄩󵄩󵄩󵄩
𝑎
𝑛
0
+1

− 𝑎
𝑛
0

󵄩󵄩󵄩󵄩󵄩
, ∀𝑛 ≥ 𝑛

0
. (57)
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This implies that for any𝑚 ≥ 𝑛 ≥ 𝑛
0
,

󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑥
𝑛

󵄩󵄩󵄩󵄩1
≤

󵄩󵄩󵄩󵄩𝑎𝑚 − 𝑎
𝑛

󵄩󵄩󵄩󵄩

≤

𝑚−1

∑

𝑖=𝑛

󵄩󵄩󵄩󵄩𝑎𝑖+1 − 𝑎
𝑖

󵄩󵄩󵄩󵄩 ≤

𝑚−1

∑

𝑖=𝑛

𝑘
𝑖−𝑛
0

0

󵄩󵄩󵄩󵄩󵄩
𝑎
𝑛
0
+1

− 𝑎
𝑛
0

󵄩󵄩󵄩󵄩󵄩
.

(58)

Since 0 < 𝑘
0
< 1, it follows from (58) that ‖𝑥

𝑚
− 𝑥

𝑛
‖
1

→ 0

and 𝑛 → ∞. This proves that {𝑥
𝑛
} is a Cauchy sequence in

𝑋
1
. Similarly, we conclude that {𝑦

𝑛
} is a Cauchy sequence in

𝑋
2
. Thus, there exist 𝑥 ∈ 𝑋

1
and 𝑦 ∈ 𝑋

2
such that 𝑥

𝑛
→ 𝑥

and 𝑦
𝑛

→ 𝑦 as 𝑛 → ∞.
Next, we prove that𝑤

𝑛
→ 𝑤 ∈ 𝑇(𝑥) and V

𝑛
→ V ∈ 𝑄(𝑦).

In view of Lipschitz continuity of 𝑇 and 𝑄 and Algorithm 17,
we obtain

󵄩󵄩󵄩󵄩𝑤𝑛
− 𝑤

𝑛−1

󵄩󵄩󵄩󵄩1
≤ (1 +

1

𝑛
) 𝜆

𝑇

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩1
,

󵄩󵄩󵄩󵄩V𝑛 − V
𝑛−1

󵄩󵄩󵄩󵄩2
≤ (1 +

1

𝑛
) 𝜆

𝑄

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩2
.

(59)

From (59), we deduce that {𝑤
𝑛
}, {V

𝑛
} are Cauchy sequences

in 𝑋
1
and 𝑋

2
, respectively. Thus, there exist 𝑤 ∈ 𝑇(𝑥) and

V ∈ 𝑄(𝑦) such that 𝑤
𝑛

→ 𝑤 and V
𝑛

→ V as 𝑛 → ∞. Since
𝑇 is 𝐷-Lipschitz continuous with constant 𝜆

𝑇
, it is obvious

that

𝑑 (𝑤, 𝑇 (𝑥)) ≤
󵄩󵄩󵄩󵄩𝑤 − 𝑤

𝑛

󵄩󵄩󵄩󵄩1
+ 𝑑 (𝑤

𝑛
, 𝑇 (𝑥))

≤
󵄩󵄩󵄩󵄩𝑤 − 𝑤

𝑛−1

󵄩󵄩󵄩󵄩1
+ 𝐷 (𝑇 (𝑥

𝑛
) , 𝑇 (𝑥))

≤
󵄩󵄩󵄩󵄩𝑤 − 𝑤

𝑛

󵄩󵄩󵄩󵄩1

+ 𝜆
𝑇
‖ 𝑥

𝑛
− 𝑥‖

1
󳨀→ 0 (𝑛 󳨀→ ∞) .

(60)

By the closedness of 𝑇(𝑥), we conclude that 𝑤 ∈ 𝑇(𝑥).
Similarly, we have V ∈ 𝑄(𝑦).

Assume now that

𝑥
0
= 𝑅

𝐻
1
(⋅,⋅)−𝜂

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)] ,

𝑦
0
= 𝑅

𝐻
2
(⋅,⋅)−𝜂

𝜆
2
,𝑁(⋅,𝑦)

[𝐻
2
(𝐴

2
𝑦, 𝐵

2
𝑦) − 𝜆

2
𝐺 (𝑤, V)] .

(61)

Then, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
0

󵄩󵄩󵄩󵄩1

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥𝑛)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

−𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)]

󵄩󵄩󵄩󵄩󵄩󵄩1

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅.,𝑥𝑛)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

−𝑅
𝐻
1
(⋅,⋅) −𝜂

1

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]
󵄩󵄩󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)]

−𝑅
𝐻
1
(⋅,⋅)−𝜂

1

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)]

󵄩󵄩󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩1

+ 𝜃
1

󵄩󵄩󵄩󵄩𝐻1
(𝐴

1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝜆

1
𝐹 (𝑤

𝑛
, V

𝑛
)

− [𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)]󵄩󵄩󵄩󵄩1

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩1

+ 𝜃
1
[
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥, 𝐵

1
𝑥)

󵄩󵄩󵄩󵄩1

+𝜆
1

󵄩󵄩󵄩󵄩𝐹 (𝑤
𝑛
, V

𝑛
) − 𝐹 (𝑤, V)󵄩󵄩󵄩󵄩1]

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩1

+ 𝜃
1
[
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥
𝑛
, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥, 𝐵

1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝐻1

(𝐴
1
𝑥, 𝐵

1
𝑥
𝑛
) − 𝐻

1
(𝐴

1
𝑥, 𝐵

1
𝑥)

󵄩󵄩󵄩󵄩1
]

+ 𝜆
1
𝜃
1
[
󵄩󵄩󵄩󵄩𝐹 (𝑤

𝑛
, V

𝑛
) − 𝐹 (𝑤, V

𝑛
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝐹 (𝑤, V

𝑛
) − 𝐹 (𝑤, V)󵄩󵄩󵄩󵄩1]

≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩1

+ 𝜃
1
[𝑟
1
+ 𝑠

1
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩1

+ 𝜆
1
𝜃
1
[𝑡
1

󵄩󵄩󵄩󵄩𝑤𝑛
− 𝑤

󵄩󵄩󵄩󵄩1
+ 𝑡

2

󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩2]

= (𝜎
1
+ 𝜃

1
𝑟
1
+ 𝜃

1
𝑠
1
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩1

+ 𝜆
1
𝜃
1
[𝑡
1

󵄩󵄩󵄩󵄩𝑤𝑛
− 𝑤

󵄩󵄩󵄩󵄩1
+ 𝑡

2

󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩2] .
(62)

Since 𝑥
𝑛

→ 𝑥, 𝑤
𝑛

→ 𝑤, and V
𝑛

→ V as 𝑛 → ∞, it follows
from (62) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
0

󵄩󵄩󵄩󵄩1
= 0, (63)

and hence 𝑥
0
= 𝑥.

A similar argument shows that 𝑦
0
= 𝑦. Therefore,

𝑥 = 𝑥
0
= 𝑅

𝐻
1
(⋅,⋅)−𝜂

𝜆
1
,𝑀(⋅,𝑥)

[𝐻
1
(𝐴

1
𝑥, 𝐵

1
𝑥) − 𝜆

1
𝐹 (𝑤, V)] ,

𝑦 = 𝑦
0
= 𝑅

𝐻
2
(⋅,⋅)−𝜂

𝜆
2
,𝑁(⋅,𝑦)

[𝐻
2
(𝐴

2
𝑦, 𝐵

2
𝑦) − 𝜆

2
𝐺 (𝑤, V)] .

(64)

In view of Lemma 16, we conclude that (𝑥, 𝑦, 𝑤, V) is a
solution of problem (30), which completes the proof.

At the end of this paper, we include the following simple
example in support of Theorem 18.

Example 19. Let 𝑋 = R2 with the usual inner product. We
define two mappings 𝐴, 𝐵 : R2

→ R2 by

𝐴 (𝑥) := (
1

4
𝑥
1
− 𝑥

2
, 𝑥

1
+

1

4
𝑥
2
) ,

𝐵 (𝑥) := (−
1

4
𝑥
1
+

1

4
𝑥
2
, −

1

4
𝑥
1
−

1

4
𝑥
2
) ,

∀𝑥 = (𝑥
1
, 𝑥

2
) ∈ R

2

.

(65)
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Let a mapping𝐻 : R2

×R2

→ R2 be defined by

𝐻(𝐴𝑥, 𝐵𝑦) := 𝐴𝑥 + 𝐵𝑦, ∀𝑥, 𝑦 ∈ R
2

. (66)

By similar arguments, as in Example 4.1 of [27], we can prove
the following.

(1) 𝐻(𝐴, 𝐵) is 4/17-cocoercive with respect to 𝐴 and 1-
relaxed cocoercive with respect to 𝐵.

(2) 𝐴 is√17/𝑛-expansive, for 𝑛 = 4, 5.

(3) 𝐵 is 1/√𝑛-expansive, for 𝑛 = 1, 2.

(4) 𝐻(𝐴, 𝐵) is√17/𝑛-Lipschitz continuous with constant
√17/𝑛with respect to𝐴 and𝐵, for 𝑛 = 1, 2, . . . , 15, 16.

(5) Let 𝑓, 𝑔 : R2

→ R2 be defined by

𝑓 (𝑥) := (8𝑥
1
−

8

5
𝑥
2
,
8

5
𝑥
1
+ 8𝑥

2
) ,

𝑔 (𝑥) := (−
17

8
𝑥
1
+

5

8
𝑥
2
,
5

8
𝑥
1
+

17

8
𝑥
2
) ,

∀𝑥 = (𝑥
1
, 𝑥

2
) ∈ R

2

.

(67)

(6) Now, we define a mapping𝑀 : R2

×R2

→ R2 by

𝑀(𝑓𝑥, 𝑔𝑦) := 𝑓𝑥 − 𝑔𝑦, ∀𝑥, 𝑦 ∈ R
2

. (68)

Let 𝑅, 𝑆, 𝑇 : R2

→ R2 be the identity mappings. It is obvious
that these mappings are𝐷-Lipschitz continuous.

(7) Assume that 𝐹, 𝐺 : R2

→ R2 are defined by

𝐹 (𝑥) := (−
1

4
𝑥
1
−

1

8
𝑥
2
,
1

8
𝑥
1
−

1

4
𝑥
2
) ,

𝐺 (𝑥) := (−
1

8
𝑥
1
+

1

5
𝑥
2
, −

1

5
𝑥
1
−

1

8
𝑥
2
) ,

∀𝑥 = (𝑥
1
, 𝑥

2
) ∈ R

2

.

(69)

It could easily be seen that all the aspects of the hypotheses of
Theorem 18 are satisfied, so we have the desired conclusion.
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