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We introduce a new class of non-self-contractive mappings. For such mappings, we study the existence and uniqueness of best
proximity points. Several applications and interesting consequences of our obtained results are derived.

1. Introduction and Preliminaries

Let𝐴 and𝐵 be two nonempty subsets of ametric space (𝑋, 𝑑).
An element 𝑥 ∈ 𝐴 is said to be a fixed point of a given map
𝑇 : 𝐴 → 𝐵 if𝑇𝑥 = 𝑥. Clearly,𝑇(𝐴)∩𝐴 ̸= 0 is a necessary (but
not sufficient) condition for the existence of a fixed point of
𝑇. If 𝑇(𝐴) ∩ 𝐴 = 0, then 𝑑(𝑥, 𝑇𝑥) > 0 for all 𝑥 ∈ 𝐴 that is, the
set of fixed points of 𝑇 is empty. In a such situation, one often
attempts to find an element 𝑥 which is in some sense closest
to 𝑇𝑥. Best proximity point analysis has been developed in
this direction.

An element 𝑎 ∈ 𝐴 is called a best proximity point of 𝑇 if

𝑑 (𝑎, 𝑇𝑎) = 𝑑 (𝐴, 𝐵) , (1)

where

𝑑 (𝐴, 𝐵) = inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} . (2)

Because of the fact that 𝑑(𝑥, 𝑇𝑥) ≥ 𝑑(𝐴, 𝐵) for all 𝑥 ∈ 𝐴, the
global minimum of the mapping 𝑥 → 𝑑(𝑥, 𝑇𝑥) is attained at
a best proximity point. Clearly, if the underlying mapping is
a self-mapping, then it can be observed that a best proximity
point is essentially a fixed point. The goal of best proximity
point theory is to furnish sufficient conditions that assure the
existence of such points. For more details on this approach,
we refer the reader to [1–12] and references therein.

Recently, Samet et al. [13] introduced a new class of con-
tractive mappings called 𝛼-𝜓-contractive type mappings. Let
(𝑋, 𝑑) be a metric space.

Definition 1. A self-mapping 𝑇 : 𝑋 → 𝑋 is said to be an
𝛼-𝜓-contraction, where 𝛼 : 𝑋 × 𝑋 → [0,∞) and 𝜓 is a (c)-
comparison function, if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (3)

Definition 2. A self-mapping 𝑇 : 𝑋 → 𝑋 is said to be 𝛼-
admissible, where 𝛼 : 𝑋 × 𝑋 → [0,∞), if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (4)

The main results obtained in [13] are the following fixed
point theorems.

Theorem3. Let (𝑋, 𝑑) be a completemetric space and𝑇 :𝑋 →

𝑋 be an 𝛼-𝜓-contractive mapping satisfying the following
conditions:

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then, 𝑇 has a fixed point; that is, there exists 𝑥 ∈ 𝑋 such that
𝑇𝑥 = 𝑥.

Theorem4. Let (𝑋, 𝑑) be a completemetric space and𝑇 :𝑋 →

𝑋 be an 𝛼-𝜓-contractive mapping satisfying the following
conditions:

(i) 𝑇 is 𝛼-admissible;
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(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then, 𝑇 has a fixed point.

Theorem 5. In addition to the hypotheses of Theorem 3 (resp.,
Theorem 4), suppose that for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋, there exists
𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1. Then we have a
unique fixed point.

It was shown in [13, 14] that various types of contractive
mappings belong to the class of 𝛼-𝜓-contractive type map-
pings (classical contractive mappings, contractive mappings
on ordered metric spaces, cyclic contractive mappings, etc.).
For other works in this direction, we refer the reader to
[15, 16].

In a very recent paper, Jleli and Samet [17] established
some best proximity point results for 𝛼-𝜓-contractive type
mappings. Before presenting the main results obtained in
[17], we need to fix some notations and recall some defini-
tions.

Let 𝐴 and 𝐵, two nonempty subsets of a metric space
(𝑋, 𝑑). We will use the following notations:

𝑑 (𝐴, 𝐵) := inf {𝑑 (a, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,

𝐴
0
:= {𝑎 ∈ 𝐴 : 𝑑 (𝑎, 𝑏) = 𝑑 (𝐴, 𝐵) for some 𝑏 ∈ 𝐵} ,

𝐵
0
:= {𝑏 ∈ 𝐵 : 𝑑 (𝑎, 𝑏) = 𝑑 (𝐴, 𝐵) for some 𝑎 ∈ 𝐴} .

(5)

Definition 6. An element 𝑥∗ ∈ 𝐴 is said to be a best proximity
point of the non-self-mapping 𝑇 : 𝐴 → 𝐵 if it satisfies the
condition that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (6)

The following concept was introduced in [11].

Definition 7. Let (𝐴, 𝐵) be a pair of nonempty subsets of a
metric space (𝑋, 𝑑) with 𝐴

0
̸= 0. Then, the pair (𝐴, 𝐵) is said

to have the 𝑃-property if and only if

𝑑 (𝑥
1
, 𝑦
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑦
2
) = 𝑑 (𝐴, 𝐵)

} ⇒ 𝑑 (𝑥
1
, 𝑥
2
) = 𝑑 (𝑦

1
, 𝑦
2
) , (7)

where 𝑥
1
, 𝑥
2
∈ 𝐴 and 𝑦

1
, 𝑦
2
∈ 𝐵.

The following concepts were introduced in [17].

Definition 8. Let 𝑇 : 𝐴 → 𝐵 and 𝛼 : 𝐴 × 𝐴 → [0,∞). We
say that 𝑇 is 𝛼-proximal admissible if

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

}

}

}

⇒ 𝛼 (𝑢
1
, 𝑢
2
) ≥ 1, (8)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

Clearly, if 𝐴 = 𝐵, 𝑇 is 𝛼-proximal admissible implies that
𝑇 is 𝛼-admissible.

Definition 9. A non-self-mapping 𝑇 : 𝐴 → 𝐵 is said to be an
𝛼-𝜓-proximal contraction, where 𝛼 : 𝐴×𝐴 → [0,∞) and 𝜓
is a (c)-comparison function, if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝐴. (9)

The main results obtained in [17] are the following.

Theorem 10. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 be a (c)-comparison function.
Suppose that 𝑇 : 𝐴 → 𝐵 is a non-self-mapping satisfying the
following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (10)

(iv) 𝑇 is a continuous 𝛼-𝜓-proximal contraction.

Then, there exists an element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (11)

Theorem 11. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 be a (c)-comparison function.
Suppose that 𝑇 : 𝐴 → 𝐵 is a non-self-mapping satisfying the
following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (12)

(iv) 𝑇 is an 𝛼-𝜓-proximal contraction;
(v) if {𝑥

𝑛
} is a sequence in 𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then there exists

a subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1

for all 𝑘.

Then, there exists an element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (13)

Theorem 12. In addition to the hypotheses of Theorem 10
(resp., Theorem 11), suppose that for all (𝑥, 𝑦) ∈ 𝛼

−1
([0, 1[),

there exists 𝑧 ∈ 𝐴
0
such that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1.

Then, 𝑇 has a unique best proximity point.

In this paper, we extend and generalize the above results
by introducing a new family of non-self-contractive map-
pings that will be called the class of generalized 𝛼-𝜓-proximal
contractive typemappings. For suchmappings, we discuss the
existence and uniqueness of best proximity points. Various
applications and interesting consequences are derived from
our main results.
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2. Main Results

All the notations presented in the previous section will be
used through this paper.

We denote by Ψ the set of nondecreasing functions 𝜓 :

[0,∞) → [0,∞) such that
∞

∑

𝑛=1

𝜓
𝑛
(𝑡) < ∞, ∀𝑡 > 0, (14)

where𝜓𝑛 is the 𝑛th iterate of𝜓.These functions are known in
the literature as (c)-comparison functions. It is easily proved
that if 𝜓 is a (c)-comparison function, then 𝜓(𝑡) < 𝑡 for all
𝑡 > 0.

We introduce the following concept.

Definition 13. A non-self-mapping 𝑇 : 𝐴 → 𝐵 is said to be
a generalized 𝛼-𝜓-proximal contraction, where 𝛼 : 𝐴 × 𝐴 →

[0,∞) and 𝜓 ∈ Ψ, if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝐴, (15)

where

𝑀(𝑥, 𝑦)

= max {𝑑 (𝑥, 𝑦) , 1
2
[𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑥, 𝑇𝑦)] − 𝑑 (𝐴, 𝐵)} .

(16)

Our first main result is the following best proximity point
theorem.

Theorem 14. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ. Suppose that 𝑇 : 𝐴 → 𝐵 is
a non-self-mapping satisfying the following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (17)

(iv) 𝑇 is a continuous generalized 𝛼-𝜓-proximal contrac-
tion.

Then, there exists an element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (18)

Proof. From condition (iii), there exist elements 𝑥
0
and 𝑥

1
in

𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1. (19)

Since 𝑇(𝐴
0
) ⊆ 𝐵
0
, there exists 𝑥

2
∈ 𝐴
0
such that

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (20)

Now, we have

𝛼 (𝑥
0
, 𝑥
1
) ≥ 1,

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) .

(21)

Since𝑇 is 𝛼-proximal admissible, this implies that 𝛼(𝑥
1
, 𝑥
2
) ≥

1. Thus, we have

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1. (22)

Again, since 𝑇(𝐴
0
) ⊆ 𝐵
0
, there exists 𝑥

3
∈ 𝐴
0
such that

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) . (23)

Now, we have

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) .

(24)

Since𝑇 is 𝛼-proximal admissible, this implies that 𝛼(𝑥
2
, 𝑥
3
) ≥

1. Thus, we have

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

2
, 𝑥
3
) ≥ 1. (25)

Continuing this process, by induction, we can construct a
sequence {𝑥

𝑛
} ⊂ 𝐴

0
such that

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) ,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1, ∀𝑛 ∈ N ∪ {0} .

(26)

Since (𝐴, 𝐵) satisfies the 𝑃-property, we conclude from (26)
that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = 𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) , ∀𝑛 ∈ N. (27)

From condition (iv), that is, 𝑇 is a generalized 𝛼-𝜓-proximal
contraction, for all 𝑛 ∈ N, we have

𝛼 (𝑥
𝑛−1
, 𝑥
𝑛
) 𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) ≤ 𝜓 (𝑀(𝑥

𝑛−1
, 𝑥
𝑛
)) . (28)
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On the other hand, using (26) and (27), we have

𝑀(𝑥
𝑛−1
, 𝑥
𝑛
)

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) ,

1

2
[𝑑 (𝑥
𝑛−1
, 𝑇𝑥
𝑛−1
) + 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛−1
) + 𝑑 (𝑥

𝑛−1
, 𝑇𝑥
𝑛
)] − 𝑑 (𝐴, 𝐵)}

≤ max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) ,

1

2
[𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛−1
)

+ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛
)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝐴, 𝐵) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛−1
) + 𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) ,

1

2
[𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝐴, 𝐵)

+ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝐴, 𝐵)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝐴, 𝐵) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝑑 (𝐴, 𝐵) + 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) ,

1

2
[𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)] ,

1

2
[𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)]}

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) ,
1

2
[𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)]}

≤ max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)} .

(29)

Thus, we proved that

𝑀(𝑥
𝑛−1
, 𝑥
𝑛
)

≤ max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)} , ∀𝑛 ∈ N.

(30)

Using the above inequality, (26), (27), and (28), and taking in
consideration that 𝜓 is a nondecreasing function, we get that

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
)

≤ 𝜓 (max {𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)}) , ∀𝑛 ∈ N.

(31)

If for some 𝑁 ∈ N ∪ {0}, we have 𝑥
𝑁+1

= 𝑥
𝑁
, from (26), we

get that 𝑑(𝑥
𝑁
, 𝑇𝑥
𝑁
) = 𝑑(𝐴, 𝐵); that is, 𝑥

𝑁
is a best proximity

point. So, we can suppose that

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) > 0, ∀𝑛 ∈ N ∪ {0} . (32)

Suppose that max{𝑑(𝑥
𝑛
, 𝑥
𝑛−1
), 𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)} = 𝑑(𝑥

𝑛
, 𝑥
𝑛+1
).

Using (32) and since 𝜓(𝑡) < 𝑡 for all 𝑡 > 0, we have

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝜓 (𝑑 (𝑥

𝑛
, x
𝑛+1
)) < 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) , (33)

which is a contradiction. Thus, we have

max {𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)}

= 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
) , ∀𝑛 ∈ N.

(34)

Now, from (31), we get that

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝜓 (𝑑 (𝑥

𝑛
, 𝑥
𝑛−1
)) , ∀𝑛 ∈ N. (35)

Using the monotony of 𝜓, by induction, it follows from (35)
that

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝜓
𝑛
(𝑑 (𝑥
1
, 𝑥
0
)) , ∀𝑛 ∈ N ∪ {0} . (36)

Now,we shall prove that {𝑥
𝑛
} is a Cauchy sequence in themet-

ric space (𝑋, 𝑑). Let 𝜀 > 0 be fixed. Since∑∞
𝑛=1

𝜓
𝑛
(𝑑(𝑥
1
, 𝑥
0
)) <

∞, there exists some positive integer ℎ = ℎ(𝜀) such that

∑

𝑘≥ℎ

𝜓
𝑘
(𝑑 (𝑥
1
, 𝑥
0
)) < 𝜀. (37)

Let𝑚 > 𝑛 > ℎ, using the triangular inequality, (36) and (37),
we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑

𝑘=𝑛

𝑑 (𝑥
𝑘
, 𝑥
𝑘+1
)

≤

𝑚−1

∑

𝑘=𝑛

𝜓
𝑘
(𝑑 (𝑥
1
, 𝑥
0
))

≤ ∑

𝑘≥ℎ

𝜓
𝑘
(𝑑 (𝑥
1
, 𝑥
0
))

< 𝜀.

(38)

Thus, {𝑥
𝑛
} is a Cauchy sequence in the metric space (𝑋, 𝑑).

Since (𝑋, 𝑑) is complete and 𝐴 is closed, there exists some
𝑥
∗
∈ 𝐴 such that 𝑥

𝑛
→ 𝑥
∗ as 𝑛 → ∞. On the other hand,

𝑇 is a continuous mapping. Then, we have 𝑇𝑥
𝑛
→ 𝑇𝑥

∗ as
𝑛 → ∞. The continuity of the metric function 𝑑 implies
that 𝑑(𝐴, 𝐵) = 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) → 𝑑(𝑥

∗
, 𝑇𝑥
∗
) as 𝑛 → ∞.

Therefore, 𝑑(𝑥∗, 𝑇𝑥∗) = 𝑑(𝐴, 𝐵). This completes the proof of
the theorem.

In the next result, we remove the continuity hypothesis,
assuming the following condition in 𝐴:

(H) If {𝑥
𝑛
} is a sequence in𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then there exists

a subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1

for all 𝑘.
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Theorem 15. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ. Suppose that 𝑇 : 𝐴 → 𝐵 is
a non-self-mapping satisfying the following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (39)

(iv) (H) holds, and 𝑇 is a generalized 𝛼-𝜓-proximal con-
traction.

Then, there exists an element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (40)

Proof. Following the proof of Theorem 14, there exists a
Cauchy sequence {𝑥

𝑛
} ⊂ 𝐴 such that (26) holds, and 𝑥

𝑛
→

𝑥
∗
∈ 𝐴 as 𝑛 → ∞. From the condition (H), there exists a

subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥
∗
) ≥ 1 for all

𝑘. Since 𝑇 is a generalized 𝛼-𝜓-proximal contraction, we get
that

𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥
∗
)

≤ 𝛼 (𝑥
𝑛(𝑘)

, 𝑥
∗
) 𝑑 (𝑇𝑥

𝑛(𝑘)
, 𝑇𝑥
∗
)

≤ 𝜓 (𝑀(𝑥
𝑛(𝑘)

, 𝑥
∗
)) , ∀𝑘,

(41)

where

𝑀(𝑥
𝑛(𝑘)

, 𝑥
∗
)

= max{𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗
) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑥
∗
, 𝑇𝑥
∗
)

2
− 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥
𝑛(𝑘)

)

2
− 𝑑 (𝐴, 𝐵)} .

(42)

On the other hand, from (26), for all 𝑘, we have

𝑑 (𝑥
∗
, 𝑇𝑥
∗
)

≤ 𝑑 (𝑥
∗
, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

)

+ 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥
∗
)

= 𝑑 (𝑥
∗
, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝐴, 𝐵)

+ 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥
∗
) .

(43)

Thus, we have

𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥
∗
)

≥ 𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

) − 𝑑 (𝐴, 𝐵) , ∀𝑘.

(44)

Combining (41) with (44), we get that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

) − 𝑑 (𝐴, 𝐵)

≤ 𝜓 (𝑀(𝑥
𝑛(𝑘)

, 𝑥
∗
)) , ∀𝑘.

(45)

From (26), for all 𝑘, we have

𝑀(𝑥
𝑛(𝑘)

, 𝑥
∗
)

= max{𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗
) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑥
∗
, 𝑇𝑥
∗
)

2
− 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥
𝑛(𝑘)

)

2
− 𝑑 (𝐴, 𝐵)}

≤ max{𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗
) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑥
∗
, 𝑇𝑥
∗
)

2

− 𝑑 (𝐴, 𝐵) ,

(𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

)

+ 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)

)) × (2)
−1
− 𝑑 (𝐴, 𝐵)}

= max{𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗
) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝐴, 𝐵) + 𝑑 (𝑥
∗
, 𝑇𝑥
∗
)

2

− 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗
)+𝑑 (𝑥

∗
, 𝑇𝑥
∗
)+𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

)+𝑑 (𝐴, 𝐵)

2

− 𝑑 (𝐴, 𝐵)}

:= 𝜁 (𝑥
𝑛(𝑘)

, 𝑥
∗
) .

(46)

Since 𝜓 is a nondecreasing function, we get from (45) that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

) − 𝑑 (𝐴, 𝐵)

≤ 𝜓 (𝜁 (𝑥
𝑛(𝑘)

, 𝑥
∗
)) , ∀𝑘.

(47)
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Suppose that 𝑑(𝑥∗, 𝑇𝑥∗) − 𝑑(𝐴, 𝐵) > 0. In this case, we have

lim
𝑘→∞

𝜁 (𝑥
𝑛(𝑘)

, 𝑥
∗
)

= max{0,
𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵)

2
,

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵)

2
} ,

(48)

that is,

lim
𝑘→∞

𝜁 (𝑥
𝑛(𝑘)

, 𝑥
∗
) =

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵)

2
. (49)

Since

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵)

2
> 0, (50)

for 𝑘 large enough, we have 𝜁(𝑥
𝑛(𝑘)

, 𝑥
∗
) > 0. On the other

hand, we have 𝜓(𝑡) < 𝑡 for all 𝑡 > 0. Then, from (47), we get
that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

) − 𝑑 (𝐴, 𝐵)

< 𝜁 (𝑥
𝑛(𝑘)

, 𝑥
∗
) , for 𝑘 large enough.

(51)

Using (49) and letting 𝑘 → ∞ in the above inequality, we
obtain that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵) ≤

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵)

2
, (52)

which is a contradiction. Thus, we deduce that 𝑥∗ is a best
proximity point of 𝑇; that is, 𝑑(𝑥∗, 𝑇𝑥∗) = 𝑑(𝐴, 𝐵).

The next result gives us a sufficient condition that assures
the uniqueness of the best proximity point. We need the
following definition.

Definition 16. Let 𝑇 : 𝐴 → 𝐵 be a non-self-mapping and
𝛼 : 𝐴 × 𝐴 → [0,∞). We say that 𝑇 is (𝛼, 𝑑) regular if for all
(𝑥, 𝑦) ∈ 𝛼

−1
([0, 1[), there exists 𝑧 ∈ 𝐴

0
such that

𝛼 (𝑥, 𝑧) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1. (53)

Theorem 17. In addition to the hypotheses of Theorem 14
(resp., Theorem 15), suppose that 𝑇 is (𝛼, 𝑑) regular. Then, 𝑇
has a unique best proximity point.

Proof. From the proof of Theorem 14 (resp., Theorem 15), we
know that the set of best proximity points of 𝑇 is nonempty
(𝑥∗ ∈ 𝐴

0
is a best proximity point). Suppose that 𝑦∗ ∈ 𝐴

0
is

another best proximity point of 𝑇, that is,

𝑑 (𝑇𝑥
∗
, 𝑥
∗
) = 𝑑 (𝑇𝑦

∗
, 𝑦
∗
) = 𝑑 (𝐴, 𝐵) . (54)

Using the 𝑃-property and (54), we get that

𝑑 (𝑇𝑥
∗
, 𝑇𝑦
∗
) = 𝑑 (𝑥

∗
, 𝑦
∗
) . (55)

We distinguish two cases.

Case 1. If 𝛼(𝑥∗, 𝑦∗) ≥ 1.
Since 𝑇 is a generalized 𝛼-𝜓-proximal contraction, using

(55), we obtain that

𝑑 (𝑥
∗
, 𝑦
∗
) = 𝑑 (𝑇𝑥

∗
, 𝑇𝑦
∗
)

≤ 𝛼 (𝑥
∗
, 𝑦
∗
) 𝑑 (𝑇𝑥

∗
, 𝑇𝑦
∗
)

≤ 𝜓 (𝑀(𝑥
∗
, 𝑦
∗
)) ,

(56)

where from (54) and (55), we have

𝑀(𝑥
∗
, 𝑦
∗
)

= max {𝑑 (𝑥∗, 𝑦∗) ,

1

2
[𝑑 (𝑥
∗
, 𝑇𝑥
∗
) + 𝑑 (𝑦

∗
, 𝑇𝑦
∗
)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝑦
∗
, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑦
∗
)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑥∗, 𝑦∗) , 0,

1

2
[𝑑 (𝑦
∗
, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑦
∗
)] − 𝑑 (𝐴, 𝐵)}

≤ max {𝑑 (𝑥∗, 𝑦∗) , 1
2
[𝑑 (𝑦
∗
, 𝑇𝑦
∗
) + 𝑑 (𝑇𝑦

∗
, 𝑇𝑥
∗
)

+ 𝑑 (𝑥
∗
, 𝑇𝑥
∗
) + 𝑑 (𝑇𝑥

∗
, 𝑇𝑦
∗
)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑥∗, 𝑦∗) , 𝑑 (𝑥∗, 𝑦∗)} = 𝑑 (𝑥∗, 𝑦∗) .

(57)

This equality with (56) imply that

𝑑 (𝑥
∗
, 𝑦
∗
) ≤ 𝜓 (𝑑 (𝑥

∗
, 𝑦
∗
)) . (58)

Since 𝜓(𝑡) < 𝑡 for all 𝑡 > 0, the above inequality holds only if
𝑑(𝑥
∗
, 𝑦
∗
) = 0, that is, 𝑥∗ = 𝑦∗.

Case 2. If 𝛼(𝑥∗, 𝑦∗) < 1.
By hypothesis, there exists 𝑧

0
∈ 𝐴
0
such that𝛼(𝑥∗, 𝑧

0
) ≥ 1

and 𝛼(𝑦∗, 𝑧
0
) ≥ 1. Since 𝑇(𝐴

0
) ⊆ 𝐵

0
, there exists 𝑧

1
∈ 𝐴
0

such that

𝑑 (𝑧
1
, 𝑇𝑧
0
) = 𝑑 (𝐴, 𝐵) . (59)

Now, we have

𝛼 (𝑥
∗
, 𝑧
0
) ≥ 1,

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑧
1
, 𝑇𝑧
0
) = 𝑑 (𝐴, 𝐵) .

(60)

Since 𝑇 is 𝛼-proximal admissible, we get that 𝛼(𝑥∗, 𝑧
1
) ≥ 1.

Thus, we have

𝑑 (𝑧
1
, 𝑇𝑧
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

∗
, 𝑧
1
) ≥ 1. (61)
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Continuing this process, by induction, we can construct a
sequence {𝑧

𝑛
} in 𝐴

0
such that

𝑑 (𝑧
𝑛+1
, 𝑇𝑧
𝑛
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

∗
, 𝑧
𝑛
) ≥ 1, ∀𝑛 ∈ N ∪ {0} .

(62)

Using the 𝑃-property and (62), we get that

𝑑 (𝑧
𝑛+1
, 𝑥
∗
) = 𝑑 (𝑇𝑧

𝑛
, 𝑇𝑥
∗
) , ∀𝑛 ∈ N ∪ {0} . (63)

Since 𝑇 is a generalized 𝛼-𝜓-proximal contraction, we have

𝛼 (𝑧
𝑛+1
, 𝑥
∗
) 𝑑 (𝑇𝑧

𝑛
, 𝑇𝑥
∗
)

≤ 𝜓 (𝑀(𝑧
𝑛
, 𝑥
∗
)) , ∀𝑛 ∈ N ∪ {0} .

(64)

Combining the above inequality with (63), we get that

𝛼 (𝑧
𝑛+1
, 𝑥
∗
) 𝑑 (𝑧
𝑛+1
, 𝑥
∗
)

≤ 𝜓 (𝑀(𝑧
𝑛
, 𝑥
∗
)) , ∀𝑛 ∈ N ∪ {0} .

(65)

This implies from (62) that

𝑑 (𝑧
𝑛+1
, 𝑥
∗
) ≤ 𝜓 (𝑀(𝑧

𝑛
, 𝑥
∗
)) , ∀𝑛 ∈ N ∪ {0} . (66)

On the other hand, from (63), for all 𝑛 ∈ N ∪ {0}, we have

𝑀(𝑧
𝑛
, 𝑥
∗
)

= max {𝑑 (𝑧
𝑛
, 𝑥
∗
) ,

1

2
[𝑑 (𝑧
𝑛
, 𝑇𝑧
𝑛
) + 𝑑 (𝑥

∗
, 𝑇𝑥
∗
)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝑥
∗
, 𝑇𝑧
𝑛
) + 𝑑 (𝑧

𝑛
, 𝑇𝑥
∗
)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑧
𝑛
, 𝑥
∗
) ,

1

2
[𝑑 (𝑧
𝑛
, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥
∗
)

+ 𝑑 (𝑇𝑥
∗
, 𝑇𝑧
𝑛
) + 𝑑 (𝐴, 𝐵)] − 𝑑 (𝐴, 𝐵) ,

1

2
[𝑑 (𝑥
∗
, 𝑇𝑥
∗
) + 𝑑 (𝑇𝑥

∗
, 𝑇𝑧
𝑛
)

+ 𝑑 (𝑧
𝑛
, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥
∗
)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑧
𝑛
, 𝑥
∗
) ,
1

2
[𝑑 (𝑧
𝑛
, 𝑥
∗
) + 𝑑 (𝑧

𝑛+1
, 𝑥
∗
)]}

≤ max {𝑑 (𝑧
𝑛
, 𝑥
∗
) , 𝑑 (𝑧n+1, 𝑥

∗
)} .

(67)

Combining the above inequality with (71), we get that

𝑑 (𝑧
𝑛+1
, 𝑥
∗
)

≤ 𝜓 (max {𝑑 (𝑧
𝑛
, 𝑥
∗
) , 𝑑 (𝑧

𝑛+1
, 𝑥
∗
)}) ,

∀𝑛 ∈ N ∪ {0} .

(68)

Suppose that for some 𝑁, we have 𝑧
𝑁
= 𝑥
∗. From (63), we

get that 𝑧
𝑛
= 𝑥
∗ for all 𝑛 ≥ 𝑁. This implies that 𝑧

𝑛
→ 𝑥
∗ as

𝑛 → ∞. Now, suppose that 𝑑(𝑧
𝑛
, 𝑥
∗
) > 0 for all 𝑛 ∈ N ∪ {0}.

Since 𝜓(𝑡) < 𝑡 for all 𝑡 > 0, the inequality (68) holds only if

max {𝑑 (𝑧
𝑛
, 𝑥
∗
) , 𝑑 (𝑧

𝑛+1
, 𝑥
∗
)}

= 𝑑 (𝑧
𝑛
, 𝑥
∗
) , ∀𝑛 ∈ N ∪ {0} .

(69)

Now, we have

𝑑 (𝑧
𝑛+1
, 𝑥
∗
) ≤ 𝜓 (𝑑 (𝑧

𝑛
, 𝑥
∗
)) , ∀𝑛 ∈ N ∪ {0} . (70)

By induction, we then derive

𝑑 (𝑧
𝑛
, 𝑥
∗
) ≤ 𝜓
𝑛
(𝑑 (𝑧
0
, 𝑥
∗
)) , ∀𝑛 ∈ N ∪ {0} . (71)

Letting 𝑛 → ∞ in (71), we obtain that 𝑧
𝑛
→ 𝑥
∗ as 𝑛 → ∞.

So, in all cases, we have 𝑧
𝑛
→ 𝑥
∗ as 𝑛 → ∞. Similarly, we

can prove that 𝑧
𝑛
→ 𝑦
∗ as 𝑛 → ∞. By uniqueness of the

limit, we obtain that 𝑥∗ = 𝑦∗.

3. Applications

3.1. Standard Best Proximity Point Results. We have the fol-
lowing best proximity point result.

Corollary 18. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝜓 ∈ Ψ and suppose that 𝑇 : 𝐴 → 𝐵 is a non-self-mapping
satisfying the following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)), for all 𝑥, 𝑦 ∈ 𝐴.

Then, there exists a unique element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (72)

Proof. Consider the mapping 𝛼 : 𝐴 × 𝐴 → [0,∞) defined
by:

𝛼 (𝑥, 𝑦) = 1, ∀𝑥, 𝑦 ∈ 𝐴. (73)

From the definition of 𝛼, clearly 𝑇 is 𝛼-proximal admissible
and also it is an 𝛼-𝜓-proximal contraction. On the other
hand, for any 𝑥 ∈ 𝐴

0
, since 𝑇(𝐴

0
) ⊆ 𝐵

0
, there exists 𝑦 ∈

𝐴
0
such that 𝑑(𝑇𝑥, 𝑦) = 𝑑(𝐴, 𝐵). Moreover, from condition

(ii), 𝑇 is a continuous mapping. Now, all the hypotheses
of Theorem 14 are satisfied and the existence of the best
proximity point follows from Theorem 14. The uniqueness
is an immediate consequence of the definition of 𝛼 and
Theorem 17.

Taking in Corollary 18 𝜓(𝑡) = 𝑘𝑡, where 𝑘 ∈ (0, 1), we
obtain the following best proximity point result.

Corollary 19. Let 𝐴 and 𝐵 be nonempty closed subsets of a
completemetric space (𝑋, 𝑑) such that𝐴

0
is nonempty. Suppose
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that 𝑇 : 𝐴 → 𝐵 is a non-self-mapping satisfying the following
conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) there exists 𝑘 ∈ (0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑀(𝑥, 𝑦),
for all 𝑥, 𝑦 ∈ 𝐴.

Then, there exists a unique element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (74)

3.2. Best Proximity Points on a Metric Space Endowed with an
Arbitrary Binary Relation. Before presenting our results, we
need a few preliminaries.

Let (𝑋, 𝑑) be a metric space and R be a binary relation
over𝑋. Denote

S = R ∪R
−1
; (75)

this is the symmetric relation attached to 𝑅. Clearly,

𝑥, 𝑦 ∈ 𝑋, 𝑥S𝑦 ⇐⇒ 𝑥R𝑦 or 𝑦R𝑥. (76)

Definition 20. We say that 𝑇 : 𝐴 → 𝐵 is a proximal com-
parative mapping if

𝑥
1
S𝑥
2

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

}

}

}

⇒ 𝑢
1
S𝑢
2
, (77)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

We have the following best proximity point result.

Corollary 21. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

R be a binary relation over 𝑋. Suppose that 𝑇 : 𝐴 →

𝐵 is a continuous non-self-mapping satisfying the following
conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is a proximal comparative mapping;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
S𝑥
1
; (78)

(iv) there exists 𝜓 ∈ Ψ such that

𝑥, 𝑦 ∈ 𝐴, 𝑥S𝑦 ⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) . (79)

Then, there exists an element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (80)

Proof. Define the mapping 𝛼 : 𝐴 × 𝐴 → [0,∞) by:

𝛼 (𝑥, 𝑦) = {
1 if 𝑥S𝑦,
0 otherwise.

(81)

Suppose that

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) ,

(82)

for some 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴. By the definition of 𝛼, we get that

𝑥
1
S𝑥
2
,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) .

(83)

Condition (ii) implies that 𝑢
1
S𝑢
2
, which gives us from the

definition of 𝛼 that 𝛼(𝑢
1
, 𝑢
2
) ≥ 1. Thus, we proved that 𝑇 is

𝛼-proximal admissible. Condition (iii) implies that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1. (84)

Finally, condition (iv) implies that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝐴, (85)

that is, 𝑇 is a generalized 𝛼-𝜓-proximal contraction. Now, all
the hypotheses of Theorem 14 are satisfied, and the desired
result follows immediately from this theorem.

In order to remove the continuity assumption, we need
the following condition:

(H) if the sequence {𝑥
𝑛
} in 𝑋 and the point 𝑥 ∈ 𝑋 are

such that 𝑥
𝑛
S𝑥
𝑛+1

for all 𝑛 and lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0,

then there exists a subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such

that 𝑥
𝑛(𝑘)

S𝑥 for all 𝑘.

Corollary 22. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. LetR

be a binary relation over 𝑋. Suppose that 𝑇 : 𝐴 → 𝐵 is a
non-self-mapping satisfying the following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
, and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is a proximal comparative mapping;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
S𝑥
1
; (86)

(iv) there exists 𝜓 ∈ Ψ such that

𝑥, 𝑦 ∈ 𝐴, 𝑥S𝑦 ⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) , (87)

(v) (H) holds.

Then, there exists an element 𝑥∗ ∈ 𝐴
0
such that

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (88)

Proof. The result follows fromTheorem 15 by considering the
mapping 𝛼 given by (81), and by observing that, condition
(H) implies condition (H).
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Corollary 23. In addition to the hypotheses of Corollary 21
(resp., Corollary 22), suppose that the following condition holds:
for all (𝑥, 𝑦) ∈ 𝐴 ×𝐴 with (𝑥, 𝑦) ∉ S, there exists 𝑧 ∈ 𝐴

0
such

that 𝑥S𝑧 and 𝑦S𝑧. Then, 𝑇 has a unique best proximity point.

Proof. The result follows fromTheorem 17 by considering the
mapping 𝛼 given by (81).

3.3. Related Fixed Point Theorems

3.3.1. Fixed Points for Generalized 𝛼-𝜓 Contractive Type Map-
pings. The concept of generalized 𝛼-𝜓 contractive type map-
pings was introduced recently in [14].

Definition 24. Let 𝐴 be a nonempty subset of a metric space
(𝑋, 𝑑) and 𝑇 : 𝐴 → 𝐴 be a self-mapping. We say that 𝑇
is a generalized 𝛼-𝜓 contractive mapping if there exist two
functions 𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ such that for all
𝑥, 𝑦 ∈ 𝐴, we have

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓(max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
,

𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑥, 𝑇𝑦)

2
}) .

(89)

Taking𝐴 = 𝐵 inTheorems 14–17, we obtain the following
fixed point results established in [14].

Corollary 25. Let𝐴 be a nonempty closed subset of a complete
metric space (𝑋, 𝑑). Let 𝑇 : 𝐴 → 𝐴 be a generalized 𝛼-𝜓
contractive mapping satisfying the following conditions:

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝐴 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then, 𝑇 has a fixed point.

Corollary 26. Let𝐴 be a nonempty closed subset of a complete
metric space (𝑋, 𝑑). Let 𝑇 : 𝐴 → 𝐴 be a generalized 𝛼-𝜓
contractive mapping satisfying the following conditions:

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝐴 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) condition (H) holds.

Then, 𝑇 has a fixed point.

Corollary 27. In addition to the hypotheses of Corollary 25
(resp., Corollary 26), suppose that for all (𝑥, 𝑦) ∈ 𝛼

−1
([0, 1[),

there exists 𝑧 ∈ 𝐴 such that

𝛼 (𝑥, 𝑧) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1. (90)

Then, 𝑇 has a unique fixed point.

3.3.2. Fixed Points on a Metric Space Endowed with an
Arbitrary Binary Relation. We recall the following concept
introduced in [18].

Let 𝐴 be a nonempty closed subset of a complete metric
space (𝑋, 𝑑). Suppose that 𝑋 is endowed with an arbitrary
binary relation R. We denote by S the symmetric relation
attached toR. Let 𝑇 : 𝐴 → 𝐴 be a given mapping.

Definition 28. We say that 𝑇 : 𝐴 → 𝐴 is a comparative
mapping if 𝑇 maps comparable elements into comparable
elements, that is,

𝑥, 𝑦 ∈ 𝐴, 𝑥S𝑦 ⇒ 𝑇𝑥S𝑇𝑦. (91)

We have the following fixed point theorem.

Corollary 29. Assume that 𝑇 : 𝐴 → 𝐴 is a continuous com-
parative map, and

𝑥, 𝑦 ∈ 𝐴,

𝑥S𝑦 ⇒ 𝜓(max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
,

𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑥, 𝑇𝑦)

2
}) ,

(92)

where 𝜓 ∈ Ψ. Suppose also that there exists 𝑥
0
∈ 𝑋 such that

𝑥
0
S𝑇𝑥
0
. Then, 𝑇 has a fixed point.

Proof. It follows from Corollary 21 by taking 𝐴 = 𝐵 and
remarking that if 𝐴 = 𝐵, a comparative map is a proximal
comparative map.

Remark that a self-mapping 𝑇 : 𝐴 → 𝐴 satisfying the
property (92) is not necessarily continuous (see Example 2.2
in [18]).

Similarly, Taking 𝐴 = 𝐵 in Corollary 22, we obtain the
following fixed point result.

Corollary 30. Assume that 𝑇 : 𝐴 → 𝐴 is a comparative map
satisfying (92) for some 𝜓 ∈ Ψ. Suppose also that there exists
𝑥
0
∈ 𝑋 such that 𝑥

0
S𝑇𝑥
0
. If (H) holds, then 𝑇 has a fixed

point.

The uniqueness of the fixed point follows from Corol-
lary 23 by taking 𝐴 = 𝐵.

Corollary 31. In addition to the hypotheses of Corollary 29
(resp., Corollary 30), suppose that the following condition holds:
for all (𝑥, 𝑦) ∈ 𝐴 × 𝐴 with (𝑥, 𝑦) ∉ S, there exists 𝑧 ∈ 𝐴 such
that 𝑥S𝑧 and 𝑦S𝑧. Then, 𝑇 has a unique fixed point.
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