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We study the solvability of some nonlinear functional integral equations in the Banach algebra of real functions defined, continuous,
and bounded on the real half axis. We apply the technique of measures of noncompactness in order to obtain existence results for
equations in question. Additionally, that technique allows us to obtain some characterization of considered integral equations. An
example illustrating the obtained results is also included.

1. Introduction

The purpose of the paper is to study the solvability of some
functional integral equations in theBanach algebra consisting
of real, continuous, and bounded functions defined on an
unbounded interval. Equations of such a kind are recently
often investigated in the mathematical literature (cf. [1–6]).
It is worthwhile mentioning that some functional integral
equations of that type find very interesting applications to
describe real world problems which appeared in engineering,
mathematical physics, radiative transfer, kinetic theory of
gases, and so on (cf. [7–13], e.g.).

Functional integral equations considered in Banach alge-
bras have rather complicated form, and the study of such
equations requires the use of sophisticated tools. In the
approach applied in this paper we will use the technique
associated with measures of noncompactness and some fixed
point theorems [14]. Such a direction of investigations has
been initiated in the paper [2], where the authors introduced
the so-called condition (𝑚) related to the operation of
multiplication in an algebra and playing a crucial role in
the use of the technique of measures of noncompactness in
Banach algebras setting. The usefulness of such an approach
has been presented in [2], where the solvability of some
class of functional integral equations was proved with help of

some measures of noncompactness satisfying the mentioned
condition (𝑚).

This paper is an extension and continuation of the paper
[2]. Here we are going to unify the approach with the use
of the technique of measures of noncompactness to some
general type of functional integral equations in the Banach
algebra described above. Measures of noncompactness used
here allow us not only to obtain the existence of solutions
of functional integral equations but also to characterize
those solutions in terms of stability, asymptotic stability, and
ultimate monotonicity, for example.

Let us notice that such an approach to the theory of
functional integral equations in Banach algebras is rather new
and it was not exploited up to now except from the paper [2]
initiating this direction of investigation.

2. Notation, Definitions, and Auxiliary Results

This section is devoted to presenting auxiliary facts whichwill
be used throughout the paper. At the beginning we introduce
some notation.

Denote byR the set of real numbers and putR
+
= [0,∞).

If 𝐸 is a given real Banach space with the norm ‖ ⋅ ‖ and
the zero element 𝜃, then by 𝐵(𝑥, 𝑟) we denote the closed ball
centered at 𝑥 and with radius 𝑟. We will write 𝐵

𝑟
to denote
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the ball 𝐵(𝜃, 𝑟). If 𝑋 is a subset of 𝐸, then the symbols 𝑋

and Conv𝑋 stand for the closure and convex closure of 𝑋,
respectively. Apart from this the symbol diam𝑋 will denote
the diameter of a bounded set𝑋while ‖𝑋‖ denotes the norm
of 𝑋; that is, ‖𝑋‖ = sup{‖𝑥‖ : 𝑥 ∈ 𝑋}.

Next, let us denote byM
𝐸
the family of all nonempty and

bounded subsets of 𝐸 and by N
𝐸
its subfamily consisting all

relatively compact sets.
In what follows we will accept the following definition of

the concept of a measure of noncompactness [14].

Definition 1. A mapping 𝜇 : M
𝐸

→ R
+
will be called a

measure of noncompactness in 𝐸 if it satisfies the following
conditions.

(1
∘
) The family ker 𝜇 = {𝑋 ∈ M

𝐸
: 𝜇(𝑋) = 0} is non-

empty and ker 𝜇 ⊂ N
𝐸
.

(2
∘
) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).

(3
∘
) 𝜇(𝑋) = 𝜇(Conv𝑋) = 𝜇(𝑋).

(4
∘
) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+ (1−𝜆)𝜇(𝑌) for 𝜆 ∈ [0, 1].

(5
∘
) If (𝑋

𝑛
) is a sequence of closed sets fromM

𝐸
such that

𝑋
𝑛+1

⊂ 𝑋
𝑛
for 𝑛 = 1, 2, . . . and if lim

𝑛→∞
𝜇(𝑋
𝑛
) = 0,

then the set 𝑋
∞

= ⋂
∞

𝑛=1
𝑋
𝑛
is nonempty.

The family ker 𝜇 described in (1
∘
) is said to be the kernel

of the measure of noncompactness 𝜇.
Observe that the set𝑋

∞
from the axiom (5

∘
) is a member

of the family ker 𝜇. Indeed, from the inequality 𝜇(𝑋
∞

) ≤

𝜇(𝑋
𝑛
) being satisfied for all 𝑛 = 1, 2, . . .we derive that 𝜇(𝑋

∞
)

= 0 which means that 𝑋
∞

∈ ker 𝜇. This fact will play a key
role in our further considerations.

In the sequel we will usually assume that the space 𝐸 has
the structure of Banach algebra. In such a case we write 𝑥𝑦 in
order to denote the product of elements 𝑥, 𝑦 ∈ 𝐸. Similarly,
we will write 𝑋𝑌 to denote the product of subsets 𝑋,𝑌 of
𝐸; that is, 𝑋𝑌 = {𝑥𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.

Now, we recall a useful concept introduced in [2].

Definition 2. One says that themeasure of noncompactness 𝜇
defined on the Banach algebra 𝐸 satisfies condition (𝑚) if for
arbitrary sets 𝑋,𝑌 ∈ M

𝐸
the following inequality is satisfied:

𝜇 (𝑋𝑌) ≤ ‖𝑋‖ 𝜇 (𝑌) + ‖𝑌‖ 𝜇 (𝑋) . (1)

It turns out that the above defined condition (𝑚) is
very convenient in considerations connected with the use
of the technique of measures of noncompactness in Banach
algebras. Apart from this the majority of measures of non-
compactness satisfy this condition [2]. We recall some details
in the next section.

Now, we are going to formulate a fixed point theorem for
operators acting in a Banach algebra and satisfying some con-
ditions expressed with help of a measure of noncompactness.
To this end we first recall a concept parallel to the concept of
Lipschitz continuity (cf. [14]).

Definition 3. Let Ω be a nonempty subset of a Banach space
𝐸, and let 𝐹 : Ω → 𝐸 be a continuous operator which trans-
forms bounded subsets of Ω onto bounded ones. One says

that 𝐹 satisfies the Darbo condition with a constant 𝑘 with
respect to a measure of noncompactness 𝜇 if 𝜇(𝐹𝑋) ≤ 𝑘𝜇(𝑋)

for each𝑋 ∈ M
𝐸
such that𝑋 ⊂ Ω. If 𝑘 < 1, then 𝐹 is called a

contraction with respect to 𝜇.

Now, assume that𝐸 is a Banach algebra and 𝜇 is ameasure
of noncompactness on 𝐸 satisfying condition (𝑚). Then we
have the following theorem announced above [2].

Theorem4. Assume thatΩ is nonempty, bounded, closed, and
convex subset of the Banach algebra 𝐸, and the operators 𝑃 and
𝑇 transform continuously the set Ω into 𝐸 in such a way that
𝑃(Ω) and 𝑇(Ω) are bounded. Moreover, one assumes that the
operator 𝐹 = 𝑃 ⋅ 𝑇 transforms Ω into itself. If the operators
𝑃 and 𝑇 satisfy on the set Ω the Darbo condition with respect
to the measure of noncompactness 𝜇 with the constants 𝑘

1
and

𝑘
2
, respectively, then the operator 𝐹 satisfies on Ω the Darbo

condition with the constant

‖𝑃 (Ω)‖ 𝑘
2
+ ‖𝑇 (Ω)‖ 𝑘

1
. (2)

Particularly, if ‖𝑃(Ω)‖𝑘
2

+ ‖𝑇(Ω)‖𝑘
1

< 1, then 𝐹 is a
contraction with respect to the measure of noncompactness 𝜇

and has at least one fixed point in the set Ω.

Remark 5. It can be shown [14] that the set Fix 𝐹 of all fixed
points of the operator𝐹 on the setΩ is amember of the kernel
ker 𝜇.

3. Some Measures of Noncompactness in the
Banach Algebra 𝐵𝐶(R

+
)

In this section we present somemeasures of noncompactness
in the Banach algebra 𝐵𝐶(R

+
) consisting of all real functions

defined, continuous, and bounded on the half axis 𝑅
+
. The

algebra 𝐵𝐶(R
+
) is endowed with the usual supremum norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ∈ R
+
} (3)

for 𝑥 ∈ 𝐵𝐶(R
+
). Obviously, the multiplication in 𝐵𝐶(R

+
)

is understood as the usual product of real functions. Let us
mention that measures of noncompactness, which we intend
to present here, were considered in details in [2].

In what follows let us assume that 𝑋 is an arbitrarily
fixed nonempty and bounded subset of the Banach algebra
𝐵𝐶(R

+
); that is, 𝑋 ∈ M

𝐵𝐶(R
+
)
. Choose arbitrarily 𝜀 > 0 and

𝑇 > 0. For 𝑥 ∈ 𝑋 denote by𝜔
𝑇
(𝑥, 𝜀) themodulus of continuity

of the function 𝑥 on the interval [0, 𝑇]; that is,

𝜔
𝑇

(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀} .

(4)

Next, let us put

𝜔
𝑇

(𝑋, 𝜀) = sup {𝜔
𝑇

(𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
𝑇

0
(𝑋) = lim

𝜀→0

𝜔
𝑇

(𝑋, 𝜀) ,

𝜔
∞

0
(𝑋) = lim

𝑇→∞

𝜔
𝑇

0
(𝑋) .

(5)
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Further, define the set quantity 𝑎(𝑋) by putting

𝑎 (𝑋) = lim
𝑇→∞

{sup
𝑥∈𝑋

{sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ≥ 𝑇}}} . (6)

Finally, let us put

𝜇
𝑎
(𝑋) = 𝜔

∞

0
(𝑋) + 𝑎 (𝑋) . (7)

It can be shown [2] that the function 𝜇
𝑎
is the measure of

noncompactness in the algebra 𝐵𝐶(R
+
). The kernel ker𝜇

𝑎

of this measure contains all sets 𝑋 ∈ M
𝐵𝐶(R

+
)
such that

functions belonging to 𝑋 are locally equicontinuous on R
+

and have finite limits at infinity. Moreover, all functions from
the set 𝑋 tend to their limits with the same rate. It can be
also shown that the measure of noncompactness 𝜇

𝑎
satisfies

condition (𝑚) [2].
In our considerations we will also use another measure of

noncompactness which is defined below.
In order to define this measure, similarly as above, fix a

set 𝑋 ∈ M
𝐵𝐶(R

+
)
and a number 𝑡 ∈ R

+
. Denote by 𝑋(𝑡) the

cross-section of the set𝑋 at the point 𝑡; that is, 𝑋(𝑡) = {𝑥(𝑡) :

𝑥 ∈ 𝑋}. Denote by diam𝑋(𝑡) the diameter of 𝑋(𝑡). Further,
for a fixed 𝑇 > 0 and 𝑥 ∈ 𝑋 denote by 𝑑

𝑇
(𝑥) the so-called

modulus of decrease of the function 𝑥 on the interval [𝑇,∞),
which is defined by the formula

𝑑
𝑇
(𝑥) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| − [𝑥 (𝑡) − 𝑥 (𝑠)] : 𝑇 ≤ 𝑠 < 𝑡} .

(8)

Next, let us put

𝑑
𝑇
(𝑋) = sup {𝑑

𝑇
(𝑥) : 𝑥 ∈ 𝑋} ,

𝑑
∞

(𝑋) = lim
𝑇→∞

𝑑
𝑇
(𝑋) .

(9)

In a similar way we may define the modulus of increase of
function 𝑥 and the set 𝑋 (cf. [2]).

Finally, let us define the set quantity 𝜇
𝑑
in the following

way:

𝜇
𝑑
(𝑋) = 𝜔

∞

0
(𝑋) + 𝑑

∞
(𝑋) + lim sup

𝑡→∞

diam 𝑋 (𝑡) . (10)

Linking the facts established in [2, 15] it can be shown that 𝜇
𝑑

is themeasure of noncompactness in the algebra𝐵𝐶(R
+
).The

kernel ker 𝜇
𝑑
of this measure consists of all sets𝑋 ∈ M

𝐵𝐶(R
+
)

such that functions belonging to𝑋 are locally equicontinuous
on R

+
and the thickness of the bundle 𝑋(𝑡) formed by

functions from 𝑋 tends to zero at infinity. Moreover, all
functions from𝑋 are ultimately nondecreasing onR

+
(cf. [16]

for details).
Now, we show that the measure 𝜇

𝑑
has also an additional

property.

Theorem 6. The measure of noncompactness 𝜇
𝑑
defined by

(10) satisfies condition (𝑚) on the family of all nonempty
and bounded subsets 𝑋 of Banach algebra 𝐵𝐶(R

+
) such that

functions belonging to 𝑋 are nonnegative on R
+
.

Proof. Observe that it is enough to show the second and third
terms of the quantity 𝜇

𝑑
defined by (10) satisfy condition (𝑚).

This assertion is a consequence of the fact that the term 𝜔
∞

0

of the quantity defined by (10) satisfies condition (𝑚) (cf. [2]).
Thus, take sets 𝑋,𝑌 ∈ M

𝐵𝐶(R
+
)
and numbers 𝑇, 𝑠, 𝑡 ∈

R
+
such that 𝑇 ≤ 𝑠 < 𝑡. Moreover, assume that functions

belonging to 𝑋 and 𝑌 are nonnegative on the interval R
+
.

Then, fixing arbitrarily 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, we obtain




𝑥 (𝑡) 𝑦 (𝑡) − 𝑥 (𝑠) 𝑦 (𝑠)





− [𝑥 (𝑡) 𝑦 (𝑡) − 𝑥 (𝑠) 𝑦 (𝑠)]

≤ |𝑥 (𝑡)|




𝑦 (𝑡) − 𝑦 (𝑠)





+





𝑦 (𝑠)





|𝑥 (𝑡) − 𝑥 (𝑠)|

− {𝑥 (𝑡)




𝑦 (𝑡) − 𝑦 (𝑠)





+ 𝑦 (𝑠) |𝑥 (𝑡) − 𝑥 (𝑠)|}

= |𝑥 (𝑡)|




𝑦 (𝑡) − 𝑦 (𝑠)





+





𝑦 (𝑠)





|𝑥 (𝑡) − 𝑥 (𝑠)|

− {|𝑥 (𝑡)|




𝑦 (𝑡) − 𝑦 (𝑠)





+





𝑦 (𝑠)





|𝑥 (𝑡) − 𝑥 (𝑠)|}

≤ ‖𝑥‖ ⋅ {




𝑦 (𝑡) − 𝑦 (𝑠)





− [𝑦 (𝑡) − 𝑦 (𝑠)]}

+




𝑦




⋅ {|𝑥 (𝑡) − 𝑥 (𝑠)| − [𝑥 (𝑡) − 𝑥 (𝑠)]} .

(11)

Consequently, we get

𝑑
∞

(𝑋𝑌) ≤ ‖𝑋‖ 𝑑
∞

(𝑌) + ‖𝑌‖ 𝑑
∞

(𝑋) . (12)

Next, for arbitrary 𝑥
1
, 𝑥
2
∈ 𝑋, 𝑦

1
, 𝑦
2
∈ 𝑌, and 𝑡 ∈ R

+
we

have




𝑥
1
(𝑡) 𝑦
1
(𝑡) − 𝑥

2
(𝑡) 𝑦
2
(𝑡)






≤




𝑥
1
(𝑡)










𝑦
1
(𝑡) − 𝑦

2
(𝑡)





+





𝑦
2
(𝑡)










𝑥
1
(𝑡) − 𝑥

2
(𝑡)






≤




𝑥
1





⋅




𝑦
1
(𝑡) − 𝑦

2
(𝑡)





+





𝑦
2





⋅




𝑥
1
(𝑡) − 𝑥

2
(𝑡)





.

(13)

This estimate yields

lim sup
𝑡→∞

diam (𝑋𝑌) (𝑡)

≤ ‖𝑋‖ lim sup
𝑡→∞

diam 𝑌 (𝑡)

+ ‖𝑌‖ lim sup
𝑡→∞

diam 𝑋(𝑡) .

(14)

Hence, in view of the fact that the set quantity 𝜔
∞

0
satisfies

condition (𝑚), we complete the proof.

It is worthwhile mentioning that themeasure of noncom-
pactness 𝜇

𝑑
defined by formula (10) allows us to characterize

solutions of considered operator equations in terms of the
concept of asymptotic stability.

To formulate precisely that concept (cf. [17]) assume that
Ω is a nonempty subset of the Banach algebra 𝐵𝐶(R

+
) and𝐹 :

Ω → 𝐵𝐶(R
+
) is an operator. Consider the operator equation

𝑥 (𝑡) = (𝐹𝑥) (𝑡) , 𝑡 ∈ R
+
, (15)

where 𝑥 ∈ Ω.

Definition 7. One says that solutions of (15) are asymptotically
stable if there exists a ball 𝐵(𝑥

0
, 𝑟) in 𝐵𝐶(R

+
) such that

𝐵(𝑥
0
, 𝑟) ∩ Ω ̸= 𝜙, and for each 𝜀 > 0 there exists 𝑇 > 0 such

that |𝑥(𝑡) − 𝑦(𝑡)| ≤ 𝜀 for all solutions 𝑥, 𝑦 ∈ 𝐵(𝑥
0
, 𝑟) ∩ Ω of

(15) and for 𝑡 ≥ 𝑇.
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Let us pay attention to the fact that if solutions of an
operator equation considered in the algebra 𝐵𝐶(R

+
) belong

to a bounded subset being amember of the family ker𝜇
𝑑
, then

from the above given description of the kernel ker𝜇
𝑑
we infer

that those solutions are asymptotically stable in the sense of
Definition 7 (cf. also Remark 5).

4. Existence of Asymptotically Stable and
Ultimately Nondecreasing Solutions of a
Functional Integral Equation in the Banach
Algebra 𝐵𝐶(R

+
)

This section is devoted to the study of solvability of a
functional integral equation in the Banach algebra 𝐵𝐶(R

+
).

Apart from the existence of solutions of the equation in
question we obtain also some characterization of those solu-
tions expressed in terms of asymptotic stability and ultimate
monotonicity. Characterizations of such type are possible due
to the technique of measures of noncompactness. Obviously,
we will apply measures of noncompactness described in the
preceding section.

In our considerations we will often use the so-called
superposition operator. In order to define that operator
assume that 𝐽 is an interval and 𝑓 : R

+
× 𝐽 → R is a given

function.Then, to every function 𝑥 : R
+

→ 𝐽 we may assign
the function 𝐹𝑥 defined by the formula

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , (16)

for 𝑡 ∈ R
+
. The operator 𝐹 defined in such a way is called the

superposition operator generated by the function 𝑓(𝑡, 𝑥) (cf.
[18]).

Lemma 8 [16] presents a useful property of the super-
position operator which is considered in the Banach space
𝐵(R
+
) consisting of all real functions defined and bounded on

R
+
. Obviously, the space 𝐵(R

+
) is equipped with the classical

supremum norm. Since 𝐵(R
+
) has the structure of a Banach

algebra, we can consider the Banach algebra 𝐵𝐶(R
+
) as a

subalgebra of 𝐵(R
+
).

Lemma 8. Assume that the following hypotheses are satisfied.

(𝛼) The function 𝑓 is continuous on the set R
+
× 𝐽.

(𝛽) The function 𝑡 → 𝑓(𝑡, 𝑢) is ultimately nondecreasing
uniformly with respect to 𝑢 belonging to bounded
subintervals of 𝐽, that is,

lim
𝑇→∞

{sup {




𝑓 (𝑡, 𝑢) − 𝑓 (𝑠, 𝑢)






− [𝑓 (𝑡, 𝑢) − 𝑓 (𝑠, 𝑢)] :

𝑡 > 𝑠 ≥ 𝑇, 𝑢 ∈ 𝐽
1
}} = 0

(17)

for any bounded subinterval 𝐽
1
⊆ 𝐽.

(𝛾) For any fixed 𝑡 ∈ R
+
the function 𝑢 → 𝑓(𝑡, 𝑢) is

nondecreasing on 𝐽.

(𝛿) The function𝑢 → 𝑓(𝑡, 𝑢) satisfies a Lipschitz condition;
that is, there exists a constant 𝑘 > 0 such that





𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)





≤ 𝑘 |𝑢 − V| (18)

for all 𝑡 ≤ 0 and all 𝑢, V ∈ 𝐽.

Then the inequality

𝑑
∞

(𝐹𝑥) ≤ 𝑘𝑑
∞

(𝑥) (19)

holds for any function 𝑥 ∈ 𝐵(R
+
), where 𝑘 is the Lipschitz

constant from assumption (𝛿).

Observe that in view of the remark mentioned previously
Lemma 8 is also valid in the Banach algebra 𝐵𝐶(R

+
).

As we announced before, in this section we will study the
solvability of the following integral equation:

𝑥 (𝑡) = (𝑉
1
𝑥) (𝑡) (𝑉

2
𝑥) (𝑡) , 𝑡 ∈ R

+
, (20)

where 𝑉
𝑖
are the so-called quadratic Volterra-Hammerstein

integral operators defined as follows

(𝑉
𝑖
𝑥) (𝑡) = 𝑝

𝑖
(𝑡) + 𝑓

𝑖
(𝑡, 𝑥 (𝑡))

× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠) ℎ

𝑖
(𝑠, 𝑥 (𝑠)) 𝑑𝑠, (𝑖 = 1, 2) .

(21)

Now, we formulate the assumptions under which we will
study (20).

(i) 𝑝
𝑖
∈ 𝐵𝐶(R

+
) and 𝑝

𝑖
is ultimately nondecreasing; that

is, 𝑑
∞

(𝑝
𝑖
) = 0 (𝑖 = 1, 2). Moreover, 𝑝

𝑖
(𝑡) ≥ 0 for 𝑡 ∈

R
+

(𝑖 = 1, 2).
(ii) 𝑓
𝑖
: R
+
× R
+

→ R
+
and 𝑓

𝑖
satisfies assumptions of

Lemma 8 for 𝐽 = R
+

(𝑖 = 1, 2).
(iii) The function 𝑓

𝑖
satisfies the Lipschitz condition with

respect to the second variable; that is, there exists a
constant 𝑘

𝑖
> 0 such that





𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑡, 𝑦)





≤ 𝑘
𝑖





𝑥 − 𝑦






(22)

for 𝑥, 𝑦 ∈ R
+
and for 𝑡 ∈ R

+
(𝑖 = 1, 2).

(iv) The function 𝑔
𝑖
: R
+
× R
+

→ R
+
is continuous and

satisfies the following condition:

lim
𝑇→∞

{sup{∫

𝑡

0

{




𝑔
𝑖
(𝑡, 𝜏)−𝑔

𝑖
(𝑠, 𝜏)





−[𝑔
𝑖
(𝑡, 𝜏)−𝑔

𝑖
(𝑠, 𝜏)]} 𝑑𝜏 :

𝑇≤𝑠<𝑡}}=0, (𝑖=1, 2) .

(23)

(v) The function 𝑡 → ∫

𝑡

0
𝑔
𝑖
(𝑡, 𝑠)𝑑𝑠 is bounded onR

+
and

lim
𝑡→∞

∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 = 0 (𝑖 = 1, 2) . (24)

(vi) The function ℎ
𝑖
: R
+
× R
+

→ R
+
is continuous for

𝑖 = 1, 2.
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(vii) The functions 𝑡 → 𝑓
𝑖
(𝑡, 0) and 𝑡 → ℎ

𝑖
(𝑡, 0) are

bounded on R
+

(𝑖 = 1, 2).
(viii) There exists a continuous andnondecreasing function

𝑚
𝑖
: R
+

→ R
+
such that 𝑚

𝑖
(0) = 0 and





ℎ
𝑖
(𝑡, 𝑥) − ℎ

𝑖
(𝑡, 𝑦)





≤ 𝑚
𝑖
(




𝑥 − 𝑦





) (25)

for 𝑥, 𝑦, and 𝑡 ∈ R
+
and 𝑖 = 1, 2.

In view of the above assumptions, we may define the
following finite constants:

𝐹
𝑖
= sup {𝑓

𝑖
(𝑡, 0) : 𝑡 ∈ R

+
} ,

𝐻
𝑖
= sup {ℎ

𝑖
(𝑡, 0) : 𝑡 ∈ R

+
} ,

𝐺
𝑖
= sup{∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 : 𝑡 ∈ R

+
} ,

(26)

for 𝑖 = 1, 2.
Using these quantities we formulate the last assump-
tion.

(ix) There existS a solution 𝑟
0
> 0 of the inequality

[𝑝 + 𝑘𝑟𝐺𝑚
1
(𝑟)

+𝑘𝑟𝐺 𝐻 + 𝐹 𝐺𝑚
1
(𝑟) + 𝐹 𝐺 𝐻]

× [𝑝 + 𝑘𝑟𝐺𝑚
2
(𝑟) + 𝑘𝑟𝐺 𝐻 + 𝐹 𝐺𝑚

2
(𝑟)

+𝐹 𝐺 𝐻] ≤ 𝑟

(27)

such that

𝑝𝑘𝐺 [𝑚
1
(𝑟
0
) + 𝑚
2
(𝑟
0
) + 𝐻]

+ 2𝑘𝐺

2

[𝑘𝑟
0
+ 𝐹]

× [𝑚
1
(𝑟
0
) + 𝐻] [𝑚

2
(𝑟
0
) + 𝐻] < 1,

(28)

where 𝑝 = max{‖𝑝
1
‖, ‖𝑝
2
‖}, 𝐹 = max{𝐹

1
, 𝐹
2
}, 𝐺 =

max{𝐺
1
, 𝐺
2
},

𝐻 = max {𝐻
1
, 𝐻
2
} ,

𝑘 = max {𝑘
1
, 𝑘
2
} .

(29)

Now we formulate the main existence result for the
functional integral equation (20).

Theorem 9. Under assumptions (i)–(ix) (20) has at least one
solution 𝑥 = 𝑥(𝑡) in the space 𝐵𝐶(R

+
). Moreover all solutions

of (20) are nonnegative, asymptotically stable, and ultimately
nondecreasing.

Proof. Consider the subset Ω of the algebra 𝐵𝐶(R
+
) con-

sisting of all functions being nonnegative on R
+
. We will

consider operators 𝑉
𝑖
(𝑖 = 1, 2) on the set Ω.

Now, fix an arbitrary function 𝑥 ∈ Ω. Then, from as-
sumptions (i), (ii), and (vi) we deduce that the function𝑉

𝑖
𝑥 is

continuous onR
+
. Moreover, in view of assumptions (i), (ii),

(iv), and (vi) we have that the function 𝑉
𝑖
𝑥 is nonnegative on

the interval R
+
for 𝑖 = 1, 2.

Further, for arbitrarily fixed 𝑡 ∈ R
+
we obtain

(𝑉
𝑖
𝑥) (𝑡) ≤ 𝑝

𝑖
(𝑡) + 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

≤ 𝑝
𝑖
(𝑡) + [𝑘

𝑖
𝑥 (𝑡) + 𝑓

𝑖
(𝑡, 0)]

× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) [𝑚

𝑖
(𝑥 (𝜏)) + ℎ

𝑖
(𝜏, 0)] 𝑑𝜏

≤




𝑝
𝑖





+ [𝑘
𝑖
‖𝑥‖ + 𝐹

𝑖
] [𝑚
𝑖
(‖𝑥‖) + 𝐻

𝑖
] 𝐺
𝑖
.

(30)

Hence we get





𝑉
𝑖
𝑥




≤





𝑝
𝑖





+ 𝑘
𝑖
‖𝑥‖𝐺
𝑖
𝑚
𝑖
(‖𝑥‖)

+ 𝑘
𝑖
‖𝑥‖𝐺
𝑖
𝐻
𝑖
+ 𝐹
𝑖
𝐺
𝑖
𝑚
𝑖
(‖𝑥‖) + 𝐹

𝑖
𝐺
𝑖
𝐻
𝑖
,

(31)

for 𝑖 = 1, 2.
This shows that the function 𝑉

𝑖
𝑥 (𝑖 = 1, 2) is bounded

on R
+
, and, consequently, 𝑉

𝑖
𝑥 is a member of the set Ω.

Consequently we infer that the operator𝑊 being the product
of the operators𝑉

1
and𝑉
2
transforms also the setΩ into itself.

Further, taking into account estimate (31) and assumption
(ix) we conclude that the operator𝑊 is a self-mapping of the
set Ω
𝑟
0

defined in the following way:

Ω
𝑟
0

= {𝑥 ∈ 𝐵𝐶 (R
+
) : 0 ≤ 𝑥 (𝑡) ≤ 𝑟

0
for 𝑡 ∈ R

+
} , (32)

where 𝑟
0
is the number from assumption (ix).

In the sequel we will work with the measure of noncom-
pactness 𝜇

𝑑
defined by formula (10).

At the beginning, let us fix nonempty set 𝑋 ⊂ Ω
𝑟
0

and
numbers 𝑇 > 0, 𝜀 > 0. Additionally, let 𝑥 ∈ 𝑋 and 𝑡, 𝑠 ∈

[0, 𝑇] be such that |𝑡 − 𝑠| ≤ 𝜀. Without loss of generality we
may assume that 𝑡 < 𝑠. Then we obtain





(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)






≤




𝑝
𝑖
(𝑡) − 𝑝

𝑖
(𝑠)





+





𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))






× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

+




𝑓
𝑖
(𝑠, 𝑥 (𝑠))















∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) , ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏










≤




𝑝
𝑖
(𝑡) − 𝑝

𝑖
(𝑠)





+ [





𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑡, 𝑥 (𝑠))






+




𝑓
𝑖
(𝑡, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))





]



6 Abstract and Applied Analysis

× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) [ℎ

𝑖
(𝜏, 𝑥 (𝜏)) − ℎ

𝑖
(𝜏, 0) + ℎ

𝑖
(𝜏, 0)] 𝑑𝜏

+ [




𝑓
𝑖
(𝑠, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑠, 0)





+





𝑓
𝑖
(𝑠, 0)





]

× ∫

𝑡

0





𝑔
𝑖
(𝑡, 𝜏) − 𝑔

𝑖
(𝑠, 𝜏)





ℎ
𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

≤ 𝜔
𝑇

(𝑝
𝑖
, 𝜀) + [𝑘

𝑖
|𝑥 (𝑡) − 𝑥 (𝑠)| + 𝜔

𝑇

𝑟
0

(𝑓
𝑖
, 𝜀)]

× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) [𝑚

𝑖
(|𝑥 (𝜏)|) + 𝐻

𝑖
] 𝑑𝜏

+ [𝑘
𝑖
|𝑥 (𝑠)| + 𝐹

𝑖
] ∫

𝑇

0

𝜔
𝑇

1
(𝑔
𝑖
, 𝜀) [𝑚

𝑖
(|𝑥 (𝜏)|) + 𝐻

𝑖
] 𝑑𝜏

≤𝜔
𝑇

(𝑝
𝑖
, 𝜀)+[𝑘

𝑖
𝜔
𝑇

(𝑥, 𝜀)+𝜔
𝑇

𝑟
0

(𝑓
𝑖
, 𝜀)] [𝑚

𝑖
(𝑟
0
)+𝐻
𝑖
] 𝐺
𝑖

+ [𝑘
𝑖
𝑟
0
+ 𝐹
𝑖
] 𝑇𝜔
𝑇

1
(𝑔
𝑖
, 𝜀) [𝑚

𝑖
(𝑟
0
) + 𝐻

𝑖
] ,

(33)

where we denoted

𝜔
𝑇

𝑑
(𝑓
𝑖
, 𝜀) = sup {





𝑓
𝑖
(𝑡, 𝑦) − 𝑓

𝑖
(𝑠, 𝑦)





:

𝑡, 𝑠 ∈ [0, 𝑇] , 𝑦 ∈ [−𝑑, 𝑑] , |𝑡 − 𝑠| ≤ 𝜀} ,

𝜔
𝑇

1
(𝑔
𝑖
, 𝜀) = sup {





𝑔
𝑖
(𝑡, 𝜏) − 𝑔

𝑖
(𝑠, 𝜏)





:

𝑡, 𝑠, 𝜏 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀} .

(34)

In view of the uniform continuity of the function 𝑓
𝑖
on the

set [0, 𝑇] × [−𝑟
0
, 𝑟
0
] we infer that 𝜔𝑇

𝑑
(𝑓
𝑖
, 𝜀) → 0 as 𝜀 → 0.

Analogously 𝜔
𝑇

1
(𝑔
𝑖
, 𝜀) → 0 if 𝜀 → 0 since the function 𝑔

𝑖

is uniformly continuous on the set [0, 𝑇] × [0, 𝑇]. Hence, in
view of estimate (33) we obtain the following evaluation:

𝜔
∞

0
(𝑉
𝑖
𝑋) ≤ 𝑘

𝑖
𝐺
𝑖
[𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
] 𝜔
∞

0
(𝑋) . (35)

Similarly as above, for 𝑡 ∈ R
+
and 𝑥, 𝑦 ∈ 𝑋 we get





(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑦) (𝑡)






≤




𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑡, 𝑦 (𝑡))






× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

+ 𝑓
𝑖
(𝑡, 𝑦 (𝑡))

× ∫

𝑡

0





𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) − 𝑔

𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑦 (𝜏))





𝑑𝜏

≤ 𝑘
𝑖





𝑥 (𝑡) − 𝑦 (𝑡)





[𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
] ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝑑𝜏

+ [𝑘
𝑖





𝑦 (𝑡)





+ 𝐹
𝑖
] ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)𝑚

𝑖
(




𝑥 (𝜏) − 𝑦 (𝜏)





) 𝑑𝜏

≤ 𝑘
𝑖





𝑥 (𝑡) − 𝑦 (𝑡)





[𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
]

× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝑑𝜏 + [𝑘

𝑖
𝑟
0
+ 𝐹
𝑖
]𝑚
𝑖
(𝑟
0
) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝑑𝜏.

(36)

Assumption (v) implies that the right side of the above
estimate vanishes at infinity. Hence we obtain

lim sup
𝑡→∞

diam (𝑉𝑋) (𝑡) = 0. (37)

This fact helps us prove that 𝑉
𝑖
is continuous on the set

Ω
𝑟
0

. Indeed, let us fix 𝜀 > 0 and take 𝑥, 𝑦 ∈ Ω
𝑟
0

such that
‖𝑥 − 𝑦‖ ≤ 𝜀. In view of (37) we know that there exists a
number 𝑇 > 0 such that for arbitrary 𝑡 ≥ 𝑇 we get |(𝑉

𝑖
𝑥)(𝑡) −

(𝑉
𝑖
𝑦)(𝑡)| ≤ 𝜀. Then, if we take 𝑡 ∈ [0, 𝑇] we obtain the

following estimate:





(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑦) (𝑡)






≤




𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑡, 𝑦 (𝑡))





∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

+𝑓
𝑖
(𝑡, 𝑦 (𝑡)) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)





ℎ
𝑖
(𝜏, 𝑥 (𝜏))−ℎ

𝑖
(𝜏, 𝑦 (𝜏))





𝑑𝜏

≤ 𝑘
𝑖





𝑥 (𝑡) − 𝑦 (𝑡)





[𝑚
𝑖
(‖𝑥‖) + 𝐻

𝑖
] ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝑑𝜏

+ [𝑘
𝑖





𝑦 (𝑡)





+ 𝐹
𝑖
] ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)𝑚

𝑖
(




𝑥 (𝜏) − 𝑦 (𝜏)





) 𝑑𝜏

≤ 𝑘
𝑖
𝜀 [𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
] 𝐺
𝑖
+ [𝑘
𝑖
𝑟
0
+ 𝐹
𝑖
]𝑚
𝑖
(𝜀) 𝐺
𝑖
.

(38)

Observe that continuity of the function𝑚
𝑖
yields that for each

𝑇 > 0 the expression on the right hand side of estimate (38)
can be sufficiently small.

In what follows let us fix 𝑇 > 0 and 𝑡 > 𝑠 ≥ 𝑇. Then, if
𝑥 ∈ Ω

𝑟
0

, we derive the following estimates:





(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)





− [(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)]

≤




𝑝
𝑖
(𝑡) − 𝑝

𝑖
(𝑠)






+










𝑓
𝑖
(𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−𝑓
𝑖
(𝑠, 𝑥 (𝑠)) ∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏










− [𝑝
𝑖
(𝑡) − 𝑝

𝑖
(𝑠)]

− [𝑓
𝑖
(𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−𝑓
𝑖
(𝑠, 𝑥 (𝑠)) ∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏]
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≤ 𝑑
𝑇
(𝑝
𝑖
) +





𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))






× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

+ 𝑓
𝑖
(𝑠, 𝑥 (𝑠))










∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏










− [𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))] ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

− 𝑓
𝑖
(𝑠, 𝑥 (𝑠)) [∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏]

≤ 𝑑
𝑇
(𝑝
𝑖
) + {





𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))






− [𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))]}

× [𝑚
𝑖
(‖𝑥‖) + 𝐻

𝑖
] ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝑑𝜏

+ 𝑓
𝑖
(𝑠, 𝑥 (𝑠)) {










∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏










− [∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏]} .

(39)

Observe that in virtue of imposed assumptions we have










∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) − ∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏










− [∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑠

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏]

≤










∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑡

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏










+ ∫

𝑡

𝑠

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

− [∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝑡

0

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏]

− ∫

𝑡

𝑠

𝑔
𝑖
(𝑠, 𝜏) ℎ

𝑖
(𝜏, 𝑥 (𝜏)) 𝑑𝜏

≤ [𝑚
𝑖
(‖𝑥‖) + 𝐻

𝑖
]

× ∫

𝑡

0

{




𝑔
𝑖
(𝑡, 𝜏) − 𝑔

𝑖
(𝑠, 𝜏)





− [𝑔
𝑖
(𝑡, 𝜏) − 𝑔

𝑖
(𝑠, 𝜏)]} 𝑑𝜏.

(40)

Linking the above estimate and (39), we obtain

sup {




(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)





− [(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)] :

𝑡 > 𝑠 ≥ 𝑇}

≤ 𝑑
𝑇
(𝑝
𝑖
) + 𝑑
𝑇
(𝑓
𝑖
) 𝐺
𝑖
[𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
]

+ [𝑘
𝑖
𝑟
0
+ 𝐹
𝑖
] [𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
] 𝑑
𝑐

𝑇
(𝑔
𝑖
) ,

(41)

where we denoted
𝑑
𝑇
(𝑓
𝑖
) = sup {





𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))






− [𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))] : 𝑡 > 𝑠 ≥ 𝑇} ,

𝑑
𝑐

𝑇
(𝑔
𝑖
) = sup{∫

𝑡

0

{




𝑔
𝑖
(𝑡, 𝜏) − 𝑔

𝑖
(𝑠, 𝜏)






− [𝑔
𝑖
(𝑡, 𝜏) − 𝑔

𝑖
(𝑠, 𝜏)]} : 𝑡 > 𝑠 ≥ 𝑇} .

(42)

In view of assumptions (i), (iv) and Lemma 8, if 𝑇 tends to
infinity, then the above obtained estimate allows us to deduce
the following inequality:

𝑑
∞

(𝑉
𝑖
𝑋) ≤ 𝑘

𝑖
𝐺
𝑖
[𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
] 𝑑
∞

(𝑋) . (43)

Now, linking (35), (37) and (43) we obtain

𝜇
𝑑
(𝑉
𝑖
𝑋) ≤ 𝑘

𝑖
𝐺
𝑖
[𝑚
𝑖
(𝑟
0
) + 𝐻

𝑖
] 𝜇
𝑑
(𝑋) (44)

for 𝑖 ∈ {1, 2}.
Hence, if we use Theorem 4, we obtain that the operator

𝑊 = 𝑉
1
𝑉
2
is a contraction with respect to the measure of

noncompactness 𝜇
𝑑
and fulfills the Darbo condition with the

below indicated constant

𝐿 = 𝑝𝑘𝐺 [𝑚
1
(𝑟
0
) + 𝑚
2
(𝑟
0
) + 𝐻]

+ 2𝑘𝐺

2

[𝑘𝑟
0
+ 𝐹] [𝑚

1
(𝑟
0
) + 𝐻] [𝑚

2
(𝑟
0
) + 𝐻] .

(45)

Taking into account the second part of assumption (ix) we
have additionally that 𝐿 < 1.

Finally, invoking Theorem 4 we deduce that the operator
𝑊 has at least one fixed point 𝑥 = 𝑥(𝑡) in the set Ω

𝑟
0

.
Obviously, the function𝑥 is a solution of (20). FromRemark 5
we conclude that 𝑥 is asymptotically stable and ultimately
nondecreasing. Obviously, 𝑥 is nonnegative on R

+
.

The proof is complete.
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5. The Existence of Solutions of a Quadratic
Fractional Integral Equation in the Banach
Algebra 𝐵𝐶(R

+
)

In this section we will investigate the existence of solutions of
the quadratic fractional integral equation having the form

𝑥 (𝑡) = (𝑈
1
𝑥) (𝑡) (𝑈

2
𝑥) (𝑡) , (46)

where

(𝑈
𝑖
𝑥) (𝑡) = 𝑚

𝑖
(𝑡) + 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) ∫

𝑡

0

V
𝑖
(𝑡, 𝑠, 𝑥 (𝑠))

(𝑡 − 𝑠)
𝛼
𝑖

𝑑𝑠 (47)

for 𝑡 ∈ R
+
and 𝑖 = 1, 2. Here we assume that 𝛼

𝑖
∈ (0, 1) is a

fixed number for 𝑖 = 1, 2.
Our investigations will be conducted, similarly as previ-

ously, in the Banach algebra 𝐵𝐶(R
+
).

For further purposes we define a few operators on the
space 𝐵𝐶(R

+
) by putting

(𝐹
𝑖
𝑥) (𝑡) = 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) ,

(𝑉
𝑖
𝑥) (𝑡) = ∫

𝑡

0

V
𝑖
(𝑡, 𝑠, 𝑥 (𝑠))

(𝑡 − 𝑠)
𝛼
𝑖

𝑑𝑠

(48)

for 𝑖 = 1, 2. Obviously, we have

(𝑈
𝑖
𝑥) (𝑡) = 𝑚

𝑖
(𝑡) + (𝐹

𝑖
𝑥) (𝑡) (𝑉

𝑖
𝑥) (𝑡) (49)

for 𝑖 = 1, 2 and for 𝑡 ∈ R
+
.

Now, we are going to formulate assumptions imposed on
functions involved in (46).

(i) The function 𝑚
𝑖
is nonnegative, bounded, continu-

ous, and ultimately nondecreasing (𝑖 = 1, 2).
(ii) The function 𝑓

𝑖
: R
+
×R
+

→ R
+
satisfies the condi-

tions (𝛼)–(𝛾) of Lemma 8 for 𝑖 = 1, 2.
(iii) The functions𝑓

𝑖
(𝑖 = 1, 2) satisfy the Lipschitz condi-

tion with respect to the second variable; that is, there
exists a constant 𝑘

𝑖
> 0 such that





𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑡, 𝑦)





≤ 𝑘
𝑖





𝑥 − 𝑦






(50)

for, 𝑡 ∈ R
+
(𝑖 = 1, 2).

(iv) V
𝑖
: R
+
×R
+
×R → R is a continuous function such

that V
𝑖
: R
+
× R
+
× R
+

→ R
+
(𝑖 = 1, 2).

(v) There exist a continuous and nondecreasing function
𝐺
𝑖

: R
+

→ R
+
and a bounded and continuous

function 𝑔
𝑖
: R
+
× R
+

→ R
+
such that V

𝑖
(𝑡, 𝑠, 𝑥) =

𝑔
𝑖
(𝑡, 𝑠)𝐺

𝑖
(|𝑥|) for 𝑡, 𝑠 ∈ R

+
, 𝑥 ∈ R, and 𝑖 = 1, 2.

(vi) The function 𝑡 → ∫

𝑡

0
(𝑔
𝑖
(𝑡, 𝑠)/(𝑡 − 𝑠)

𝛼
𝑖
)𝑑𝑠 is bounded

on R
+
and

lim
𝑡→∞

∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
𝑖

𝑑𝑠 = 0, (51)

for 𝑖 = 1, 2.

(vii) The function 𝑔
𝑖
(𝑖 = 1, 2) satisfies the following con-

dition (𝑖 = 1, 2):

lim
𝑇→∞

{sup{∫

𝑡

0

{










𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

−

𝑔
𝑖
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
𝑖










− [

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

−

𝑔
𝑖
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
𝑖

]}𝑑𝜏 :

𝑇 ≤ 𝑠 < 𝑡}} = 0.

(52)

In view of the above assumptions we may define the
following constants (𝑖 = 1, 2):

𝐹
𝑖
= sup {





𝑓
𝑖
(𝑡, 0)





: 𝑡 ∈ R

+
} ,

𝐺
𝑖
= sup{∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
𝑖

𝑑𝑠 : 𝑡 ∈ R
+
} ,

𝑔
𝑖
= sup {𝑔

𝑖
(𝑡, 𝑠) : 𝑡, 𝑠 ∈ R

+
} ,

𝐹 = max {𝐹
1
, 𝐹
2
} ,

𝑘 = max {𝑘
1
, 𝑘
2
} ,

𝑚 = max {




𝑚
1





,




𝑚
2





} .

(53)

The last assumption has the form 0.

(viii) There exists a solution 𝑟
0
> 0 of the inequality

[𝑚 + 𝑘𝐺
1
𝑟𝐺
1
(𝑟) + 𝐹 𝐺

1
𝐺
1
(𝑟)]

× [𝑚 + 𝑘𝐺
2
𝑟𝐺
2
(𝑟) + 𝐹 𝐺

2
𝐺
2
(𝑟)] ≤ 𝑟

(54)

such that

𝑚𝑘 (𝐺
1
𝐺
1
(𝑟
0
) + 𝐺
2
𝐺
2
(𝑟
0
))

+ 2𝑘𝐹 𝐺
1
𝐺
1
(𝑟
0
) 𝐺
2
𝐺
2
(𝑟
0
)

+ 2𝑘
2

𝑟
0
𝐺
1
𝐺
1
(𝑟
0
) 𝐺
2
𝐺
2
(𝑟
0
) < 1.

(55)

Nowwe are prepared to formulate and prove the existence
result concerning the functional integral equation (46).

Theorem 10. Under assumptions (i)–(viii) (46) has at least
one solution 𝑥 = 𝑥(𝑡) in the space 𝐵𝐶(R

+
) which is nonneg-

ative, asymptotically stable, and ultimately nondecreasing.

Proof. Similarly as in the proof of Theorem 9 let us consider
the subset Ω of the Banach algebra 𝐵𝐶(R

+
) which consists

of all functions being nonnegative on R
+
. Further, choose

arbitrary function𝑥 ∈ Ω.Then, applying assumptions (i), (ii),
(iv), and (v) we infer that the function 𝑈

𝑖
𝑥 is nonnegative on

R
+
(𝑖 = 1, 2).
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Next, for 𝑡 ∈ R
+
, in view of (47) and the imposed

assumptions, we get

(𝑈
𝑖
𝑥) (𝑡) ≤ 𝑚

𝑖
(𝑡) + [𝑘

𝑖
𝑥 (𝑡) + 𝑓

𝑖
(𝑡, 0)] ∫

𝑡

0

V
𝑖
(𝑡, 𝑠, 𝑥 (𝑠))

(𝑡 − 𝑠)
𝛼
𝑖

𝑑𝑠

≤ 𝑚
𝑖
(𝑡) + [𝑘

𝑖
𝑥 (𝑡) + 𝑓

𝑖
(𝑡, 0)] 𝐺

𝑖
(‖𝑥‖) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
𝑖

𝑑𝑠

≤




𝑚
𝑖





+ 𝑘
𝑖
𝐺
𝑖
‖𝑥‖𝐺
𝑖
(‖𝑥‖) + 𝐹 𝐺

𝑖
𝐺
𝑖
(‖𝑥‖) ,

(56)

for 𝑖 = 1, 2.
This estimate yields that the function 𝑈

𝑖
𝑥 is bounded on

R
+
(𝑖 = 1, 2).
Furthermore, let us observe that in view of the properties

of the superposition operator [18] and assumption (ii) we
derive that the function 𝐹

𝑖
𝑥 is continuous on R

+
(𝑖 = 1, 2).

Thus, in order to show that 𝑈
𝑖
𝑥 is continuous on the interval

R
+
, it is sufficient to show that the function𝑉

𝑖
𝑥 is continuous

on R
+
.

To this end fix 𝑇 > 0 and 𝜀 > 0. Next, choose arbitrarily
𝑡, 𝑠 ∈ [0, 𝑇] such that |𝑡 − 𝑠| ≤ 𝜀. Without loss of generality we
may assume that 𝑠 < 𝑡. Then we have





(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)






≤










∫

𝑡

0

V
𝑖
(𝑡, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 − ∫

𝑡

0

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏










+










∫

𝑡

0

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 − ∫

𝑠

0

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏










+










∫

𝑠

0

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 − ∫

𝑠

0

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖

𝑑𝜏










≤ ∫

𝑡

0





V
𝑖
(𝑡, 𝜏, 𝑥 (𝜏)) − V

𝑖
(𝑠, 𝜏, 𝑥 (𝜏))






(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ ∫

𝑡

𝑠

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ ∫

𝑠

0

V
𝑖
(𝑠, 𝜏, 𝑥 (𝜏)) [

1

(𝑠 − 𝜏)
𝛼
𝑖

−

1

(𝑡 − 𝜏)
𝛼
𝑖

] 𝑑𝜏

≤ 𝜔
𝑇

‖𝑥‖
(V
𝑖
, 𝜀) ∫

𝑡

0

1

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ 𝐺
𝑖
(‖𝑥‖) 𝑔

𝑖
∫

𝑡

𝑠

1

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ 𝐺
𝑖
(‖𝑥‖) 𝑔

𝑖
∫

𝑠

0

[

1

(𝑠 − 𝜏)
𝛼
𝑖

−

1

(𝑡 − 𝜏)
𝛼
𝑖

] 𝑑𝜏

≤ 𝜔
𝑇

‖𝑥‖
(V
𝑖
, 𝜀)

𝑡
1−𝛼
𝑖

1 − 𝛼
𝑖

+ 𝐺
𝑖
(‖𝑥‖) 𝑔

𝑖

(𝑡 − 𝑠)
1−𝛼
𝑖

1 − 𝛼
𝑖

+ 𝐺
𝑖
(‖𝑥‖) 𝑔

𝑖
[

𝑠
1−𝛼
𝑖

1 − 𝛼
𝑖

−

𝑡
1−𝛼
𝑖

1 − 𝛼
𝑖

+

(𝑡 − 𝑠)
1−𝛼
𝑖

1 − 𝛼
𝑖

]

≤ 𝜔
𝑇

‖𝑥‖
(V
𝑖
, 𝜀)

𝑇
1−𝛼
𝑖

1 − 𝛼
𝑖

+ 2𝐺
𝑖
(‖𝑥‖) 𝑔

𝑖

𝜀
1−𝛼
𝑖

1 − 𝛼
𝑖

,

(57)

where we denoted

𝜔
𝑇

𝑑
(V
𝑖
, 𝜀) = sup {





V
𝑖
(𝑡, 𝜏, 𝑥) − V

𝑖
(𝑠, 𝜏, 𝑥)





:

𝑡, 𝑠, 𝜏 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀, 𝑥 ∈ [−𝑑, 𝑑]} .

(58)

From the above estimate and the fact that function V
𝑖
is

uniformly continuous on the set [0, 𝑇] × [0, 𝑇] × [−‖𝑥‖, ‖𝑥‖]

we infer that the function 𝑉
𝑖
𝑥 is continuous on the real half

axis R
+
.

Gathering the above established facts and estimate (57)
we conclude that the operator 𝑈

𝑖
(𝑖 = 1, 2) transforms the set

Ω into itself.
Apart from this, in view of (56) and assumption (vii) we

infer that there exists a number 𝑟
0
> 0 such that the operator

𝑆 = 𝑈
1
𝑈
2
transforms into itself the set Ω

𝑟
0

defined in the
following way:

Ω
𝑟
0

= {𝑥 ∈ 𝐵𝐶 (R
+
) : 0 ≤ 𝑥 (𝑡) ≤ 𝑟

0
for 𝑡 ∈ R

+
} . (59)

Moreover, the following inequality is satisfied:





𝑈
𝑖
Ω
𝑟
0






≤ 𝑚 + 𝑘

𝑖
𝐺𝑟
0
𝐺
𝑖
(𝑟
0
) + 𝐹 𝐺𝐺

𝑖
(𝑟
0
) . (60)

In the sequel we will work with the measure of noncom-
pactness 𝜇

𝑑
. Thus, let us fix a nonempty subset 𝑋 of the set

Ω
𝑟
0

and choose arbitrary numbers 𝑇 > 0 and 𝜀 > 0. Then, for
𝑥 ∈ 𝑋 and for 𝑡, 𝑠 ∈ [0, 𝑇] such that |𝑡 − 𝑠| ≤ 𝜀 and 𝑡 ≥ 𝑠 we
have




(𝑈
𝑖
𝑥) (𝑡) − (𝑈

𝑖
𝑥) (𝑠)






≤ 𝜔
𝑇

(𝑚
𝑖
, 𝜀)

+




(𝐹
𝑖
𝑥) (𝑡) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑠)






≤ 𝜔
𝑇

(𝑚
𝑖
, 𝜀) +





(𝐹
𝑖
𝑥) (𝑡) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑡)






+




(𝐹
𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑠)






≤ 𝜔
𝑇

(𝑚
𝑖
, 𝜀) +





(𝐹
𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠)










(𝑉
𝑖
𝑥) (𝑡)






+




(𝐹
𝑖
𝑥) (𝑠)










(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)





.

(61)

In the similar way we obtain the estimate




(𝐹
𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠)






≤




𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑡, 𝑥 (𝑠))





+





𝑓
𝑖
(𝑡, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))






≤ 𝑘
𝑖
|𝑥 (𝑡) − 𝑥 (𝑠)| +





𝑓
𝑖
(𝑡, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑠, 𝑥 (𝑠))






≤ 𝑘
𝑖
𝜔
𝑇

(𝑥, 𝜀) + 𝜔
𝑇

‖𝑥‖
(𝑓
𝑖
, 𝜀) ,

(62)

where we denoted

𝜔
𝑇

𝑑
(𝑓
𝑖
, 𝜀) = sup {





𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑠, 𝑥)





:

𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀, 𝑥 ∈ [−𝑑, 𝑑]} .

(63)
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Moreover, we derive the following evaluations:





(𝑉
𝑖
𝑥) (𝑡)





≤ 𝐺
𝑖
(‖𝑥‖) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 ≤ 𝐺
𝑖
(‖𝑥‖) 𝐺

𝑖
,





(𝐹
𝑖
𝑥) (𝑠)





≤ 𝑘
𝑖
|𝑥 (𝑠)| +





𝑓
𝑖
(𝑠, 0)





≤ 𝑘
𝑖
𝑟
0
+ 𝐹
𝑖
,

(64)

which hold for an arbitrary 𝑡, 𝑠 ∈ R
+
.

Further, linking (61), (62) with the above obtained evalu-
ation, we arrive at the following estimate:




(𝑈
𝑖
𝑥) (𝑡) − (𝑈

𝑖
𝑥) (𝑠)






≤ 𝜔
𝑇

(𝑚
𝑖
, 𝜀)

+ [𝑘
𝑖
𝜔
𝑇

(𝑥, 𝜀) + 𝜔
𝑇

‖𝑥‖
(𝑓
𝑖
, 𝜀)] 𝐺

𝑖
(‖𝑥‖) 𝐺

𝑖

+ [𝑘
𝑖
𝑟
0
+ 𝐹
𝑖
] [𝜔
𝑇

‖𝑥‖
(𝑢
𝑖
, 𝜀)

𝑇
1−𝛼
𝑖

1 − 𝛼
𝑖

+ 2𝐺
𝑖
(‖𝑥‖) 𝑔

𝑖

𝜀
1−𝛼
𝑖

1 − 𝛼
𝑖

] .

(65)

Observe that the terms 𝜔𝑇
‖𝑥‖

(𝑓
𝑖
, 𝜀) and 𝜔

𝑇

‖𝑥‖
(𝑢
𝑖
, 𝜀) tend to zero

as 𝜀 → 0 since the functions 𝑓
𝑖
and 𝑢

𝑖
are uniformly con-

tinuous on the set [0, 𝑇] × [−‖𝑥‖, ‖𝑥‖] and [0, 𝑇] × [0, 𝑇] ×

[−‖𝑥‖, ‖𝑥‖], respectively. Hence we obtain

𝜔
𝑇

0
(𝑈
𝑖
𝑋) ≤ 𝑘

𝑖
𝐺
𝑖
𝐺
𝑖
(𝑟
0
) 𝜔
𝑇

0
(𝑋) (66)

and consequently

𝜔
∞

0
(𝑈
𝑖
𝑋) ≤ 𝑘

𝑖
𝐺
𝑖
𝐺
𝑖
(𝑟
0
) 𝜔
∞

0
(𝑋) . (67)

In what follows, let us choose arbitrarily 𝑥, 𝑦 ∈ 𝑋 and
𝑡 ∈ R
+
. Then, based on our assumptions, we obtain





(𝑈
𝑖
𝑥) (𝑡) − (𝑈

𝑖
𝑦) (𝑡)






≤




𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑡, 𝑦 (𝑡))





∫

𝑡

0

𝑢
𝑖
(𝑡, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ 𝑓
𝑖
(𝑡, 𝑦 (𝑡)) ∫

𝑡

0





𝑢
𝑖
(𝑡, 𝜏, 𝑥 (𝜏)) − 𝑢

𝑖
(𝑡, 𝜏, 𝑦 (𝜏))






(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

≤ 𝑘
𝑖





𝑥 (𝑡) − 𝑦 (𝑡)





𝐺
𝑖
(‖𝑥‖) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ [𝑘
𝑖
𝑦 (𝑡) + 𝑓

𝑖
(𝑡, 0)]

× ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) [𝐺

𝑖
(𝑥 (𝜏)) − 𝐺

𝑖
(𝑦 (𝜏))]

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

≤ 𝑘
𝑖





𝑥 (𝑡) − 𝑦 (𝑡)





𝐺
𝑖
(𝑟
0
) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ [𝑘
𝑖
𝑟
0
+ 𝐹
𝑖
] 2𝐺
𝑖
(𝑟
0
) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏.

(68)

Hence, keeping in mind assumption (vi), we derive the
following equality:

lim sup
𝑡→∞

diam (𝑈
𝑖
𝑋) (𝑡) = 0. (69)

Now, we show that𝑈
𝑖
is continuous on the setΩ

𝑟
0

. To this
end fix 𝜀 > 0 and take 𝑥, 𝑦 ∈ Ω

𝑟
0

such that ‖𝑥 − 𝑦‖ ≤ 𝜀. In
view of (69) we know that we may find a number 𝑇 > 0 such
that for arbitrary 𝑡 ≥ 𝑇 we get |(𝑈

𝑖
𝑥)(𝑡) − (𝑈

𝑖
𝑦)(𝑡)| ≤ 𝜀. On

the other hand, if we take 𝑡 ∈ [0, 𝑇], we derive the following
estimate:





(𝑈
𝑖
𝑥) (𝑡) − (𝑈

𝑖
𝑦) (𝑡)






≤




𝑓
𝑖
(𝑡, 𝑥 (𝑡)) − 𝑓

𝑖
(𝑡, 𝑦 (𝑡))





∫

𝑡

0

𝑢
𝑖
(𝑡, 𝜏, 𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ 𝑓
𝑖
(𝑡, 𝑥 (𝑡)) ∫

𝑡

0





𝑢
𝑖
(𝑡, 𝜏, 𝑥 (𝜏)) − 𝑢

𝑖
(𝑡, 𝜏, 𝑦 (𝜏))






(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

≤ 𝑘
𝑖





𝑥 (𝑡) − 𝑦 (𝑡)





𝐺
𝑖
(‖𝑥‖) ∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏

+ [𝑘
𝑖





𝑦 (𝑡)





+ 𝑓
𝑖
(𝑡, 0)] 𝜔

𝑇

𝑟
0

(𝑢
𝑖
, 𝜀) ∫

𝑡

0

𝑑𝜏

(𝑡 − 𝜏)
𝛼
𝑖

≤ 𝑘𝜀𝐺
𝑖
𝐺
𝑖
(𝑟
0
) + (𝑘𝑟

0
+ 𝐹)

𝑇
1−𝛼
𝑖

1 − 𝛼
𝑖

𝜔
𝑇

𝑟
0

(𝑢
𝑖
, 𝜀) ,

(70)

where we denoted

𝜔
𝑇

𝑑
(𝑢
𝑖
, 𝜀) = sup {





𝑢
𝑖
(𝑡, 𝑠, 𝑥) − 𝑢

𝑖
(𝑡, 𝑠, 𝑦)





:

𝑡, 𝑠 ∈ [0, 𝑇] , 𝑥, 𝑦 ∈ [−𝑑, 𝑑] ,




𝑥 − 𝑦





≤ 𝜀} .

(71)

In view of the uniform continuity of the function 𝑢
𝑖
on the set

[0, 𝑇]×[0, 𝑇]×[−𝑟
0
, 𝑟
0
]we have that𝜔𝑇

𝑟
0

(V, 𝜀) → 0 as 𝜀 → 0.
This yields that we can find 𝑇 > 0 such that last term in the
above estimate is sufficiently small for 𝑡 ≥ 𝑇 and 𝑖 = 1, 2.

Next, fix arbitrarily 𝑇 > 0, and choose 𝑡, 𝑠 such that 𝑡 >

𝑠 ≥ 𝑇. Then, for an arbitrary 𝑥 ∈ 𝑋 we obtain




(𝑈
𝑖
𝑥) (𝑡) − (𝑈

𝑖
𝑥) (𝑠)





− [(𝑈
𝑖
𝑥) (𝑡) − (𝑈

𝑖
𝑥) (𝑠)]

≤




𝑚
𝑖
(𝑡) − 𝑚

𝑖
(𝑠)





− [𝑚
𝑖
(𝑡) − 𝑚

𝑖
(𝑠)]

+




(𝐹
𝑖
𝑥) (𝑡) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑡)






+




(𝐹
𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑠)






− [(𝐹
𝑖
𝑥) (𝑡) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑡)]

− [(𝐹
𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑡) − (𝐹

𝑖
𝑥) (𝑠) (𝑉

𝑖
𝑥) (𝑠)]

≤ 𝑑
𝑇
(𝑚
𝑖
) + 𝑑
𝑇
(𝐹
𝑖
𝑥) (𝑉
𝑖
𝑥) (𝑡)

+ (𝐹
𝑖
𝑥) (𝑠) {





(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)






− [(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)]} .

(72)

On the other hand we get




(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)





− [(𝑉
𝑖
𝑥) (𝑡) − (𝑉

𝑖
𝑥) (𝑠)]

≤










∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 − ∫

𝑡

0

𝑔
𝑖
(𝑠, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖

𝑑𝜏
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+










∫

𝑡

𝑠

𝑔
𝑖
(𝑠, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖

𝑑𝜏










− [∫

𝑡

0

𝑔
𝑖
(𝑡, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏−∫

𝑡

0

𝑔
𝑖
(𝑠, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖

𝑑𝜏]

− ∫

𝑡

𝑠

𝑔
𝑖
(𝑠, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖

𝑑𝜏

≤ ∫

𝑡

0










𝑔
𝑖
(𝑡, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 −

𝑔
𝑖
(𝑠, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖










𝑑𝜏

− ∫

𝑡

0

[

𝑔
𝑖
(𝑡, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑡 − 𝜏)
𝛼
𝑖

𝑑𝜏 −

𝑔
𝑖
(𝑠, 𝜏) 𝐺

𝑖
(𝑥 (𝜏))

(𝑠 − 𝜏)
𝛼
𝑖

] 𝑑𝜏

≤ 𝐺
𝑖
(‖𝑥‖) ∫

𝑡

0

{










𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

−

𝑔
𝑖
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
𝑖










− [

𝑔
𝑖
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
𝑖

−

𝑔
𝑖
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
𝑖

]}𝑑𝜏.

(73)

Now, taking into account assumptions (i), (v), and (vii) and
estimate (72), we obtain

𝑑
∞

(𝑈
𝑖
𝑥) ≤ 𝑑

∞
(𝐹
𝑖
𝑥)𝐺
𝑖
(𝑟
0
) 𝐺
𝑖
, (74)

for 𝑖 = 1, 2. Hence, in view of Lemma 8, we derive the
following inequality:

𝑑
∞

(𝑈
𝑖
𝑥) ≤ 𝑘

𝑖
𝐺
𝑖
𝐺
𝑖
(𝑟
0
) 𝑑
∞

(𝑥) (75)

(𝑖 = 1, 2). Further, combining the above inequality and (62),
(67), and (72), we obtain

𝜇
𝑑
(𝑈
𝑖
𝑋) ≤ 𝑘

𝑖
𝐺
𝑖
𝐺
𝑖
(𝑟
0
) 𝜇
𝑑
(𝑋) (76)

for 𝑖 = 1, 2.
Next, applying Theorem 4 we derive that the operator

𝑆 = 𝑈
1
𝑈
2
is a contraction with respect to the measure of

noncompactness 𝜇
𝑑
with the constant 𝐿 given by the formula

𝐿 = 𝑚𝑘 (𝐺
1
𝐺
1
(𝑟
0
) + 𝐺
2
𝐺
2
(𝑟
0
))

+ 2𝑘𝐹 𝐺
1
𝐺
1
(𝑟
0
) 𝐺
2
𝐺
2
(𝑟
0
)

+ 2𝑘
2

𝑟
0
𝐺
1
𝐺
1
(𝑟
0
) 𝐺
2
𝐺
2
(𝑟
0
) .

(77)

Observe that assumption (viii) implies that 𝐿 < 1. Thus, in
view of Theorem 4 we infer that the operator 𝑆 has at least
one fixed point 𝑥 = 𝑥(𝑡) belonging to the set Ω

𝑟
0

. Moreover,
in view of Remark 5 we conclude that 𝑥 is nonnegative onR

+
,

asymptotically stable, and ultimately nondecreasing.
This completes the proof.

Now we provide an example illustratingTheorem 10.

Example 11. Consider the quadratic fractional integral equa-
tion having form of (46) with the operators𝑈

1
,𝑈
2
defined by

the following formulas

(𝑈
1
𝑥) (𝑡) =

𝑡

3𝑡 + 1

+ arctan (𝑡
2

+ 𝑥 (𝑡)) ∫

𝑡

0

𝑒
−(𝑡+𝑠)

√|𝑥 (𝑡)|

(𝑡 − 𝑠)
1/3

𝑑𝑠,

(𝑈
2
𝑥) (𝑡) =

1 − 𝑒
−𝑡

4

+

1

2

ln (𝑥 (𝑡) + 1)

× ∫

𝑡

0

8𝑥
4

(𝑡)

5(𝑡 + 𝑠 + 2)
3

(𝑡 − 𝑠)
1/5

𝑑𝑠

(78)

for 𝑡 ∈ R
+
.

Observe that in this case the functions involved in (46)
have the form

𝑚
1
(𝑡) =

𝑡

3𝑡 + 1

, 𝑚
2
(𝑡) =

1 − 𝑒
−𝑡

4

,

𝑓
1
(𝑡, 𝑥) = arctan (𝑡

2

+ 𝑥) , 𝑓
2
(𝑡, 𝑥) =

1

2

ln (𝑥 + 1) ,

V
1
(𝑡, 𝑠, 𝑥) = 𝑒

−(𝑡+𝑠)
√|𝑥|,

V
2
(𝑡, 𝑠, 𝑥) =

8𝑥
4

5(𝑡 + 𝑠 + 2)
3
.

(79)

Moreover, 𝛼
1
= 1/3, 𝛼

2
= 1/5.

It is easy to check that for the above functions there are
satisfied assumptions ofTheorem 10. Indeed, we have that the
function 𝑚

𝑖
= 𝑚
𝑖
(𝑡) is nonnegative, bounded, 𝑝 and con-

tin-u-ous on R
+
(𝑖 = 1, 2). Since 𝑚

1
and 𝑚

2
are increasing

on R
+
we derive that they are also ultimately nondecreasing

on R
+
. Moreover, ‖𝑚

1
‖ = 1/3 and ‖𝑚

2
‖ = 1/4. Thus, there

is satisfied assumption (i). Further notice that the functions
𝑓
𝑖
(𝑖 = 1, 2) transform continuously the set R

+
× R
+
into

R
+
. Moreover, 𝑓

1
is nondecreasing with respect to both

variables and satisfies the Lipschitz condition (with respect
to the second variable) with the constant 𝑘

1
= 1. Similarly,

the function 𝑓
2
= 𝑓
2
(𝑡, 𝑥) is increasing with respect to 𝑥 and

satisfies the Lipschitz condition with the constant 𝑘
2

= 1/2.
Apart from this it is easily seen that 𝐹

1
= 𝜋/2, 𝐹

2
= 0.

Summing up, we see that functions 𝑓
1
and 𝑓

2
satisfy

assumptions (ii) and (iii).
Next, let us note that the function V

𝑖
(𝑡, 𝑠, 𝑥) is continuous

on the setR
+
×R
+
×R and transforms the setR

+
×R
+
×R
+

into R
+
for 𝑖 = 1, 2. Apart from this the function V

𝑖
can be

represented in the form V
𝑖
(𝑡, 𝑠, 𝑥) = 𝑔

𝑖
(𝑡, 𝑠)𝐺

𝑖
(|𝑥|) (𝑖 = 1, 2),

where 𝑔
1
(𝑡, 𝑠) = 𝑒

−(𝑡+𝑠)
, 𝐺
1
(𝑥) = √|𝑥|, 𝑔

2
(𝑡, 𝑠) = 8/5(𝑡 + 𝑠 +

2)
3, and𝐺

2
(𝑥) = 𝑥

4. It is easily seen that assumptions (iv) and
(v) are satisfied for the functions V

1
and V
2
.

Further on, we have

∫

𝑡

0

𝑔
1
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
1

𝑑𝑠 = ∫

𝑡

0

𝑒
−𝑡−𝑠

(𝑡 − 𝑠)
1/3

𝑑𝑠

≤ 𝑒
−𝑡

∫

𝑡

0

𝑑𝑠

(𝑡 − 𝑠)
1/3

=

3

2

𝑒
−𝑡

𝑡
2/3

.

(80)
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Hence we see that

lim
𝑡→∞

∫

𝑡

0

𝑔
1
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
1

𝑑𝑠 = 0. (81)

Moreover, we get

∫

𝑡

0

𝑔
2
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
2

𝑑𝑠 = ∫

𝑡

0

8

5(𝑡 + 𝑠 + 2)
3

(𝑡 − 𝑠)
1/5

𝑑𝑠

≤

8

5(𝑡 + 2)
3
∫

𝑡

0

𝑑𝑠

(𝑡 − 𝑠)
1/5

=

2𝑡
4/5

(𝑡 + 2)
3
.

(82)

Thus, we have

lim
𝑡→∞

∫

𝑡

0

𝑔
2
(𝑡, 𝑠)

(𝑡 − 𝑠)
𝛼
2

𝑑𝑠 = 0. (83)

This shows that assumption (vi) is satisfied.
In order to show that the function𝑔

𝑖
(𝑡, 𝑠) satisfies assump-

tion (vii) let us fix arbitrarily 𝑇 > 0. Then, for 𝑇 ≤ 𝑠 < 𝑡 we
obtain

∫

𝑡

0

{










𝑔
1
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
1

−

𝑔
1
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
1










− [

𝑔
1
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
1

−

𝑔
1
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
1

]}𝑑𝜏

= ∫

𝑡

0

{











𝑒
−(𝑡+𝜏)

(𝑡 − 𝜏)
1/3

−

𝑒
−(𝑠+𝜏)

(𝑠 − 𝜏)
1/3











− [

𝑒
−(𝑡+𝜏)

(𝑡 − 𝜏)
1/3

−

𝑒
−(𝑠+𝜏)

(𝑠 − 𝜏)
1/3

]}𝑑𝜏

= 2∫

𝑡

0

[

𝑒
−(𝑠+𝜏)

(𝑠 − 𝜏)
1/3

−

𝑒
−(𝑡+𝜏)

(𝑡 − 𝜏)
1/3

]𝑑𝜏

≤ 2𝑒
−𝑠

∫

𝑡

0

𝑑𝜏

(𝑠 − 𝜏)
1/3

− 2𝑒
−2𝑡

∫

𝑡

0

𝑑𝜏

(𝑡 − 𝜏)
1/3

= 3𝑒
−𝑠

(

3

√𝑠
2
−

3

√(𝑠 − 𝑡)
2

) − 3𝑒
−2𝑡 3

√𝑡
2
≤ 3𝑒
−𝑠 3
√𝑠
2
.

(84)

In the similar way, we get

∫

𝑡

0

{










𝑔
2
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
2

−

𝑔
2
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
2










− [

𝑔
2
(𝑡, 𝜏)

(𝑡 − 𝜏)
𝛼
2

−

𝑔
2
(𝑠, 𝜏)

(𝑠 − 𝜏)
𝛼
2

]}𝑑𝜏

= ∫

𝑡

0

{











8

5(𝑡 + 𝜏 + 2)
3

(𝑡 − 𝜏)
1/5

−

8

5(𝑠 + 𝜏 + 2)
3

(𝑠 − 𝜏)
1/5











− [

8

5(𝑡 + 𝜏 + 2)
3

(𝑡 − 𝜏)
1/5

−

8

5(𝑠 + 𝜏 + 2)
3

(𝑠 − 𝜏)
1/5

]}𝑑𝜏

= 2∫

𝑡

0

[

8

5(𝑠 + 𝜏 + 2)
3

(𝑠 − 𝜏)
1/5

−

8

5(𝑡 + 𝜏 + 2)
3

(𝑡 − 𝜏)
1/5

]𝑑𝜏

≤

16

5(𝑠 + 2)
3
∫

𝑡

0

𝑑𝜏

(𝑠 − 𝜏)
1/5

−

16

5(2𝑡 + 2)
3
∫

𝑡

0

𝑑𝜏

(𝑡 − 𝜏)
1/5

=

4

(𝑠 + 2)
3
(

5

√𝑠
4
−

5

√(𝑠 − 𝑡)
4

) −

4

(2𝑡 + 2)
3

5

√𝑡
4

≤

4

(𝑠 + 2)
3

5

√𝑠
4
.

(85)

In view of the above obtained estimates we conclude that
assumption (vii) is also satisfied.

Finally, let us notice that taking into account the above
established facts we have that 𝑚 = max{‖𝑚

1
‖, ‖𝑚
2
‖} = 1/3,

𝑘 = max{𝑘
1
, 𝑘
2
} = 1, and 𝐹 = max{𝐹

1
, 𝐹
2
} = 𝜋/2. Thus, the

first inequality from assumption (viii) has the form

[

1

3

+ 𝐺
1
(𝑟√𝑟 +

𝜋

2

𝑟)] [

1

3

+ 𝐺
2
(𝑟
5

+

𝜋

2

𝑟
4

)] ≤ 𝑟. (86)

It can be shown that the number 𝑟
0

= 1/2 is a solution
of the above inequality such that it satisfies also the second
inequality from assumption (viii).

Applying Theorem 10 we infer that the quadratic frac-
tional integral equation considered in this example has a
solution belonging to the set

Ω
1/2

= {𝑥 ∈ 𝐵𝐶 (R
+
) : 0 ≤ 𝑥 (𝑡) ≤

1

2

for 𝑡 ∈ R
+
} , (87)

which is asymptotically stable and ultimately nondecreasing.

6. The Existence of Solutions Having Limits
at Infinity of an Integral Equation of Mixed
Type in the Banach Algebra 𝐵𝐶(R

+
)

In this final section we are going to investigate the following
integral equation of mixed type:

𝑥 (𝑡) = (𝑉𝑥) (𝑡) (𝑈𝑥) (𝑡) , 𝑡 ∈ R
+
, (88)

where 𝑉 denotes the nonlinear Volterra integral operator of
the form

(𝑉𝑥) (𝑡) = 𝑝
1
(𝑡) + 𝑓

1
(𝑡, 𝑥 (𝑡)) ∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, (89)

while 𝑈 is the Urysohn integral operator having the form

(𝑈𝑥) (𝑡) = 𝑝
2
(𝑡) + 𝑓

2
(𝑡, 𝑥 (𝑡)) ∫

∞

0

𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠. (90)

Equation (88) will be considered in the Banach algebra
𝐵𝐶(R

+
). The existence result concerning (88), which we

intend to present here, creates an extension of a result
obtained in [2].
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In our considerations we will use the measure of non-
compactness 𝜇

𝑎
defined in Section 3.The use of that measure

enables us to obtain a result on the existence of solutions of
(88) having (finite) limits at infinity.

In what follows we will study (88) under the below
formulated assumptions.

(i) 𝑝
𝑖
∈ 𝐵𝐶(R

+
) and 𝑝

𝑖
(𝑡) → 0 as 𝑡 → ∞ (𝑖 = 1, 2).

(ii) 𝑓
𝑖

: R
+

× R → R is continuous and such that
𝑓
𝑖
(𝑡, 0) → 0 as 𝑡 → ∞, for 𝑖 = 1, 2.

(iii) The functions𝑓
𝑖
(𝑖 = 1, 2) satisfy the Lipschitz condi-

tion with respect to the second variable; that is, there
exists a constant 𝑘

𝑖
> 0 such that





𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑡, 𝑦)





≤ 𝑘
𝑖





𝑥 − 𝑦






(91)

for 𝑥, 𝑦 ∈ R and for 𝑡 ∈ R
+

(𝑖 = 1, 2).
(iv) V : R

+
× R
+
× R → R is continuous and there exist

a continuous, function 𝑔 : R
+

× R
+

→ R
+
and a

continuous and nondecreasing function 𝐺 : R
+

→

R
+
such that

|V (𝑡, 𝑠, 𝑥)| ≤ 𝑔 (𝑡, 𝑠) 𝐺 (|𝑥|) (92)

for all 𝑡, 𝑠 ∈ R
+
and 𝑥 ∈ R.

(v) 𝑢 : R
+
× R
+
× R → R is continuous and there exist

a continuous, function ℎ : R
+

× R
+

→ R
+
and a

continuous and nondecreasing function 𝐻 : R
+

→

R
+
such that

|𝑢 (𝑡, 𝑠, 𝑥)| ≤ ℎ (𝑡, 𝑠)𝐻 (|𝑥|) (93)

for all 𝑡, 𝑠 ∈ R
+
and 𝑥 ∈ R.

(vi) The function 𝑡 → ∫

𝑡

0
𝑔(𝑡, 𝑠)𝑑𝑠 is bounded on R

+
.

(vii) For each 𝑡 ∈ R
+
the function 𝑠 → ℎ(𝑡, 𝑠) is integrable

onR
+
and the function 𝑡 → ∫

∞

0
ℎ(𝑡, 𝑠)𝑑𝑠 is bounded

on R
+
.

(viii) The improper integral ∫∞
0

ℎ(𝑡, 𝑠)𝑑𝑠 is uniformly con-
vergent with respect to R

+
; that is,

lim
𝑇→∞

{sup
𝑡∈R
+

∫

∞

𝑇

ℎ (𝑡, 𝑠) 𝑑𝑠} = 0. (94)

(ix) There exists a positive solution 𝑟
0
of the inequality

[𝑝 + 𝑘𝐺𝑟𝐺 (𝑟) + 𝐹 𝐺𝐺 (𝑟)]

× [𝑝 + 𝑘𝐻𝑟𝐻 (𝑟) + 𝐹 𝐻𝐻 (𝑟)] ≤ 𝑟

(95)

such that

𝑝𝑘 (𝐺𝐺 (𝑟
0
) + 𝐻𝐻(𝑟

0
))

+ 2𝑘𝐹 𝐺 𝐻𝐺 (𝑟
0
)𝐻 (𝑟

0
)

+ 2𝑘
2

𝑟
0
𝐺 𝐻𝐺 (𝑟

0
)𝐻 (𝑟

0
) < 1,

(96)

where the constants involved in the above inequalities
are defined as follows:

𝐺 = sup{∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠 : 𝑡 ∈ R
+
} ,

𝐻 = sup{∫

∞

0

ℎ (𝑡, 𝑠) 𝑑𝑠 : 𝑡 ∈ R
+
} ,

𝐹
𝑖
= sup {





𝑓
𝑖
(𝑡, 0)





: 𝑡 ∈ R

+
} for 𝑖 = 1, 2,

𝑝 = max {




𝑝
1





,




𝑝
2





} ,

𝐹 = max {𝐹
1
, 𝐹
2
} ,

𝑘 = max {𝑘
1
, 𝑘
2
} .

(97)

It is worthwhile mentioning that a result obtained in
the paper [2] asserts that under assumptions (i)–(ix)
(88) has at least one solution in the Banach algebra
𝐵𝐶(R

+
) such that 𝑥(𝑡) → 0 as 𝑡 → ∞. We gener-

alize that result showing the existence of solutions of
(88) which have finite limits at infinity. To this end we
will need the following additional hypotheses.

(x) The following conditions hold

lim
𝑡→∞

∫

𝑡

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 = 0,

lim
𝑡→∞

∫

∞

0

ℎ
𝑖
(𝑡, 𝑠) 𝑑𝑠 = 0

(98)

for 𝑖 = 1, 2.
(xi) 𝑓

𝑖
is bounded function, and for each 𝑥 ∈ R there

exists a finite limit lim
𝑡→∞

𝑓
𝑖
(𝑡, 𝑥) (𝑖 = 1, 2).

Remark 12. Observe that assuming additionally hypothesis
(xi) we can dispense with a certain part of assumption (ii).

Now, we can formulate the main result of this section.

Theorem 13. Under assumptions (i)–(xi) (88) has at least one
solution 𝑥 = 𝑥(𝑡) belonging to the Banach algebra 𝐵𝐶(R

+
) and

such that there exists a finite limit lim
𝑡→∞

𝑥(𝑡).

Proof. Observe that based on the paper [2] we infer that
operators 𝑉 and 𝑈 defined earlier transform the Banach
algebra 𝐵𝐶(R

+
) into itself. Moreover, recalling [2] again, we

have

‖𝑉𝑥‖ ≤ 𝑝 + 𝑘𝐺 ‖𝑥‖𝐺 (‖𝑥‖) + 𝐹 𝐺𝐺 (‖𝑥‖) ,

‖𝑈𝑥‖ ≤ 𝑝 + 𝑘𝐻 ‖𝑥‖𝐻 (‖𝑥‖) + 𝐹 𝐻𝐻(‖𝑥‖) .

(99)

In virtue of the above estimates and assumption (ix) we
deduce that there exists a number 𝑟

0
> 0 such that the

operator 𝑊 = 𝑉𝑈 maps the ball 𝐵
𝑟
0

into itself. Moreover,
from (99) we derive the following estimates:






𝑉𝐵
𝑟
0






≤ 𝑝 + 𝑘𝐺𝑟

0
𝐺 (𝑟
0
) + 𝐹 𝐺𝐺 (𝑟

0
) ,






𝑈𝐵
𝑟
0






≤ 𝑝 + 𝑘𝐻𝑟

0
𝐻(𝑟
0
) + 𝐹 𝐻𝐻(𝑟

0
) .

(100)
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Further, let us take an arbitrary nonempty subset𝑋 of the ball
𝐵
𝑟
0

. Then, using some estimates proved in [2] we have

𝜔
∞

0
(𝑉𝑋) ≤ 𝑘𝐺𝐺 (𝑟

0
) 𝜔
∞

0
(𝑋) , (101)

𝜔
∞

0
(𝑈𝑋) ≤ 𝑘𝐻𝐻(𝑟

0
) 𝜔
∞

0
(𝑋) . (102)

Now, let us fix 𝑇 > 0 and take arbitrary numbers 𝑡, 𝑠 ≥ 𝑇.
Then we obtain

|(𝑉𝑥) (𝑡) − (𝑉𝑥) (𝑠)|

≤




𝑝
1
(𝑡)





+





𝑝
1
(𝑠)





+





𝑓
1
(𝑡, 𝑥 (𝑡)) − 𝑓

1
(𝑠, 𝑥 (𝑠))






× ∫

𝑡

0

|V (𝑡, 𝜏, 𝑥 (𝜏))| 𝑑𝜏 +




𝑓
1
(𝑠, 𝑥 (𝑠))






×










∫

𝑡

0

V (𝑡, 𝜏, 𝑥 (𝜏)) 𝑑𝜏 − ∫

𝑠

0

V (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏










≤




𝑝
1
(𝑡)





+





𝑝
1
(𝑠)






+ [𝑘
1
|𝑥 (𝑡) − 𝑥 (𝑠)| +





𝑓
1
(𝑡, 𝑥 (𝑠)) − 𝑓

1
(𝑠, 𝑥 (𝑠))





]

× ∫

𝑡

0

|V (𝑡, 𝜏, 𝑥 (𝜏))| 𝑑𝜏

+ [𝑘
1
|𝑥 (𝑠)| + 𝑓

1
(𝑠, 0)]

× [∫

𝑡

0

|V (𝑡, 𝜏, 𝑥 (𝜏))| 𝑑𝜏 + ∫

𝑠

0

|V (𝑠, 𝜏, 𝑥 (𝜏))| 𝑑𝜏]

≤




𝑝
1
(𝑡)





+





𝑝
1
(𝑠)






+ [𝑘
1
|𝑥 (𝑡) − 𝑥 (𝑠)| +





𝑓
1
(𝑡, 𝑥 (𝑠)) − 𝑓

1
(𝑠, 𝑥 (𝑠))





]

× 𝐺 (‖𝑥‖) ∫

𝑡

0

𝑔 (𝑡, 𝜏) 𝑑𝜏

+ [𝑘
1
‖𝑥‖ +





𝑓
1
(𝑠, 0)





] 𝐺 (‖𝑥‖)

× [∫

𝑡

0

𝑔 (𝑡, 𝜏) 𝑑𝜏 + ∫

𝑠

0

𝑔 (𝑠, 𝜏) 𝑑𝜏] .

(103)

Hence, we derive the following inequality:

|(𝑉𝑥) (𝑡) − (𝑉𝑥) (𝑠)|

≤ sup {




𝑝
1
(𝑡)





+





𝑝
1
(𝑠)





: 𝑡, 𝑠 ≥ 𝑇}

+ 𝑘
1
𝐺𝐺 (𝑟

0
) sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ≥ 𝑇}

+ 𝐺𝐺 (𝑟
0
) sup {





𝑓
1
(𝑡, 𝑥 (𝑠)) − 𝑓

1
(𝑠, 𝑥 (𝑠))





: 𝑡, 𝑠 ≥ 𝑇}

+ [𝑘
1
𝑟
0
+ 𝐹
1
] 𝐺 (𝑟
0
) sup{∫

𝑡

0

𝑔 (𝑡, 𝜏) 𝑑𝜏

+∫

𝑠

0

𝑔 (𝑠, 𝜏) 𝑑𝜏 : 𝑡, 𝑠 ≥ 𝑇} .

(104)

Combining the above inequality with assumptions (i), (vi),
(x), and (xi), we obtain

𝑎 (𝑉𝑋) ≤ 𝑘𝐺𝐺 (𝑟
0
) 𝑎 (𝑋) . (105)

Similarlywe can show, based on assumptions (i), (ii), (v), (vii),
(viii), (x), and (xi), that the following inequality holds:

𝑎 (𝑈𝑋) ≤ 𝑘𝐻𝐻(𝑟
0
) 𝑎 (𝑋) . (106)

Further, let us observe that from (101) and (105) we derive

𝜇
𝑎
(𝑉𝑋) ≤ 𝑘𝐺𝐺 (𝑟

0
) 𝜇
𝑎
(𝑋) . (107)

In the same way, linking (102) and (106), we get

𝜇
𝑎
(𝑈𝑋) ≤ 𝑘𝐻𝐻(𝑟

0
) 𝜇
𝑎
(𝑋) . (108)

Finally, taking into account estimates (100), (107), and
(108), assumption (ix), and Theorem 4 we deduce that
operator 𝑊 = 𝑉𝑈 has at least one fixed point 𝑥 = 𝑥(𝑡) in
the ball 𝐵

𝑟
0

being a subset of the Banach algebra 𝐵𝐶(R
+
). It is

clear that the function 𝑥 is a solution of (88). Moreover, from
Remark 5 and the description of the kernel ker𝜇

𝑎
we infer

that 𝑥 has a finite limit at infinity.
The proof is complete.
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