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We introduce a new relaxed viscosity approximation method with regularization and prove the strong convergence of the method
to a common fixed point of finitely many nonexpansive mappings and a strict pseudocontraction that also solves a convex
minimization problem and a suitable equilibrium problem.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, 𝐶 a nonempty closed convex subset of 𝐻, and 𝑃

𝐶

the metric projection of 𝐻, onto 𝐶. Let 𝑇 : 𝐶 → 𝐶 be self-
mapping on 𝐶. We denote by Fix(𝑇) the set of fixed points of
𝑇 and byR the set of all real numbers. Amapping𝑇 : 𝐶 → 𝐶

is called 𝜁-strictly pseudocontractive if there exists a constant
𝜁 ∈ [0, 1) such that

𝑇𝑥 − 𝑇𝑦


2
≤
𝑥 − 𝑦



2
+ 𝜁

(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦


2
,

∀𝑥, 𝑦 ∈ 𝐶.

(1)

In particular, if 𝜁 = 0, then 𝑇 is called a nonexpansive
mapping. Amapping𝐴 : 𝐶 → 𝐻 is called 𝛼-inverse strongly
monotone, if there exists a constant 𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐶. (2)

Let 𝑓 : 𝐶 → R be a convex and a continuous Fréchet dif-
ferentiable functional. Consider the minimization problem
(MP) of minimizing 𝑓 over the constraint set 𝐶

min
𝑥∈𝐶

𝑓 (𝑥) , (3)

where we assume the existence of minimizers. We denote by
Γ the set of minimizers of (3). The gradient-projection algo-
rithm (GPA) generates a sequence {𝑥

𝑛
} determined by the

gradient ∇𝑓 and the metric projection 𝑃
𝐶
as follows:

𝑥
𝑛+1

:= 𝑃
𝐶
(𝑥
𝑛
− 𝜆∇𝑓 (𝑥

𝑛
)) , ∀𝑛 ≥ 0, (4)

or more generally,

𝑥
𝑛+1

:= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓 (𝑥
𝑛
)) , ∀𝑛 ≥ 0, (5)

where, in both (4) and (5), the initial guess 𝑥
0
is taken from𝐶

arbitrarily, the parameters 𝜆 or 𝜆
𝑛
are positive real numbers.

The convergence of algorithms (4) and (5) depends on the
behavior of the gradient ∇𝑓. As a matter of fact, it is known
that if ∇𝑓 is strongly monotone and Lipschitz continuous,
then, for 0 < 𝜆 < 2𝛼/𝐿

2, the operator

𝑆 := 𝑃
𝐶
(𝐼 − 𝜆∇𝑓) (6)

is a contraction. Hence, the sequence {𝑥𝑛} defined by theGPA
(4) converges in norm to the unique solution of (3). More
generally, if the sequence {𝜆𝑛} is chosen to satisfy the property

0 < lim inf
𝑛→∞

𝜆
𝑛
≤ lim sup
𝑛→∞

𝜆
𝑛
<

2𝛼

𝐿2
, (7)
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then the sequence {𝑥
𝑛
} defined by the GPA (5) converges in

norm to the unique minimizer of (3). If the gradient ∇𝑓 is
only assumed to be a Lipschitz continuous, then {𝑥

𝑛
} can

only be weakly convergent if 𝐻 is infinite dimensional. A
counterexample is given by Xu in [1].

Since the Lipschitz continuity of the gradient ∇𝑓 implies
that it is inverse strongly monotone (ism), it can be expressed
as a proper convex combination of the identity mapping
and a nonexpansive mapping. Consequently, the GPA can be
rewritten as the composite of a projectionand an averaged
mappingwhich is again an averagedmapping.This shows that
averaged mappings play an important role in the GPA. Very
recently, Xu [1] used averaged mappings to study the conver-
gence analysis of the GPA which is an operator-oriented
approach.

We observe that the regularization, in particular, the
traditional Tikhonov regularization, is usually used to solve
ill-posed optimization problems. Consider the following reg-
ularized minimization problem:

min
𝑥∈𝐶

𝑓𝛼 (𝑥) := 𝑓 (𝑥) +
𝛼

2
‖𝑥‖
2
, (8)

where 𝛼 > 0 is the regularization parameter and again 𝑓 is
convex with an 𝐿-Lipschitz continuous gradient ∇𝑓.

The advantage of a regularization method is that it is pos-
sible to get strong convergence to the minimum-norm solu-
tion of the optimization problem under investigation. The
disadvantage is however its implicity, and hence explicit
iterative methods seem more attractive. See, for example, [1].

Given a mapping 𝐴 : 𝐶 → 𝐻, the classical variational
inequality problem (VIP) is to find 𝑥

∗
∈ 𝐶 such that

⟨𝐴𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (9)

The solution set of VIP (9) is denoted by VI(𝐶, 𝐴). It is well
known that 𝑥∗ ∈ VI(𝐶, 𝐴) if and only if 𝑥∗ = 𝑃

𝐶
(𝑥
∗
− 𝜆𝐴𝑥

∗
)

for some 𝜆 > 0. The variational inequality was first discussed
by Lions [2] andnow iswell known.Thevariational inequality
theory has been studied quite extensively and has emerged
as an important tool in the study of a wide class of obstacle,
unilateral, free, moving, and equilibrium problems arising in
several branches of pure and applied sciences in a unified
and general framework. See, for example, [3–10] and the
references therein.

In this paper, we study the following equilibrium problem
(EP) which is to find 𝑥

∗
∈ 𝐶 such that

𝐹 (𝑥
∗
, 𝑦) + ℎ (𝑥

∗
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (10)

The solution set of EP (10) is denoted by EP(𝐹, ℎ). We will
introduce and consider a relaxed viscosity iterative scheme
with regularization for finding a common element of the
solution set Γ of the minimization problem (3), the solution
set EP(𝐹, ℎ) of the equilibriumproblem (10), and the common
fixed point set Fix(𝑇) ∩ (⋂

𝑖
Fix(𝑆𝑖)) of finitely many nonex-

pansive mappings 𝑆𝑖 : 𝐶 → 𝐶, 𝑖 = 1, . . . , 𝑁, and a strictly
pseudocontractive mapping 𝑇 in the setting of the infinite-
dimensional Hilbert space. We will prove that this iterative
scheme converges strongly to a common fixed point of the
mappings 𝑇, 𝑆

𝑖
: 𝐶 → 𝐶, 𝑖 = 1, . . . , 𝑁, which is both a

minimizer of MP (3) and an equilibrium point of EP (10).

2. Preliminaries

Let𝐻 be a real Hilbert space whose inner product and norm
are denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let𝐾 be a nonempty
closed convex subset of 𝐻. We write 𝑥𝑛 ⇀ 𝑥 to indicate
that the sequence {𝑥𝑛} converges weakly to 𝑥 and 𝑥𝑛 → 𝑥

to indicate that the sequence {𝑥𝑛} converges strongly to 𝑥.
Moreover, we use 𝜔𝑤(𝑥𝑛) to denote the weak 𝜔-limit set of
the sequence {𝑥

𝑛
} and 𝜔

𝑠
(𝑥
𝑛
) to denote the strong 𝜔-limit set

of the sequence {𝑥
𝑛
}; that is,

𝜔
𝑤 (𝑥𝑛) := {𝑥 ∈ 𝐻 : 𝑥𝑛𝑖

⇀𝑥

for some subsequence {𝑥
𝑛𝑖
} of {𝑥

𝑛
}} ,

𝜔
𝑠
(𝑥
𝑛
) :={𝑥 ∈ 𝐻 : 𝑥

𝑛𝑖
→ 𝑥

for some subsequence {𝑥𝑛𝑖
} of {𝑥𝑛}} .

(11)

Themetric (or nearest point) projection from𝐻 onto𝐾 is
themapping𝑃

𝐾
: 𝐻 → 𝐾which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃
𝐾
𝑥 ∈ 𝐾 satisfying the property

𝑥 − 𝑃
𝐾
𝑥
 = inf
𝑦∈𝐾

𝑥 − 𝑦
 =: 𝑑 (𝑥, 𝐾) . (12)

Some important properties of projections are gathered in
the following.

Proposition 1. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐾

(i) 𝑧 = 𝑃
𝐾𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, for all 𝑦 ∈ 𝐾;

(ii) 𝑧 = 𝑃
𝐾
𝑥 ⇔ ‖𝑥−𝑧‖

2
≤ ‖𝑥−𝑦‖

2
−‖𝑦−𝑧‖

2, for all 𝑦 ∈ 𝐾;
(iii) ⟨𝑃

𝐾
𝑥 − 𝑃

𝐾
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐾
𝑥 − 𝑃

𝐾
𝑦‖
2, for all 𝑦 ∈

𝐻, which hence implies that 𝑃
𝐾
is nonexpansive and

monotone.

Definition 2. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(a) nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐻; (13)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive, or
equivalently,

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥
𝑇𝑥 − 𝑇𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐻; (14)

alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇
can be expressed as

𝑇 =
1

2
(𝐼 + 𝑆) , (15)

where 𝑆 : 𝐻 → 𝐻 is nonexpansive; projections are
firmly nonexpansive.

Definition 3. Let 𝑇 be a nonlinear operator with domain
𝐷(𝑇) ⊆ 𝐻 and range 𝑅(𝑇) ⊆ 𝐻.
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(a) 𝑇 is said to be monotone if
⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (16)

(b) Given a number 𝛽 > 0, 𝑇 is said to be 𝛽 strongly
monotone if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 𝛽
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (17)

(c) Given a number ] > 0, 𝑇 is said to be ]-inverse
strongly monotone (]-ism) if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ ]
𝑇𝑥 − 𝑇𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (18)

It can be easily seen that if 𝑇 is nonexpansive, then
𝐼 − 𝑇 is monotone. It is also easy to see that a projection
𝑃
𝐾
is 1-ism. Inverse strongly monotone (also referred to as

cocoercive) operators have been applied widely in solving
practical problems in various fields.

Definition 4. A mapping 𝑇 : 𝐻 → 𝐻 is said to be an aver-
agedmapping if it can be written as the average of the identity
𝐼 and a nonexpansive mapping; that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (19)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged.Thus, firmly nonexpansivemappings (in particular,
projections) are (1/2)-averaged maps.

Proposition 5 (see [11]). Let𝑇 : 𝐻 → 𝐻 be a givenmapping.
(i) 𝑇 is nonexpansive if and only if the complement 𝐼−𝑇 is

(1/2)-ism.
(ii) If 𝑇 is ]-ism, then for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼 − 𝑇 is ]-

ism for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is 𝛼-
averaged if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

Proposition 6 (see [11]). Let 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻 be given
operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the comple-
ment 𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings is
averaged. That is, if each of the mappings {𝑇𝑖}

𝑁

𝑖=1
is

averaged, then so is the composite 𝑇1 ⋅ ⋅ ⋅ 𝑇𝑁. In par-
ticular, if 𝑇1 is 𝛼1 -averaged and 𝑇2 is 𝛼2 -averaged,
where 𝛼1, 𝛼2 ∈ (0, 1), then the composite 𝑇1𝑇2 is 𝛼-
averaged, where 𝛼 = 𝛼1 + 𝛼2 − 𝛼1𝛼2.

(v) If the mappings {𝑇
𝑖
}
𝑁

𝑖=1
are averaged and have a com-

mon fixed point, then
𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) = Fix (𝑇

1
⋅ ⋅ ⋅ 𝑇
𝑁
) . (20)

The notation Fix(𝑇) denotes the set of all fixed points of the
mapping 𝑇, that is, Fix(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}.

It is clear that, in a real Hilbert space 𝐻, 𝑇 : 𝐶 → 𝐶

is 𝜁-strictly pseudocontractive if and only if there holds the
following inequality:

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
𝑥 − 𝑦



2
−
1 − 𝜁

2

×
(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐶.

(21)

This immediately implies that if 𝑇 is a 𝜁-strictly pseudo-
contractive mapping, then 𝐼 − 𝑇 is ((1 − 𝜁)/2)-inverse
strongly monotone; for further detail, we refer to [12] and
the references therein. It is well known that the class of strict
pseudocontractions strictly includes the class of nonexpan-
sive mappings.

Lemma 7 (see [12, Proposition 2.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space𝐻 and 𝑇 : 𝐶 → 𝐶

be a mapping.

(i) If 𝑇 is a 𝜁-strictly pseudocontractive mapping, then 𝑇

satisfies the Lipschitz condition where

𝑇𝑥 − 𝑇𝑦
 ≤

1 + 𝜁

1 − 𝜁

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (22)

(ii) If 𝑇 is a 𝜁-strictly pseudocontractive mapping, then the
mapping 𝐼 − 𝑇 is semiclosed at 0; that is, if {𝑥

𝑛
} is a

sequence in 𝐶 such that 𝑥𝑛 → 𝑥 weakly and (𝐼 −

𝑇)𝑥𝑛 → 0 strongly, then (𝐼 − 𝑇)𝑥 = 0.
(iii) If 𝑇 is a 𝜁-(quasi-)strict pseudocontraction, then the

fixed point set Fix(𝑇) of 𝑇 is closed and convex so that
the projection 𝑃Fix(𝑇) is well defined.

The following lemma is an immediate consequence of an
inner product.

Lemma 8. In a real Hilbert space𝐻, there holds the following
inequality:

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (23)

The following elementary result on real sequences is quite
well known.

Lemma 9 (see [13]). Let {𝑎𝑛} be a sequence of nonnegative real
numbers satisfying the property

𝑎
𝑛+1

≤ (1 − 𝑠
𝑛
) 𝑎
𝑛
+ 𝑠
𝑛
𝑡
𝑛
+ 𝜖
𝑛
, ∀𝑛 ≥ 0, (24)

where {𝑠
𝑛
} ⊂ (0, 1] and {𝑡

𝑛
} are the real sequences such that

(i) ∑∞
𝑛=0

𝑠
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝑡
𝑛
≤ 0 or ∑∞

𝑛=0
𝑠
𝑛
|𝑡
𝑛
| < ∞;

(iii) ∑∞
𝑛=0

𝜖
𝑛
< ∞ where 𝜖

𝑛
≥ 0, for all 𝑛 ≥ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.
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Lemma 10 (see [14]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space𝐻. Let 𝑇 : 𝐶 → 𝐶 be a 𝜁-strictly
pseudocontractive mapping. Let 𝛾 and 𝛿 be two nonnegative
real numbers such that (𝛾 + 𝛿)𝜁 ≤ 𝛾. Then,
𝛾 (𝑥 − 𝑦) + 𝛿 (𝑇𝑥 − 𝑇𝑦)

 ≤ (𝛾 + 𝛿)
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶.

(25)

The following lemma appears implicitly in the paper of
Reinermann [15].

Lemma 11 (see [15]). Let 𝐻 be a real Hilbert space. Then, for
all 𝑥, 𝑦 ∈ 𝐻 and 𝜆 ∈ [0, 1],

𝜆𝑥 + (1 − 𝜆) 𝑦


2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)

𝑦


2
− 𝜆 (1 − 𝜆)

𝑥 − 𝑦


2
.

(26)

Lemma 12 (see [16]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let 𝐹 : 𝐶 × 𝐶 → R be a
bifunction such that

(f1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(f2) 𝐹 is monotone and upper hemicontinuous in the first

variable;
(f3) 𝐹 is lower semicontinuous and convex in the second

variable.

Let ℎ : 𝐶 × 𝐶 → R be a bifunction such that

(h1) ℎ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(h2) ℎ is monotone and weakly upper semicontinuous in the

first variable;
(h3) ℎ is convex in the second variable.

Moreover, let one suppose that

(H) for fixed 𝑟 > 0 and𝑥 ∈ 𝐶, there exists a bounded𝐾 ⊂ 𝐶

and 𝑥 ∈ 𝐾 such that for all 𝑧 ∈ 𝐶 \ 𝐾, −𝐹(𝑥, 𝑧) +

ℎ(𝑧, 𝑥) + (1/𝑟)⟨𝑥 − 𝑧, 𝑧 − 𝑥⟩ < 0.

For 𝑟 > 0 and 𝑥 ∈ 𝐻, let 𝑇𝑟 : 𝐻 → 2
𝐶 be a mapping defined

by

𝑇
𝑟𝑥

= {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) + ℎ (𝑧, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(27)

called the resolvent of 𝐹 and ℎ. Then,

(1) 𝑇
𝑟
𝑥 ̸= 0;

(2) 𝑇
𝑟
𝑥 is a singleton;

(3) 𝑇
𝑟
is firmly nonexpansive;

(4) 𝐸𝑃(𝐹, ℎ) = Fix(𝑇𝑟) and it is closed and convex.

Lemma 13 (see [16]). Let one suppose that (f1)–(f3), (h1)–(h3)
and (H) hold. Let 𝑥, 𝑦 ∈ 𝐻, 𝑟1, 𝑟2 > 0. Then,


𝑇
𝑟2
𝑦 − 𝑇𝑟1

𝑥

≤
𝑦 − 𝑥

 +



𝑟
2
− 𝑟
1

𝑟
2




𝑇
𝑟2
𝑦 − 𝑦


. (28)

Lemma 14 (see [17]). Suppose that the hypotheses of
Lemma 12 are satisfied. Let {𝑟

𝑛
} be a sequence in (0,∞) with

lim inf
𝑛→∞

𝑟
𝑛
> 0. Suppose that {𝑥

𝑛
} is a bounded sequence.

Then, the following statements are equivalent and true.

(a) if ‖𝑥𝑛 − 𝑇𝑟𝑛
𝑥𝑛‖ → 0 as 𝑛 → ∞, each weak cluster

point of {𝑥
𝑛
} satisfies the problem:

𝐹 (𝑥, 𝑦) + ℎ (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶, (29)

that is, 𝜔
𝑤
(𝑥
𝑛
) ⊆ EP(𝐹, ℎ).

(b) The demiclosedness principle holds in the sense that, if
𝑥
𝑛
⇀ 𝑥
∗ and ‖𝑥

𝑛
− 𝑇
𝑟𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞, then

(𝐼 − 𝑇
𝑟𝑘
)𝑥
∗
= 0 for all 𝑘 ≥ 1.

3. Main Results

We now propose the following relaxed viscosity iterative
scheme with regularization:

𝐹 (𝑢
𝑛
, 𝑦) + ℎ (𝑢

𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑦𝑛,1 = 𝛽𝑛,1𝑆1𝑢𝑛 + (1 − 𝛽𝑛,1) 𝑢𝑛,

𝑦
𝑛,𝑖

= 𝛽
𝑛,𝑖
𝑆
𝑖
𝑢
𝑛
+ (1 − 𝛽

𝑛,𝑖
) 𝑦
𝑛,𝑖−1

, 𝑖 = 2, . . . , 𝑁,

𝑦
𝑛
= 𝛽
𝑛
𝑄𝑦
𝑛,𝑁

+ (1 − 𝛽
𝑛
) 𝑃
𝐶
(𝑦
𝑛,𝑁

− 𝜆∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

)) ,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
))

+ 𝛿
𝑛
𝑇𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
)) ,

(30)

for all 𝑛 ≥ 0, where the mapping 𝑄 : 𝐶 → 𝐶 is a 𝜌-
contraction; themapping𝑇 : 𝐶 → 𝐶 is a 𝜁-strict pseudocon-
traction; 𝑆

𝑖
: 𝐶 → 𝐶 is a nonexpansive mapping for each 𝑖 =

1, . . . , 𝑁; ∇𝑓 : 𝐶 → 𝐻 satisfies the Lipschitz condition (10)
with 0 < 𝜆 < (2/𝐿); 𝐹, ℎ : 𝐶 × 𝐶 → R are two bifunctions
satisfying the hypotheses of Lemma 12; {𝛼𝑛} is a sequence in
(0,∞) with ∑

∞

𝑛=0
𝛼𝑛 < ∞; {𝛽𝑛}, {𝜎𝑛} are sequences in (0, 1)

with 0 < lim inf𝑛→∞𝜎𝑛 ≤ lim sup
𝑛→∞

𝜎𝑛 < 1; {𝛾𝑛}, {𝛿𝑛} are
sequences in [0, 1]with 𝜎

𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1, for all 𝑛 ≥ 0; {𝛽

𝑛,𝑖
}
𝑁

𝑖=1

are sequences in (0, 1) and (𝛾
𝑛
+ 𝛿
𝑛
)𝜁 ≤ 𝛾

𝑛
, for all 𝑛 ≥ 0;

{𝑟
𝑛
} is a sequence in (0,∞) with lim inf

𝑛→∞
𝑟
𝑛

> 0 and
lim inf

𝑛→∞
𝛿
𝑛
> 0.

Before stating and proving the main convergence results,
we first establish the following lemmas.

Lemma 15. Let one suppose that Ω = Fix(𝑇) ∩ (⋂
𝑖
Fix(𝑆
𝑖
)) ∩

EP(𝐹, ℎ) ∩ Γ ̸= 0. Then, the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑦
𝑛,𝑖
} for all 𝑖,

and {𝑢
𝑛
} are bounded.

Proof. First of all, we can show as in [18] that 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼
)

is nonexpansive for 𝜆 ∈ (0, 2/(𝛼 + 𝐿)), and 𝑃𝐶(𝐼 − 𝜆∇𝑓𝛼𝑛
) is

nonexpansive for all 𝑛 ≥ 0 and 𝜆 ∈ (0, 2/𝐿). We observe that
if 𝑝 ∈ Ω, then

𝑦𝑛,1 − 𝑝
 ≤

𝑢𝑛 − 𝑝
 ≤

𝑥𝑛 − 𝑝
 . (31)
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For all, from 𝑖 = 2 to 𝑖 = 𝑁, by induction, one proves that
𝑦𝑛,𝑖 − 𝑝

 ≤ 𝛽
𝑛,𝑖

𝑢𝑛 − 𝑝
 + (1 − 𝛽

𝑛,𝑖
)
𝑦𝑛,𝑖−1 − 𝑝



≤
𝑢𝑛 − 𝑝

 ≤
𝑥𝑛 − 𝑝

 .

(32)

Thus, we obtain that for every 𝑖 = 1, . . . , 𝑁,
𝑦𝑛,𝑖 − 𝑝

 ≤
𝑢𝑛 − 𝑝

 ≤
𝑥𝑛 − 𝑝

 . (33)

For simplicity, put 𝑦
𝑛,𝑁

= 𝑃
𝐶
(𝑦
𝑛,𝑁

− 𝜆∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

)) and 𝑦
𝑛
=

𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
)) for every 𝑛 ≥ 0. Then, 𝑦

𝑛
= 𝛼
𝑛
𝑄𝑦
𝑛,𝑁

+

(1 − 𝛼𝑛)𝑦𝑛,𝑁 and 𝑥𝑛+1 = 𝜎𝑛𝑦𝑛 + 𝛾𝑛𝑦𝑛 + 𝛿𝑛𝑇𝑦𝑛 for every 𝑛 ≥ 0.
Taking into consideration that 𝑇𝑝 = 𝑝 and 𝑃𝐶(𝐼 − 𝜆∇𝑓)𝑝 = 𝑝

for 𝜆 ∈ (0, 2/𝐿), we have
𝑦𝑛,𝑁 − 𝑝



=

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− 𝑃
𝐶
(𝐼 − 𝜆∇𝑓) 𝑝



≤

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− 𝑃
𝐶
(𝐼−𝜆∇𝑓

𝛼𝑛
) 𝑝



+

𝑃
𝐶 (𝐼 − 𝜆∇𝑓𝛼𝑛

) 𝑝 − 𝑃𝐶 (𝐼 − 𝜆∇𝑓) 𝑝


≤
𝑦𝑛,𝑁 − 𝑝

 +

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑝 − 𝑃

𝐶
(𝐼 − 𝜆∇𝑓) 𝑝



≤
𝑦𝑛,𝑁 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
 .

(34)

Similarly, we get ‖𝑦
𝑛
− 𝑝‖ ≤ ‖𝑦

𝑛
− 𝑝‖ + 𝜆𝛼

𝑛
‖𝑝‖. Thus, from

(34) we have
𝑦𝑛 − 𝑝

 =
𝛽𝑛 (𝑄𝑦𝑛,𝑁 − 𝑝) + (1 − 𝛽

𝑛
) (𝑦
𝑛,𝑁

− 𝑝)


≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝
 + (1 − 𝛽

𝑛
)
𝑦𝑛,𝑁 − 𝑝



≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑄𝑝
 + 𝛽
𝑛

𝑄𝑝 − 𝑝


+ (1 − 𝛽
𝑛) (

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛
𝜌
𝑦𝑛,𝑁 − 𝑝

 + 𝛽
𝑛

𝑄𝑝 − 𝑝


+ (1 − 𝛽
𝑛) (

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

= (1 − 𝛽
𝑛
(1 − 𝜌))

𝑦𝑛,𝑁 − 𝑝


+ 𝛽
𝑛

𝑄𝑝 − 𝑝
 + (1 − 𝛽

𝑛
) 𝜆𝛼
𝑛

𝑝


= (1 − 𝛽
𝑛
(1 − 𝜌))

𝑦𝑛,𝑁 − 𝑝


+ 𝛽
𝑛 (1 − 𝜌)

𝑄𝑝 − 𝑝


1 − 𝜌
+ (1 − 𝛽𝑛) 𝜆𝛼𝑛

𝑝


≤ max{𝑦𝑛,𝑁 − 𝑝
 ,

𝑄𝑝 − 𝑝


1 − 𝜌
} + 𝜆𝛼

𝑛

𝑝


≤ max{𝑢𝑛 − 𝑝
 ,

𝑄𝑝 − 𝑝


1 − 𝜌
} + 𝜆𝛼

𝑛

𝑝


≤ max{𝑥𝑛 − 𝑝
 ,

𝑄𝑝 − 𝑝


1 − 𝜌
} + 𝜆𝛼

𝑛

𝑝
 .

(35)

Since (𝛾
𝑛
+ 𝛿
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0, utilizing Lemma 10, we

derive from (35)

𝑥𝑛+1 − 𝑝


=
𝜎 (𝑦
𝑛
− 𝑝) + 𝛾

𝑛
(𝑦
𝑛
− 𝑝) + 𝛿

𝑛
(𝑇𝑦
𝑛
− 𝑝)



≤ 𝜎
𝑛

𝑦𝑛 − 𝑝
 +

𝛾𝑛 (𝑦𝑛 − 𝑝) + 𝛿
𝑛
(𝑇𝑦
𝑛
− 𝑝)



≤ 𝜎
𝑛

𝑦𝑛 − 𝑝
 + (𝛾

𝑛
+ 𝛿
𝑛
)
𝑦𝑛 − 𝑝



≤ 𝜎
𝑛

𝑦𝑛 − 𝑝
 + (𝛾

𝑛
+ 𝛿
𝑛
) (
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

≤
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝


≤ max{𝑥𝑛 − 𝑝
 ,

𝑄𝑝 − 𝑝


1 − 𝜌
} + 𝜆𝛼𝑛

𝑝
 + 𝜆𝛼

𝑛

𝑝


= max{𝑥𝑛 − 𝑝
 ,

𝑄𝑝 − 𝑝


1 − 𝜌
} + 2𝜆𝛼𝑛

𝑝
 .

(36)

By induction, we get

𝑥𝑛+1 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,

𝑄𝑝 − 𝑝


1 − 𝜌
}

+ 2𝜆
𝑝

 ⋅

𝑛

∑

𝑖=0

𝛼
𝑖
, ∀𝑛 ≥ 0.

(37)

This implies that {𝑥𝑛} is bounded and so are {𝑦𝑛}, {𝑢𝑛}, and
{𝑦𝑛,𝑖} for each 𝑖 = 1, . . . , 𝑁. It is clear that both {𝑦𝑛,𝑁} and {𝑦𝑛}

are also bounded. Since ‖𝑇𝑦
𝑛
−𝑝‖ ≤ ((1+𝜁)/(1− 𝜁))‖𝑦

𝑛
−𝑝‖,

{𝑇𝑦
𝑛
} is also bounded.

Lemma 16. Let one suppose that Ω ̸= 0. Moreover, let one
suppose that the following hold:

(H1) lim
𝑛→∞

𝛽
𝑛
= 0 and ∑

∞

𝑛=0
𝛽
𝑛
= ∞;

(H2) ∑∞
𝑛=1

|𝛽
𝑛
−𝛽
𝑛−1

| < ∞ or lim
𝑛→∞

(|𝛽
𝑛
−𝛽
𝑛−1

|/𝛽
𝑛
) = 0;

(H3) ∑∞
𝑛=1

|𝛽𝑛,𝑖−𝛽𝑛−1,𝑖| < ∞ or lim𝑛→∞(|𝛽𝑛,𝑖−𝛽𝑛−1,𝑖|/𝛽𝑛) =
0 for each 𝑖 = 1, . . . , 𝑁;

(H4) ∑∞
𝑛=1

|𝑟
𝑛
− 𝑟
𝑛−1

| < ∞ or lim
𝑛→∞

(|𝑟
𝑛
− 𝑟
𝑛−1

|/𝛽
𝑛
) = 0;

(H5) ∑∞
𝑛=1

|𝜎
𝑛
− 𝜎
𝑛−1

| < ∞ or lim
𝑛→∞

(|𝜎
𝑛
− 𝜎
𝑛−1

|/𝛽
𝑛
) = 0;

(H6) ∑∞
𝑛=1

|𝛾
𝑛
/(1 − 𝜎

𝑛
) − 𝛾

𝑛−1
/(1 − 𝜎

𝑛−1
)| < ∞ or

lim𝑛→∞(1/𝛽𝑛)|𝛾𝑛/(1 − 𝜎
𝑛
) − 𝛾
𝑛−1

/(1 − 𝜎
𝑛−1

)| = 0.

Then, lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0, that is, {𝑥

𝑛
} is asymptotically

regular.

Proof. Taking into account 0 < lim inf
𝑛→∞

𝜎
𝑛

≤

lim sup
𝑛→∞

𝜎
𝑛
< 1, we may assume, without loss of gener-

ality, that {𝜎
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1). First, we write
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𝑥
𝑛
= 𝜎
𝑛−1

𝑦
𝑛−1

+ (1 − 𝜎
𝑛−1

)V
𝑛−1

, for all 𝑛 ≥ 1, where V
𝑛−1

=

(𝑥
𝑛
− 𝜎
𝑛−1

𝑦
𝑛−1

)/(1 − 𝜎
𝑛−1

). It follows that for all 𝑛 ≥ 1

V
𝑛
− V
𝑛−1

=
𝑥
𝑛+1

− 𝜎
𝑛
𝑦
𝑛

1 − 𝜎
𝑛

−
𝑥
𝑛
− 𝜎
𝑛−1

𝑦
𝑛−1

1 − 𝜎
𝑛−1

=
𝛾
𝑛
𝑦
𝑛
+ 𝛿
𝑛
𝑇𝑦
𝑛

1 − 𝜎𝑛

−
𝛾
𝑛−1

𝑦
𝑛−1

+ 𝛿
𝑛−1

𝑇𝑦
𝑛−1

1 − 𝜎𝑛−1

=
𝛾𝑛 (𝑦𝑛 − 𝑦𝑛−1) + 𝛿𝑛 (𝑇𝑦𝑛 − 𝑇𝑦𝑛−1)

1 − 𝜎
𝑛

+ (
𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1

)𝑦
𝑛−1

+ (
𝛿
𝑛

1 − 𝜎
𝑛

−
𝛿
𝑛−1

1 − 𝜎
𝑛−1

)𝑇𝑦
𝑛−1

.

(38)

Since (𝛾𝑛 + 𝛿𝑛)𝜁 ≤ 𝛾𝑛 for all 𝑛 ≥ 0, utilizing Lemma 10, we
have

𝛾𝑛 (𝑦𝑛 − 𝑦
𝑛−1

) + 𝛿
𝑛
(𝑇𝑦
𝑛
− 𝑇𝑦
𝑛−1

)


≤ (𝛾
𝑛 + 𝛿𝑛)

𝑦𝑛 − 𝑦𝑛−1
 .

(39)

Next, we estimate ‖𝑦
𝑛−𝑦𝑛−1‖. Observe that for every 𝑛 ≥ 1

𝑦𝑛,𝑁 − 𝑦𝑛−1,𝑁


≤

𝑃
𝐶 (𝐼 − 𝜆∇𝑓𝛼𝑛

) 𝑦𝑛,𝑁 − 𝑃𝐶 (𝐼 − 𝜆∇𝑓𝛼𝑛
) 𝑦𝑛−1,𝑁



+

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛−1,𝑁

− 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛−1
) 𝑦
𝑛−1,𝑁



≤
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁



+

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛−1,𝑁

− 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛−1
) 𝑦
𝑛−1,𝑁



≤
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁



+

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛−1,𝑁

− (𝐼 − 𝜆∇𝑓
𝛼𝑛−1

) 𝑦
𝑛−1,𝑁



=
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁

 +

𝜆∇𝑓
𝛼𝑛
(𝑦
𝑛−1,𝑁

) − 𝜆∇𝑓
𝛼𝑛−1

(𝑦
𝑛−1,𝑁

)


=
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁

 + 𝜆
𝛼𝑛 − 𝛼

𝑛−1



𝑦𝑛−1,𝑁
 ,

(40)

and similarly,
𝑦𝑛 − 𝑦

𝑛−1

 ≤
𝑦𝑛 − 𝑦

𝑛−1

 + 𝜆
𝛼𝑛 − 𝛼

𝑛−1



𝑦𝑛−1
 . (41)

Also, from (30), we have

𝑦
𝑛 = 𝛽𝑛𝑄𝑦𝑛,𝑁 + (1 − 𝛽𝑛) 𝑦𝑛,𝑁,

𝑦
𝑛−1

= 𝛽
𝑛−1

𝑄𝑦
𝑛−1,𝑁

+ (1 − 𝛽
𝑛−1

) 𝑦
𝑛−1,𝑁

,

∀𝑛 ≥ 1.

(42)

Simple calculations show that

𝑦
𝑛
− 𝑦
𝑛−1

= (1 − 𝛽
𝑛
) (𝑦
𝑛,𝑁

− 𝑦
𝑛−1,𝑁

)

+ (𝛽
𝑛
− 𝛽
𝑛−1

) (𝑄𝑦
𝑛−1,𝑁

− 𝑦
𝑛−1,𝑁

)

+ 𝛽
𝑛
(𝑄𝑦
𝑛,𝑁

− 𝑄𝑦
𝑛−1,𝑁

) .

(43)

Then, passing to the norm we get from (40) that

𝑦𝑛 − 𝑦𝑛−1


≤ (1 − 𝛽
𝑛
)
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁



+
𝛽𝑛−𝛽𝑛−1



𝑄𝑦𝑛−1,𝑁 − 𝑦
𝑛−1,𝑁

+𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑄𝑦

𝑛−1,𝑁



≤ (1 − 𝛽
𝑛) (

𝑦𝑛,𝑁 − 𝑦𝑛−1,𝑁
+𝜆

𝛼𝑛 − 𝛼𝑛−1


𝑦𝑛−1,𝑁
)

+
𝛽𝑛 − 𝛽

𝑛−1



𝑄𝑦𝑛−1,𝑁 − 𝑦
𝑛−1,𝑁



+ 𝛽
𝑛𝜌

𝑦𝑛,𝑁 − 𝑦𝑛−1,𝑁


≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁



+ 𝜆
𝛼𝑛 − 𝛼

𝑛−1



𝑦𝑛−1,𝑁


+
𝛽𝑛 − 𝛽𝑛−1



𝑄𝑦𝑛−1,𝑁 − 𝑦𝑛−1,𝑁


≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑦𝑛,𝑁 − 𝑦

𝑛−1,𝑁



+𝑀
1
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

) ,

(44)

where 𝜆‖𝑦
𝑛,𝑁‖ + ‖𝑄𝑦𝑛,𝑁 − 𝑦𝑛,𝑁‖ ≤ 𝑀1, for all 𝑛 ≥ 0 for some

𝑀1 ≥ 0. Furthermore, by the definition of 𝑦𝑛,𝑖 one obtains
that, for all 𝑖 = 𝑁, . . . , 2

𝑦𝑛,𝑖 − 𝑦𝑛−1,𝑖
 ≤ 𝛽
𝑛,𝑖

𝑢𝑛 − 𝑢𝑛−1


+
𝑆𝑖𝑢𝑛−1 − 𝑦

𝑛−1,𝑖−1



𝛽𝑛,𝑖 − 𝛽
𝑛−1,𝑖



+ (1 − 𝛽
𝑛,𝑖)

𝑦𝑛,𝑖−1 − 𝑦𝑛−1,𝑖−1
 .

(45)

In the case of 𝑖 = 1, we have

𝑦𝑛,1 − 𝑦𝑛−1,1


≤ 𝛽
𝑛,1

𝑢𝑛 − 𝑢
𝑛−1



+
𝑆1𝑢𝑛−1 − 𝑢

𝑛−1



𝛽𝑛,1 − 𝛽
𝑛−1,1



+ (1 − 𝛽
𝑛,1
)
𝑢𝑛 − 𝑢

𝑛−1



=
𝑢𝑛 − 𝑢𝑛−1

 +
𝑆1𝑢𝑛−1 − 𝑢𝑛−1



𝛽𝑛,1 − 𝛽𝑛−1,1
 .

(46)

Substituting (46) in all (45) type one obtains for 𝑖 = 2, . . . , 𝑁

𝑦𝑛,𝑖 − 𝑦𝑛−1,𝑖
 ≤

𝑢𝑛 − 𝑢𝑛−1


+

𝑖

∑

𝑘=2

𝑆𝑘𝑢𝑛−1 − 𝑦𝑛−1,𝑘−1


𝛽𝑛,𝑘 − 𝛽𝑛−1,𝑘


+
𝑆1𝑢𝑛−1 − 𝑢

𝑛−1



𝛽𝑛,1 − 𝛽
𝑛−1,1

 .

(47)
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This together with (44) implies that

𝑦𝑛 − 𝑦
𝑛−1



≤ (1 − (1 − 𝜌) 𝛽
𝑛
)

× [
𝑢𝑛 − 𝑢

𝑛−1



+

𝑁

∑

𝑘=2

𝑆𝑘𝑢𝑛−1 − 𝑦
𝑛−1,𝑘−1



𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝑆1𝑢𝑛−1 − 𝑢

𝑛−1





𝛽
𝑛,1

− 𝛽
𝑛−1,1



]

+𝑀
1
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑢𝑛 − 𝑢

𝑛−1



+

𝑁

∑

𝑘=2

𝑆𝑘𝑢𝑛−1 − 𝑦
𝑛−1,𝑘−1



𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝑆1𝑢𝑛−1 − 𝑢

𝑛−1



𝛽𝑛,1 − 𝛽
𝑛−1,1



+ 𝑀
1
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

) .

(48)

By Lemma 13, we know that

𝑢𝑛 − 𝑢𝑛−1
 ≤

𝑥𝑛 − 𝑥𝑛−1
 + 𝜅



1 −
𝑟
𝑛−1

𝑟
𝑛



, (49)

where 𝜅 = sup
𝑛≥0

‖𝑢
𝑛
− 𝑥
𝑛
‖. So, substituting (49) in (48) we

obtain

𝑦𝑛 − 𝑦𝑛−1


≤ (1 − (1 − 𝜌) 𝛽
𝑛
) (

𝑥𝑛 − 𝑥
𝑛−1

 + 𝜅



1 −
𝑟
𝑛−1

𝑟
𝑛



)

+

𝑁

∑

𝑘=2

𝑆𝑘𝑢𝑛−1 − 𝑦
𝑛−1,𝑘−1



𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝑆1𝑢𝑛−1 − 𝑢

𝑛−1



𝛽𝑛,1 − 𝛽
𝑛−1,1



+ 𝑀
1
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1

 + 𝜅

𝑟𝑛 − 𝑟𝑛−1


𝑟
𝑛

+

𝑁

∑

𝑘=2

𝑆𝑘𝑢𝑛−1 − 𝑦
𝑛−1,𝑘−1



𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝑆1𝑢𝑛−1 − 𝑢𝑛−1



𝛽𝑛,1 − 𝛽𝑛−1,1


+ 𝑀
1
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+ 𝑀
2
[

𝑟𝑛 − 𝑟
𝑛−1



𝑟𝑛

+

𝑁

∑

𝑘=2

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘

 +
𝛽𝑛,1 − 𝛽

𝑛−1,1



+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 ]

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+ 𝑀
2
[

𝑟𝑛 − 𝑟
𝑛−1



𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 ] ,

(50)

where 𝑏 > 0 is a minorant for {𝑟
𝑛} and 𝜅 +𝑀1 +∑

𝑁

𝑘=2
‖𝑆𝑘𝑢𝑛 −

𝑦𝑛,𝑘−1‖ + ‖𝑆1𝑢𝑛 − 𝑢𝑛‖ ≤ 𝑀2, for all 𝑛 ≥ 0 for some 𝑀2 ≥ 0.
This together with (38)-(39), implies that

V𝑛 − V
𝑛−1

 ≤

𝛾𝑛 (𝑦𝑛 − 𝑦
𝑛−1

) + 𝛿
𝑛
(𝑇𝑦
𝑛
− 𝑇𝑦
𝑛−1

)


1 − 𝜎𝑛

+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



𝑦𝑛−1


+



𝛿
𝑛

1 − 𝜎
𝑛

−
𝛿
𝑛−1

1 − 𝜎
𝑛−1



𝑇𝑦𝑛−1


≤
(𝛾
𝑛
+ 𝛿
𝑛
)
𝑦𝑛 − 𝑦

𝑛−1



1 − 𝜎𝑛

+



𝛾
𝑛

1 − 𝜎𝑛

−
𝛾
𝑛−1

1 − 𝜎𝑛−1



𝑦𝑛−1


+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



𝑇𝑦𝑛−1


=
𝑦𝑛 − 𝑦

𝑛−1



+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



(
𝑦𝑛−1

 +
𝑇𝑦𝑛−1

)

≤
𝑦𝑛 − 𝑦

𝑛−1

 + 𝜆
𝛼𝑛 − 𝛼

𝑛−1



𝑦𝑛−1


+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



(
𝑦𝑛−1

 +
𝑇𝑦𝑛−1

)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
2
[

𝑟𝑛 − 𝑟
𝑛−1



𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 ]

+ 𝜆
𝛼𝑛 − 𝛼

𝑛−1



𝑦𝑛−1


+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



(
𝑦𝑛−1

 +
𝑇𝑦𝑛−1

)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1
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+𝑀
3
[

𝑟𝑛 − 𝑟
𝑛−1



𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 ]

+𝑀
3

𝛼𝑛 − 𝛼
𝑛−1

 + 𝑀
3



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



= (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
3
[

𝑟𝑛 − 𝑟𝑛−1


𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+ 2
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1



+



𝛾
𝑛

1 − 𝜎𝑛

−
𝛾
𝑛−1

1 − 𝜎𝑛−1



] ,

(51)

where𝑀
2+𝜆‖𝑦𝑛‖+‖𝑦𝑛‖+‖𝑇𝑦𝑛‖ ≤ 𝑀3, for all 𝑛 ≥ 0 for some

𝑀3 ≥ 0.
Further, we observe that

𝑥𝑛+1 = 𝜎𝑛𝑦𝑛 + (1 − 𝜎𝑛) V𝑛,

𝑥
𝑛
= 𝜎
𝑛−1

𝑦
𝑛−1

+ (1 − 𝛽
𝑛−1

) V
𝑛−1

,

∀𝑛 ≥ 1.

(52)

Simple calculations show that

𝑥
𝑛+1 − 𝑥𝑛 = (1 − 𝜎𝑛) (V𝑛 − V𝑛−1)

+ (𝜎
𝑛
− 𝜎
𝑛−1

) (𝑦
𝑛−1

− V
𝑛−1

)

+ 𝜎
𝑛
(𝑦
𝑛
− 𝑦
𝑛−1

) .

(53)

Then, passing to the norm, we get from (51)

𝑥𝑛+1 − 𝑥
𝑛



≤ (1 − 𝜎
𝑛
)
V𝑛 − V

𝑛−1



+
𝜎𝑛 − 𝜎

𝑛−1



𝑦𝑛−1 − V
𝑛−1

 + 𝜎
𝑛

𝑦𝑛 − 𝑦
𝑛−1



≤ (1 − 𝜎
𝑛
)

× { (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
3
[

𝑟𝑛 − 𝑟
𝑛−1



𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+ 2
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 +

+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



]}

+
𝜎𝑛 − 𝜎

𝑛−1



𝑦𝑛−1 − V
𝑛−1



+ 𝜎
𝑛
{ (1 − (1 − 𝜌) 𝛽

𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
2
[

𝑟𝑛 − 𝑟𝑛−1


𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 ]}

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
3
[

𝑟𝑛 − 𝑟
𝑛−1



𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+ 2
𝛼𝑛 − 𝛼𝑛−1

 +
𝛽𝑛 − 𝛽𝑛−1



+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



]

+
𝜎𝑛 − 𝜎

𝑛−1



𝑦𝑛−1 − V
𝑛−1



≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀[

𝑟𝑛 − 𝑟
𝑛−1



𝑏
+

𝑁

∑

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



+
𝛽𝑛 − 𝛽𝑛−1

 +
𝜎𝑛 − 𝜎𝑛−1



+



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



] + 2𝑀
𝛼𝑛 − 𝛼𝑛−1

 ,

(54)

where𝑀
3
+ ‖𝑦
𝑛
− V
𝑛
‖ ≤ 𝑀, for all 𝑛 ≥ 0 for some𝑀 ≥ 0. By

hypotheses (H1)–(H6) and Lemma 9, from ∑
∞

𝑛=0
𝛼
𝑛
< ∞, we

obtain the claim.

Lemma 17. Let one suppose that Ω ̸= 0. Let one suppose that
{𝑥
𝑛
} is asymptotically regular. Then, ‖𝑥

𝑛
−𝑦
𝑛
‖ → 0 and ‖𝑥

𝑛
−

𝑢
𝑛
‖ = ‖𝑥

𝑛
− 𝑇
𝑟𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Proof. We recall that, by the firm nonexpansivity of 𝑇
𝑟𝑛
, a

standard calculation (see [17]) shows that if V ∈ EP(𝐹, ℎ), then

𝑢𝑛 − V


2
≤
𝑥𝑛 − V



2
−
𝑥𝑛 − 𝑢

𝑛



2
. (55)

Let 𝑝 ∈ Ω. Then by Lemma 11, we have from (33)–(34) the
following

𝑦𝑛 − 𝑝


2
=
𝛽𝑛 (𝑄𝑦𝑛,𝑁 − 𝑝) + (1 − 𝛽𝑛) (𝑦𝑛,𝑁 − 𝑝)



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛,𝑁 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ [

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
]
2
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= 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
) ,

(56)

𝑦𝑛 − 𝑝


2
=

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆∇𝑓) 𝑝



2

≤ (
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)
2

=
𝑦𝑛 − 𝑝



2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
) .

(57)

Since (𝛾
𝑛
+ 𝛿
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0, utilizing Lemma 10, we

have

𝑥𝑛+1 − 𝑝


2

=
𝜎𝑛 (𝑦𝑛 − 𝑝) + 𝛾𝑛 (𝑦𝑛 − 𝑝) + 𝛿𝑛 (𝑇𝑦𝑛 − 𝑝)



2

=



𝜎
𝑛
(𝑦
𝑛
− 𝑝) + (𝛾

𝑛
+ 𝛿
𝑛
)

1

𝛾
𝑛
+ 𝛿
𝑛

× [𝛾
𝑛
(𝑦
𝑛
− 𝑝) + 𝛿

𝑛
(𝑇𝑦
𝑛
− 𝑝)]



2

= 𝜎
𝑛

𝑦𝑛 − 𝑝


2
+ (𝛾
𝑛
+ 𝛿
𝑛
)

×



1

𝛾
𝑛
+ 𝛿
𝑛

[𝛾𝑛 (𝑦𝑛 − 𝑝) + 𝛿𝑛 (𝑇𝑦𝑛 − 𝑝)]



2

− 𝜎𝑛 (𝛾𝑛 + 𝛿𝑛)



(𝑦
𝑛 − 𝑝) −

1

𝛾
𝑛
+ 𝛿
𝑛

× [𝛾
𝑛
(𝑦
𝑛
− 𝑝) + 𝛿

𝑛
(𝑇𝑦
𝑛
− 𝑝)]



2

= 𝜎
𝑛

𝑦𝑛 − 𝑝


2
+ (𝛾
𝑛
+ 𝛿
𝑛
)

×



1

𝛾
𝑛
+ 𝛿
𝑛

[𝛾𝑛 (𝑦𝑛 − 𝑝) + 𝛿𝑛(𝑇𝑦𝑛 − 𝑝)]



2

− 𝜎𝑛 (𝛾𝑛 + 𝛿𝑛)



1

𝛾
𝑛
+ 𝛿
𝑛

[𝛾𝑛 (𝑦𝑛 − 𝑦𝑛) + 𝛿𝑛 (𝑇𝑦𝑛 − 𝑦𝑛)]



2

= 𝜎𝑛
𝑦𝑛 − 𝑝



2
+ (𝛾𝑛 + 𝛿𝑛)

×



1

𝛾𝑛 + 𝛿𝑛

[𝛾
𝑛
(𝑦
𝑛
− 𝑝) + 𝛿

𝑛
(𝑇𝑦
𝑛
− 𝑝)]



2

−
𝜎𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛+1 − 𝑦𝑛


2

≤ 𝜎
𝑛

𝑦𝑛 − 𝑝


2
+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝑦𝑛 − 𝑝



2

−
𝜎𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛+1 − 𝑦
𝑛



2

= 𝜎
𝑛

𝑦𝑛 − 𝑝


2
+ (1 − 𝜎

𝑛)
𝑦𝑛 − 𝑝



2

−
𝜎𝑛

1 − 𝜎
𝑛

𝑥𝑛+1 − 𝑦𝑛


2

≤ 𝜎𝑛
𝑦𝑛 − 𝑝



2
+ (1 − 𝜎𝑛)

× [
𝑦𝑛 − 𝑝



2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)]

−
𝜎
𝑛

1 − 𝜎
𝑛

𝑥𝑛+1 − 𝑦𝑛


2

≤
𝑦𝑛 − 𝑝



2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

−
𝜎
𝑛

1 − 𝜎𝑛

𝑥𝑛+1 − 𝑦
𝑛



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2

+ 𝜆𝛼𝑛
𝑝

 (2
𝑥𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

−
𝜎
𝑛

1 − 𝜎
𝑛

𝑥𝑛+1 − 𝑦
𝑛



2

=
𝑥𝑛 − 𝑝



2
+ 𝛽𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2

+ 2𝜆𝛼
𝑛

𝑝
 (

𝑥𝑛 − 𝑝
 +

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

−
𝜎
𝑛

1 − 𝜎
𝑛

𝑥𝑛+1 − 𝑦
𝑛



2
.

(58)

Taking into account 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
<

1, we may assume that {𝜎𝑛} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1). So,
we deduce that

𝑐

1 − 𝑐

𝑥𝑛+1 − 𝑦
𝑛



2

≤
𝜎𝑛

1 − 𝜎
𝑛

𝑥𝑛+1 − 𝑦𝑛


2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2
+ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2

+ 2𝜆𝛼𝑛
𝑝

 (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1

 + 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2

+ 2𝜆𝛼
𝑛

𝑝
 (

𝑥𝑛 − 𝑝
 +

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
) .

(59)

Since 𝛼
𝑛
→ 0, 𝛽

𝑛
→ 0 and ‖𝑥

𝑛
−𝑥
𝑛+1

‖ → 0 as 𝑛 → ∞, we
conclude from the boundedness of {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑦

𝑛,𝑁
} that

‖𝑥
𝑛+1

−𝑦
𝑛
‖ → 0 as 𝑛 → ∞.This togetherwith ‖𝑥

𝑛
−𝑥
𝑛+1

‖ →

0, implies that

lim
𝑛→∞

𝑥𝑛 − 𝑦𝑛
 = 0. (60)
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Furthermore, from (33), (55), and (56), we have

𝑦𝑛 − 𝑝


2
≤ 𝛽𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑢𝑛 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢

𝑛



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
) ,

(61)

which hence implies that

𝑥𝑛 − 𝑢
𝑛



2
≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2
−
𝑦𝑛 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2

+ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)
𝑥𝑛 − 𝑦

𝑛



+ 𝜆𝛼
𝑛

𝑝
 (2

𝑥𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
) .

(62)

Since 𝛼
𝑛
→ 0, 𝛽

𝑛
→ 0 and ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0 as 𝑛 → ∞, we

deduce from the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑦

𝑛,𝑁
} that

lim
𝑛→∞

𝑥𝑛 − 𝑢𝑛
 = 0. (63)

Remark 18. By the last lemma we have 𝜔𝑤(𝑥𝑛) = 𝜔𝑤(𝑢𝑛) and
𝜔𝑠(𝑥𝑛) = 𝜔𝑠(𝑢𝑛); that is, the sets of strong/weak cluster points
of {𝑥𝑛} and {𝑢𝑛} coincide.

Of course, if 𝛽
𝑛,𝑖 → 𝛽𝑖 ̸= 0, as 𝑛 → ∞, for all index 𝑖, the

assumptions of Lemma 16 are enough to assure that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛



𝛽
𝑛,𝑖

= 0, ∀𝑖 ∈ {1, . . . , 𝑁} . (64)

In the next lemma, we examine the case in which at least one
sequence {𝛽

𝑛,𝑘0
} is a null sequence.

Lemma 19. Let one suppose that Ω ̸= 0. Let one suppose
that (H1) holds. Moreover, for an index 𝑘

0
∈ {1, . . . , 𝑁},

lim
𝑛→∞

𝛽
𝑛,𝑘0

= 0, and the following hold:

(H7) for all 𝑖,

lim
𝑛→∞

𝛽𝑛,𝑖 − 𝛽
𝑛−1,𝑖



𝛽
𝑛
𝛽
𝑛,𝑘0

= lim
𝑛→∞

𝛼𝑛 − 𝛼
𝑛−1



𝛽
𝑛
𝛽
𝑛,𝑘0

= lim
𝑛→∞

𝛽𝑛 − 𝛽
𝑛−1



𝛽
𝑛
𝛽
𝑛,𝑘0

= lim
𝑛→∞

𝜎𝑛 − 𝜎
𝑛−1



𝛽
𝑛
𝛽
𝑛,𝑘0

= lim
𝑛→∞

𝑟𝑛 − 𝑟
𝑛−1



𝛽
𝑛
𝛽
𝑛,𝑘0

= lim
𝑛→∞

1

𝛽
𝑛
𝛽
𝑛,𝑘0



𝛾
𝑛

1 − 𝜎
𝑛

−
𝛾
𝑛−1

1 − 𝜎
𝑛−1



= 0;

(65)

(H8) there exists a constant 𝜏 > 0 such that (1/𝛽
𝑛
)|1/𝛽
𝑛,𝑘0

−

1/𝛽
𝑛−1,𝑘0

| < 𝜏 for all 𝑛 ≥ 1. Then,

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛



𝛽𝑛,𝑘0

= 0. (66)

Proof. We start by (54). Dividing both the terms by 𝛽
𝑛,𝑘0

we
have

𝑥𝑛+1 − 𝑥𝑛


𝛽
𝑛,𝑘0

≤ [1 − (1 − 𝜌) 𝛽𝑛]

𝑥𝑛 − 𝑥
𝑛−1



𝛽
𝑛,𝑘0

+𝑀[

𝑟𝑛 − 𝑟𝑛−1


𝑏𝛽
𝑛,𝑘0

+
∑
𝑁

𝑘=1

𝛽𝑛,𝑘 − 𝛽𝑛−1,𝑘


𝛽
𝑛,𝑘0

+
2
𝛼𝑛 − 𝛼

𝑛−1



𝛽𝑛,𝑘0

+

𝛽𝑛 − 𝛽
𝑛−1



𝛽𝑛,𝑘0

+

𝜎𝑛 − 𝜎
𝑛−1



𝛽𝑛,𝑘0

+

𝛾𝑛/ (1 − 𝜎
𝑛
) − 𝛾
𝑛−1

/ (1 − 𝜎
𝑛−1

)


𝛽
𝑛,𝑘0

] .

(67)

So, by (H8) we have

𝑥𝑛+1 − 𝑥
𝑛



𝛽𝑛,𝑘0

≤ [1 − (1 − 𝜌) 𝛽
𝑛
]

𝑥𝑛 − 𝑥
𝑛−1



𝛽
𝑛−1,𝑘0

+ [1 − (1 − 𝜌) 𝛽𝑛]
𝑥𝑛 − 𝑥𝑛−1





1

𝛽
𝑛,𝑘0

−
1

𝛽
𝑛−1,𝑘0



+ 𝑀[

𝑟𝑛 − 𝑟
𝑛−1



𝑏𝛽𝑛,𝑘0

+
∑
𝑁

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



𝛽𝑛,𝑘0

+

𝛾𝑛/ (1 − 𝜎𝑛) − 𝛾𝑛−1/ (1 − 𝜎𝑛−1)


𝛽
𝑛,𝑘0

+
2
𝛼𝑛 − 𝛼

𝑛−1



𝛽𝑛,𝑘0

+

𝛽𝑛 − 𝛽
𝑛−1



𝛽𝑛,𝑘0

+

𝜎𝑛 − 𝜎
𝑛−1



𝛽𝑛,𝑘0

]

≤ [1 − (1 − 𝜌) 𝛽
𝑛
]

𝑥𝑛 − 𝑥𝑛−1


𝛽
𝑛−1,𝑘0

+
𝑥𝑛 − 𝑥

𝑛−1





1

𝛽
𝑛,𝑘0

−
1

𝛽
𝑛−1,𝑘0



+ 𝑀[

𝑟𝑛 − 𝑟
𝑛−1



𝑏𝛽
𝑛,𝑘0

+
∑
𝑁

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



𝛽
𝑛,𝑘0
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+

𝛾𝑛/ (1 − 𝜎𝑛) − 𝛾𝑛−1/ (1 − 𝜎𝑛−1)


𝛽
𝑛,𝑘0

+
2
𝛼𝑛 − 𝛼

𝑛−1



𝛽
𝑛,𝑘0

+

𝛽𝑛 − 𝛽
𝑛−1



𝛽
𝑛,𝑘0

+

𝜎𝑛 − 𝜎
𝑛−1



𝛽
𝑛,𝑘0

]

≤ [1 − (1 − 𝜌) 𝛽
𝑛
]

𝑥𝑛 − 𝑥
𝑛−1



𝛽
𝑛−1,𝑘0

+ 𝛽
𝑛
𝜏
𝑥𝑛 − 𝑥

𝑛−1



+𝑀[

𝑟𝑛 − 𝑟
𝑛−1



𝑏𝛽
𝑛,𝑘0

+
∑
𝑁

𝑘=1

𝛽𝑛,𝑘 − 𝛽
𝑛−1,𝑘



𝛽
𝑛,𝑘0

+

𝛾𝑛/ (1 − 𝜎
𝑛
) − 𝛾
𝑛−1

/ (1 − 𝜎
𝑛−1

)


𝛽
𝑛,𝑘0

+
2
𝛼𝑛 − 𝛼

𝑛−1



𝛽
𝑛,𝑘0

+

𝛽𝑛 − 𝛽
𝑛−1



𝛽
𝑛,𝑘0

+

𝜎𝑛 − 𝜎
𝑛−1



𝛽
𝑛,𝑘0

]

= [1 − (1 − 𝜌) 𝛽
𝑛
]

𝑥𝑛 − 𝑥
𝑛−1



𝛽𝑛−1,𝑘0

+ (1 − 𝜌) 𝛽
𝑛
⋅

1

1 − 𝜌

× {𝜏
𝑥𝑛 − 𝑥𝑛−1



+𝑀[

𝑟𝑛 − 𝑟
𝑛−1



𝑏𝛽
𝑛
𝛽
𝑛,𝑘0

+
∑
𝑁

𝑘=1

𝛽𝑛,𝑘 − 𝛽𝑛−1,𝑘


𝛽
𝑛
𝛽
𝑛,𝑘0

+

𝛾𝑛/ (1 − 𝜎
𝑛
) − 𝛾
𝑛−1

/ (1 − 𝜎
𝑛−1

)


𝛽
𝑛
𝛽
𝑛,𝑘0

+
2
𝛼𝑛 − 𝛼

𝑛−1



𝛽𝑛𝛽𝑛,𝑘0

+

𝛽𝑛 − 𝛽
𝑛−1



𝛽𝑛𝛽𝑛,𝑘0

+

𝜎𝑛 − 𝜎𝑛−1


𝛽
𝑛
𝛽
𝑛,𝑘0

]} .

(68)

Therefore, utilizing Lemma 9, from (H1), (H7), and the
asymptotical regularity of {𝑥

𝑛
} (due to Lemma 16), we deduce

that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛


𝛽
𝑛,𝑘0

= 0. (69)

Lemma 20. Let one suppose that Ω ̸= 0. Let one suppose that
(H1)–(H6) hold. Then,

lim
𝑛→∞

𝑦𝑛,𝑁 − 𝑦𝑛,𝑁
 = lim
𝑛→∞

𝑦𝑛 − 𝑦𝑛
 = 0. (70)

Proof. Let 𝑝 ∈ Ω. Then, by Lemma 11 we have

𝑦𝑛 − 𝑝


2

=
𝛽𝑛(𝑄𝑦𝑛,𝑁 − 𝑝) + (1 − 𝛽𝑛) (𝑦𝑛,𝑁 − 𝑝)



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛,𝑁 − 𝑝



2

= 𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑝



2
+ (1 − 𝛽𝑛)

×

𝑃
𝐶 (𝐼 − 𝜆∇𝑓𝛼𝑛

) 𝑦𝑛,𝑁 − 𝑃𝐶(𝐼 − 𝜆∇𝑓)𝑝


2

≤ 𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑝



2
+ (1 − 𝛽𝑛)

×
(𝐼 − 𝜆∇𝑓) 𝑦

𝑛,𝑁
− (𝐼 − 𝜆∇𝑓)𝑝 − 𝜆𝛼

𝑛
𝑦
𝑛,𝑁



2

≤ 𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑝



2
+ (1 − 𝛽𝑛)

× [
(𝐼 − 𝜆∇𝑓) 𝑦

𝑛,𝑁
− (𝐼 − 𝜆∇𝑓) 𝑝



2

−2𝜆𝛼
𝑛
⟨𝑦
𝑛,𝑁

, (𝐼 − 𝜆∇𝑓
𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝⟩ ]

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽

𝑛
)

× [
𝑦𝑛,𝑁 − 𝑝



2
+ 2𝜆 (𝜆 −

2

𝐿
)
∇𝑓(𝑦𝑛,𝑁) − ∇𝑓(𝑝)



2

+2𝜆𝛼𝑛
𝑦𝑛,𝑁




(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦𝑛,𝑁 − (𝐼 − 𝜆∇𝑓) 𝑝


]

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽𝑛)

× [
𝑥𝑛 − 𝑝



2
+ 2𝜆 (𝜆 −

2

𝐿
)
∇𝑓(𝑦𝑛,𝑁) − ∇𝑓(𝑝)



2

+2𝜆𝛼
𝑛

𝑦𝑛,𝑁



(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝

] .

(71)

So, we obtain

(1 − 𝛽
𝑛
) 2𝜆 (

2

𝐿
− 𝜆)

∇𝑓(𝑦𝑛,𝑁) − ∇𝑓(𝑝)


2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑝



2
−
𝑦𝑛 − 𝑝



2

+ (1 − 𝛽
𝑛
) 2𝜆𝛼
𝑛

𝑦𝑛,𝑁


×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (

𝑥𝑛 − 𝑝
 +

𝑦𝑛 − 𝑝
)

× (
𝑥𝑛 − 𝑝

 −
𝑦𝑛 − 𝑝

)

+ 2𝜆𝛼
𝑛

𝑦𝑛,𝑁



(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦𝑛,𝑁 − (𝐼 − 𝜆∇𝑓) 𝑝



≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (

𝑥𝑛 − 𝑝
 +

𝑦𝑛 − 𝑝
) (

𝑥𝑛 − 𝑦𝑛
)

+ 2𝜆𝛼
𝑛

𝑦𝑛,𝑁



(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝

.

(72)
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Since 𝛼
𝑛
→ 0, 𝛽

𝑛
→ 0, ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0, and 0 < 𝜆 < 2/𝐿,

from the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑦

𝑛,𝑁
} it follows that

lim
𝑛→∞

‖∇𝑓(𝑦
𝑛,𝑁

) − ∇𝑓(𝑝)‖ = 0, and hence

lim
𝑛→∞


∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)

= 0. (73)

Moreover, from the firm nonexpansiveness of 𝑃
𝐶
we obtain

𝑦𝑛,𝑁 − 𝑝


2

=

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
)𝑦
𝑛,𝑁

− 𝑃
𝐶
(𝐼 − 𝜆∇𝑓)𝑝



2

≤ ⟨(𝐼 − 𝜆∇𝑓
𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝, 𝑦
𝑛,𝑁

− 𝑝⟩

=
1

2
{

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


2

+
𝑦𝑛,𝑁 − 𝑝



2

−

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝 − (𝑦
𝑛,𝑁

− 𝑝)


2

}

≤
1

2
{
𝑦𝑛,𝑁 − 𝑝



2
+ 2𝜆


∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


+
𝑦𝑛,𝑁 − 𝑝



2
−
𝑦𝑛,𝑁 − 𝑦

𝑛,𝑁



2

+ 2𝜆 ⟨𝑦
𝑛,𝑁

− 𝑦
𝑛,𝑁

, ∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)⟩

− 𝜆
2
∇𝑓
𝛼𝑛
(𝑦𝑛,𝑁) − ∇𝑓 (𝑝)



2

} ,

(74)

and so
𝑦𝑛,𝑁 − 𝑝



2
≤
𝑦𝑛,𝑁 − 𝑝



2
−
𝑦𝑛,𝑁 − 𝑦

𝑛,𝑁



2

+ 2𝜆

∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


+ 2𝜆 ⟨𝑦
𝑛,𝑁 − 𝑦𝑛,𝑁, ∇𝑓𝛼𝑛

(𝑦𝑛,𝑁) − ∇𝑓 (𝑝)⟩

− 𝜆
2
∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


2

.

(75)

Thus, we have
𝑦𝑛 − 𝑝



2
≤ 𝛽𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽𝑛)

𝑦𝑛,𝑁 − 𝑝


2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

− (1 − 𝛽𝑛)
𝑦𝑛,𝑁 − 𝑦𝑛,𝑁



2

+ 2𝜆

∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


+ 2 (1−𝛽
𝑛
) 𝜆 ⟨𝑦

𝑛,𝑁
−𝑦
𝑛,𝑁

, ∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

)−∇𝑓 (𝑝)⟩

− (1 − 𝛽𝑛) 𝜆
2
∇𝑓
𝛼𝑛
(𝑦𝑛,𝑁) − ∇𝑓 (𝑝)



2

,

(76)

which implies that

(1 − 𝛽
𝑛
)
𝑦𝑛,𝑁 − 𝑦

𝑛,𝑁



2

≤ 𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑝



2
+
𝑦𝑛,𝑁 − 𝑝



2

−
𝑦𝑛 − 𝑝



2
+ 2𝜆


∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦𝑛,𝑁 − (𝐼 − 𝜆∇𝑓) 𝑝



+ 2 (1 − 𝛽
𝑛
) 𝜆⟨𝑦
𝑛,𝑁

− 𝑦
𝑛,𝑁

, ∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)⟩

− (1 − 𝛽
𝑛
) 𝜆
2
∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2

−
𝑦𝑛 − 𝑝



2
+ 2𝜆


∇𝑓
𝛼𝑛
(𝑦𝑛,𝑁) − ∇𝑓 (𝑝)



×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


+ 2 (1 − 𝛽
𝑛
) 𝜆 ⟨𝑦

𝑛,𝑁
− 𝑦
𝑛,𝑁

, ∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)⟩

− (1 − 𝛽𝑛) 𝜆
2
∇𝑓
𝛼𝑛
(𝑦𝑛,𝑁) − ∇𝑓 (𝑝)



2

≤ 𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑝



2
+ (

𝑥𝑛 − 𝑝
 +

𝑦𝑛 − 𝑝
)

𝑥𝑛 − 𝑦𝑛


+ 2𝜆

∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)


×

(𝐼 − 𝜆∇𝑓

𝛼𝑛
) 𝑦
𝑛,𝑁

− (𝐼 − 𝜆∇𝑓) 𝑝


+ 2𝜆
𝑦𝑛,𝑁 − 𝑦

𝑛,𝑁




∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓 (𝑝)

.

(77)

Since 𝛽
𝑛
→ 0, ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0, and ‖∇𝑓

𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓(𝑝)‖ →

0, from the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑦
𝑛,𝑁

}, and {𝑦
𝑛,𝑁

}, it
follows that lim

𝑛→∞
‖𝑦
𝑛,𝑁

− 𝑦
𝑛,𝑁

‖ = 0. Observe that

𝑦𝑛 − 𝑦
𝑛,𝑁

 = 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑦
𝑛,𝑁

 → 0 as 𝑛 → ∞, (78)

and hence
𝑦𝑛 − 𝑦

𝑛



≤
𝑦𝑛 − 𝑦𝑛,𝑁

 +
𝑦𝑛,𝑁 − 𝑦𝑛



=

𝑃
𝐶 (𝐼 − 𝜆∇𝑓𝛼𝑛

) 𝑦𝑛−𝑃𝐶 (𝐼 − 𝜆∇𝑓𝛼𝑛
) 𝑦𝑛,𝑁


+
𝑦𝑛,𝑁 − 𝑦𝑛



≤
𝑦𝑛 − 𝑦𝑛,𝑁

 +
𝑦𝑛,𝑁 − 𝑦𝑛



≤
𝑦𝑛 − 𝑦

𝑛,𝑁

 +
𝑦𝑛,𝑁 − 𝑦

𝑛,𝑁

 +
𝑦𝑛,𝑁 − 𝑦

𝑛



= 2
𝑦𝑛 − 𝑦𝑛,𝑁

 +
𝑦𝑛,𝑁 − 𝑦𝑛,𝑁

 → 0 as 𝑛 → ∞.

(79)

Thus, lim
𝑛→∞

‖𝑦
𝑛
− 𝑦
𝑛
‖ = 0.

Lemma 21. Let one suppose that Ω ̸= 0. Let one suppose that
0 < lim inf

𝑛→∞
𝛽
𝑛,𝑖

≤ lim sup
𝑛→∞

𝛽
𝑛,𝑖

< 1 for each 𝑖 =

1, . . . , 𝑁.Moreover, suppose that (H1)–(H6) are satisfied.Then,
lim
𝑛→∞

‖𝑆
𝑖
𝑢
𝑛
− 𝑢
𝑛
‖ = 0 for each 𝑖 = 1, . . . , 𝑁.
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Proof. First of all, observe that

𝑥
𝑛+1

− 𝑦
𝑛
= 𝛾
𝑛
(𝑦
𝑛
− 𝑦
𝑛
) + 𝛿
𝑛
(𝑇𝑦
𝑛
− 𝑦
𝑛
)

= 𝛾𝑛 (𝑦𝑛 − 𝑦𝑛) + 𝛿𝑛 (𝑇𝑦𝑛 − 𝑇𝑦𝑛) + 𝛿𝑛 (𝑇𝑦𝑛 − 𝑦𝑛) .

(80)

By Lemmas 16 and 20, we know that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 and

‖𝑦
𝑛
− 𝑦
𝑛
‖ → 0 as 𝑛 → ∞. Hence, utilizing Lemma 7(i), we

have

𝛿𝑛 (𝑇𝑦𝑛 − 𝑦
𝑛
)


=
𝑥𝑛+1 − 𝑦

𝑛
− 𝛾
𝑛
(𝑦
𝑛
− 𝑦
𝑛
) − 𝛿
𝑛
(𝑇𝑦
𝑛
− 𝑇𝑦
𝑛
)


≤
𝑥𝑛+1 − 𝑦

𝑛

 + 𝛾
𝑛

𝑦𝑛 − 𝑦
𝑛

 + 𝛿
𝑛

𝑇𝑦𝑛 − 𝑇𝑦
𝑛



≤
𝑥𝑛+1 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑦

𝑛

 +
𝑇𝑦𝑛 − 𝑇𝑦

𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑦

𝑛

 +
1 + 𝜁

1 − 𝜁

𝑦𝑛 − 𝑦
𝑛



=
𝑥𝑛+1 − 𝑥𝑛

 +
𝑥𝑛 − 𝑦𝑛

 +
2

1 − 𝜁

𝑦𝑛 − 𝑦𝑛
 ,

(81)

which together with ‖𝑥
𝑛

− 𝑦
𝑛
‖ → 0 implies that

lim
𝑛→∞

‖𝛿
𝑛
(𝑇𝑦
𝑛

− 𝑦
𝑛
)‖ = 0. Taking into account

lim inf
𝑛→∞

𝛿
𝑛
> 0, we have

lim
𝑛→∞

𝑇𝑦𝑛 − 𝑦
𝑛

 = 0. (82)

Let us show that for each 𝑖 ∈ {1, . . . , 𝑁}, one has ‖𝑆
𝑖
𝑢
𝑛
−

𝑦
𝑛,𝑖−1

‖ → 0 as 𝑛 → ∞. Let 𝑝 ∈ Ω. When 𝑖 = 𝑁, by
Lemma 11, we have from (33)-(34) the following:

𝑦𝑛 − 𝑝


2
≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑦𝑛,𝑁 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)
2

= 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

+ 𝜆𝛼𝑛
𝑝

 (2
𝑦𝑛,𝑁 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

= 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝛽
𝑛,𝑁

𝑆𝑁𝑢𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛,𝑁

)
𝑦𝑛,𝑁−1 − 𝑝



2

− 𝛽
𝑛,𝑁

(1 − 𝛽
𝑛,𝑁

)
𝑆𝑁𝑢𝑛 − 𝑦

𝑛,𝑁−1



2

+ 𝜆𝛼𝑛
𝑝

 (2
𝑦𝑛,𝑁 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑢𝑛 − 𝑝



2

− 𝛽
𝑛,𝑁

(1 − 𝛽
𝑛,𝑁

)
𝑆𝑁𝑢𝑛 − 𝑦

𝑛,𝑁−1



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛,𝑁

(1 − 𝛽
𝑛,𝑁

)
𝑆𝑁𝑢𝑛 − 𝑦

𝑛,𝑁−1



2

+ 𝜆𝛼𝑛
𝑝

 (2
𝑦𝑛,𝑁 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
) .

(83)

So, we have

𝛽
𝑛,𝑁 (1 − 𝛽𝑛,𝑁)

𝑆𝑁𝑢𝑛 − 𝑦𝑛,𝑁−1


2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑥𝑛 − 𝑝



2
−
𝑦𝑛 − 𝑝



2

+ 𝜆𝛼𝑛
𝑝

 (2
𝑦𝑛,𝑁 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ (

𝑥𝑛 − 𝑝
 +

𝑦𝑛 − 𝑝
)

𝑥𝑛 − 𝑦
𝑛



+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
) .

(84)

Since 𝛼
𝑛 → 0, 𝛽𝑛 → 0, 0 < lim inf𝑛→∞𝛽𝑛,𝑁 ≤

lim sup
𝑛→∞

𝛽𝑛,𝑁 < 1, and lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ = 0, it is known
that {‖𝑆𝑁𝑢𝑛 − 𝑦𝑛,𝑁−1‖} is a null sequence.

Let 𝑖 ∈ {1, . . . , 𝑁 − 1}. Then, one has

𝑦𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

≤ 𝛽𝑛
𝑄𝑦𝑛,𝑁 − 𝑝



2
+ (

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)
2

= 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+
𝑦𝑛,𝑁 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝛽
𝑛,𝑁

𝑆𝑁𝑢𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛,𝑁

)
𝑦𝑛,𝑁−1 − 𝑝



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝛽𝑛,𝑁

𝑥𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛,𝑁

)
𝑦𝑛,𝑁−1 − 𝑝



2

+ 𝜆𝛼𝑛
𝑝

 (2
𝑦𝑛,𝑁 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+ 𝛽
𝑛,𝑁

𝑥𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛,𝑁

) [𝛽
𝑛,𝑁−1

𝑆𝑁−1𝑢𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛,𝑁−1

)
𝑦𝑛,𝑁−2 − 𝑝



2
]

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)
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+ (𝛽
𝑛,𝑁

+ (1 − 𝛽
𝑛,𝑁) 𝛽𝑛,𝑁−1)

𝑥𝑛 − 𝑝


2

+

𝑁

∏

𝑘=𝑁−1

(1 − 𝛽𝑛,𝑘)
𝑦𝑛,𝑁−2 − 𝑝



2
,

(85)

and so, after (𝑁 − 𝑖 + 1) iterations,
𝑦𝑛 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+ (𝛽
𝑛,𝑁

+

𝑁

∑

𝑗=𝑖+2

(

𝑁

∏

𝑙=𝑗

(1 − 𝛽
𝑛,𝑙
))𝛽
𝑛,𝑗−1

)

×
𝑥𝑛 − 𝑝



2
+

𝑁

∏

𝑘=𝑖+1

(1 − 𝛽
𝑛,𝑘
)
𝑦𝑛,𝑖 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+ (𝛽
𝑛,𝑁

+

𝑁

∑

𝑗=𝑖+2

(

𝑁

∏

𝑙=𝑗

(1 − 𝛽
𝑛,𝑙
))𝛽
𝑛,𝑗−1

)

×
𝑥𝑛 − 𝑝



2
+

𝑁

∏

𝑘=𝑖+1

(1 − 𝛽
𝑛,𝑘
)

× [𝛽
𝑛,𝑖

𝑆𝑖𝑢𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛,𝑖
)
𝑦𝑛,𝑖−1 − 𝑝



2

−𝛽
𝑛,𝑖
(1 − 𝛽

𝑛,𝑖
)
𝑆𝑖𝑢𝑛 − 𝑦

𝑛,𝑖−1



2
]

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛,𝑖

𝑁

∏

𝑘=𝑖

(1 − 𝛽
𝑛,𝑘
)
𝑆𝑖𝑢𝑛 − 𝑦

𝑛,𝑖−1



2
.

(86)

Again, we obtain that

𝛽
𝑛,𝑖

𝑁

∏

𝑘=𝑖

(1 − 𝛽𝑛,𝑘)
𝑆𝑖𝑢𝑛 − 𝑦𝑛,𝑖−1



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+
𝑥𝑛 − 𝑝



2
−
𝑦𝑛 − 𝑝



2

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)
𝑥𝑛 − 𝑦𝑛

 .

(87)

Since 𝛼
𝑛

→ 0, 𝛽
𝑛

→ 0, 0 < lim inf
𝑛→∞

𝛽
𝑛,𝑖

≤

lim sup
𝑛→∞

𝛽
𝑛,𝑖

< 1 for each 𝑖 = 1, . . . , 𝑁 − 1, and
lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0, it is known that

lim
𝑛→∞

𝑆𝑖𝑢𝑛 − 𝑦
𝑛,𝑖−1

 = 0. (88)

Obviously, for 𝑖 = 1, we have ‖𝑆
1
𝑢
𝑛
− 𝑢
𝑛
‖ → 0.

To conclude, we have that

𝑆2𝑢𝑛 − 𝑢
𝑛

 ≤
𝑆2𝑢𝑛 − 𝑦

𝑛,1

 +
𝑦𝑛,1 − 𝑢

𝑛



=
𝑆2𝑢𝑛 − 𝑦

𝑛,1

 + 𝛽
𝑛,1

𝑆1𝑢𝑛 − 𝑢
𝑛

 ,

(89)

from which ‖𝑆
2
𝑢
𝑛
− 𝑢
𝑛
‖ → 0. Thus, by induction ‖𝑆

𝑖
𝑢
𝑛
−

𝑢
𝑛
‖ → 0 for all 𝑖 = 2, . . . , 𝑁 since it is enough to observe that

𝑆𝑖𝑢𝑛 − 𝑢
𝑛



≤
𝑆𝑖𝑢𝑛 − 𝑦𝑛,𝑖−1

 +
𝑦𝑛,𝑖−1 − 𝑆𝑖−1𝑢𝑛

 +
𝑆𝑖−1𝑢𝑛 − 𝑢𝑛



≤
𝑆𝑖𝑢𝑛 − 𝑦

𝑛,𝑖−1

 + (1 − 𝛽
𝑛,𝑖−1

)
𝑆𝑖−1𝑢𝑛 − 𝑦

𝑛,𝑖−2



+
𝑆𝑖−1𝑢𝑛 − 𝑢

𝑛

 .

(90)

Remark 22. As an example, we consider 𝑁 = 2 and the fol-
lowing sequences:

(a) 𝜎𝑛 = 1/2 + 2/𝑛, 𝛾𝑛 = 𝛿𝑛 = 1/4 − 1/𝑛 for all 𝑛 > 4;

(b) 𝛽
𝑛
= 1/√𝑛, 𝑟

𝑛
= 2 − 1/𝑛, for all 𝑛 > 1;

(c) 𝛽
𝑛,1

= 1/2 − 1/𝑛, 𝛽
𝑛,2

= 1/2 − 1/𝑛
2, for all 𝑛 > 2.

Then, they satisfy the hypotheses on the parameter sequences
in Lemma 21.

Lemma 23. Let one suppose that Ω ̸= 0 and 𝛽
𝑛,𝑖

→ 𝛽
𝑖
for all

𝑖 as 𝑛 → ∞. Suppose there exists 𝑘 ∈ {1, . . . , 𝑁} such that
𝛽𝑛,𝑘 → 0 as 𝑛 → ∞. Let 𝑘0 ∈ {1, . . . , 𝑁} be the largest index
such that 𝛽𝑛,𝑘0 → 0 as 𝑛 → ∞. Suppose that

(i) (𝛼
𝑛
+ 𝛽
𝑛
)/𝛽
𝑛,𝑘0

→ 0 as 𝑛 → ∞;

(ii) if 𝑖 ≤ 𝑘
0
and 𝛽

𝑛,𝑖
→ 0, then 𝛽

𝑛,𝑘0
/𝛽
𝑛,𝑖

→ 0 as 𝑛 →

∞;

(iii) if 𝛽
𝑛,𝑖

→ 𝛽
𝑖

̸= 0, then 𝛽
𝑖
lies in (0, 1).

Moreover, suppose that (H1), (H7), and (H8) hold. Then,
lim
𝑛→∞

‖𝑆
𝑖
𝑢
𝑛
− 𝑢
𝑛
‖ = 0 for each 𝑖 = 1, . . . , 𝑁.

Proof. First of all, we note that if (H7) holds, then also (H2)–
(H6) are satisfied. So {𝑥

𝑛
} is asymptotically regular. Let 𝑘

0

be as in the hypotheses. As in Lemma 21, for every index
𝑖 ∈ {1, . . . , 𝑁} such that 𝛽

𝑛,𝑖
→ 𝛽

𝑖
̸= 0 (which leads to

0 < lim inf
𝑛→∞

𝛽
𝑛,𝑖

≤ lim sup
𝑛→∞

𝛽
𝑛,𝑖

< 1), one has ‖𝑆
𝑖
𝑢
𝑛
−

𝑦𝑛,𝑖−1‖ → 0 as 𝑛 → ∞.
For all the other indexes 𝑖 ≤ 𝑘0, we can prove that ‖𝑆𝑖𝑢𝑛 −

𝑦𝑛,𝑖−1‖ → 0 as 𝑛 → ∞ in a similar manner. By the following
relation (due to (86)):

𝑥𝑛+1 − 𝑝


2

≤ 𝜎𝑛
𝑦𝑛 − 𝑝



2
+ (𝛾𝑛 + 𝛿𝑛)

𝑦𝑛 − 𝑝


2

= 𝜎
𝑛

𝑦𝑛 − 𝑝


2
+ (1 − 𝜎

𝑛
)
𝑦𝑛 − 𝑝



2
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≤ 𝜎
𝑛

𝑦𝑛 − 𝑝


2
+ (1 − 𝜎

𝑛) (
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)
2

≤ (
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)
2

=
𝑦𝑛 − 𝑝



2
+ 𝜆𝛼𝑛

𝑝
 (2

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛,𝑁 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

+
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛,𝑖

𝑁

∏

𝑘=𝑖

(1 − 𝛽
𝑛,𝑘
)
𝑆𝑖𝑢𝑛 − 𝑦

𝑛,𝑖−1



2

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑝
 + 𝜆𝛼

𝑛

𝑝
)

≤ 𝛽
𝑛

𝑄𝑦𝑛,𝑁 − 𝑝


2
+ 2𝜆𝛼

𝑛

𝑝


× (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

+
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛,𝑖

𝑁

∏

𝑘=𝑖

(1 − 𝛽
𝑛,𝑘
)
𝑆𝑖𝑢𝑛 − 𝑦

𝑛,𝑖−1



2
,

(91)

we immediately obtain that
𝑁

∏

𝑘=𝑖

(1 − 𝛽
𝑛,𝑘
)
𝑆𝑖𝑢𝑛 − 𝑦

𝑛,𝑖−1



2

≤
𝛽
𝑛

𝛽
𝑛,𝑖

𝑄𝑦𝑛,𝑁 − 𝑝


2
+

𝛼
𝑛

𝛽
𝑛,𝑖

2𝜆
𝑝



× (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

 + 𝜆𝛼
𝑛

𝑝
)

+ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

𝑥𝑛 − 𝑥
𝑛+1



𝛽𝑛,𝑖

.

(92)

By Lemma 19 or by hypothesis (ii) of the sequences, we have
𝑥𝑛 − 𝑥

𝑛+1



𝛽
𝑛,𝑖

=

𝑥𝑛 − 𝑥
𝑛+1



𝛽
𝑛,𝑘0

⋅

𝛽
𝑛,𝑘0

𝛽
𝑛,𝑖

→ 0. (93)

So, the thesis follows.

Remark 24. Let us consider 𝑁 = 3 and the following
sequences:

(a) 𝛼𝑛 = 1/𝑛
5/4, 𝛽𝑛 = 1/𝑛

1/2, 𝑟𝑛 = 2 − 1/𝑛
2, for all 𝑛 > 1;

(b) 𝜎
𝑛
= 1/2 + 2/𝑛

2, 𝛾
𝑛
= 𝛿
𝑛
= 1/4 − 1/𝑛

2, for all 𝑛 > 2;
(c) 𝛽
𝑛,1 = 1/𝑛

1/4, 𝛽𝑛,2 = 1/2 − 1/𝑛
2, 𝛽𝑛,3 = 1/𝑛

1/3, for all
𝑛 > 1.

It is easy to see that all hypotheses (i)–(iii), (H1), (H7), and
(H8) of Lemma 23 are satisfied.

Remark 25. Under the hypotheses of Lemma 23, analogously
to Lemma 21, one can see that

lim
𝑛→∞

𝑆𝑖𝑢𝑛 − 𝑦
𝑛,𝑖−1

 = 0, ∀𝑖 ∈ {2, . . . , 𝑁} . (94)

Corollary 26. Let one suppose that the hypotheses of either
Lemma 21 or Lemma 23 are satisfied. Then, 𝜔

𝑤
(𝑥
𝑛
) =

𝜔
𝑤
(𝑢
𝑛
) = 𝜔

𝑤
(𝑦
𝑛,1
), 𝜔
𝑠
(𝑥
𝑛
) = 𝜔

𝑠
(𝑢
𝑛
) = 𝜔

𝑠
(𝑦
𝑛,1
), and

𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω.

Proof. By Remark 18, we have 𝜔
𝑤
(𝑥
𝑛
) = 𝜔
𝑤
(𝑢
𝑛
) and 𝜔

𝑠
(𝑥
𝑛
) =

𝜔
𝑠
(𝑢
𝑛
). Observe that

𝑥𝑛 − 𝑦
𝑛,1

 ≤
𝑥𝑛 − 𝑢

𝑛

 +
𝑦𝑛,1 − 𝑢

𝑛



=
𝑥𝑛 − 𝑢

𝑛

 + 𝛽
𝑛,1

𝑆1𝑢𝑛 − 𝑢
𝑛

 .

(95)

By Lemmas 17 and 21, ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0 and ‖𝑆

1
𝑢
𝑛
− 𝑢
𝑛
‖ → 0

as 𝑛 → ∞, and hence

lim
𝑛→∞

𝑥𝑛 − 𝑦𝑛,1
 = 0. (96)

So, we get 𝜔
𝑤
(𝑥
𝑛
) = 𝜔
𝑤
(𝑦
𝑛,1
) and 𝜔

𝑠
(𝑥
𝑛
) = 𝜔
𝑠
(𝑦
𝑛,1
).

Let 𝑝 ∈ 𝜔𝑤(𝑥𝑛). Since 𝑝 ∈ 𝜔𝑤(𝑢𝑛), by Lemma 21
and Lemma 7(ii) (demiclosedness principle), we have 𝑝 ∈

Fix(𝑆𝑖) for all index 𝑖, that is, 𝑝 ∈ ⋂
𝑖
Fix(𝑆𝑖). Taking

into consideration that 𝑇 is 𝜁-strictly pseudocontractive, by
Lemma 7(i), we get

𝑇𝑥𝑛 − 𝑥𝑛


≤
𝑇𝑥𝑛 − 𝑇𝑦

𝑛

 +
𝑇𝑦𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑥

𝑛



≤
1 + 𝜁

1 − 𝜁

𝑥𝑛 − 𝑦𝑛
 +

𝑦𝑛 − 𝑇𝑦𝑛
 +

𝑥𝑛 − 𝑦𝑛


=
2

1 − 𝜁

𝑥𝑛 − 𝑦
𝑛

 +
𝑦𝑛 − 𝑇𝑦

𝑛

 ,

(97)

which together with ‖𝑥
𝑛 −𝑦𝑛‖ → 0 (by Lemma 17) and ‖𝑦𝑛 −

𝑇𝑦
𝑛
‖ → 0 (by (82)) implies that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑥
𝑛

 = 0. (98)

Utilizing Lemma 7(ii) (demiclosedness principle), we
have 𝑝 ∈ Fix(𝑇). Furthermore, by Lemmas 14 and 17, we
know that 𝑝 ∈ EP(𝐹, ℎ). Finally, by similar argument as in
[18], we can show that 𝑝 ∈ Γ, and as a result 𝑝 ∈ Ω.

Theorem 27. Let one suppose that Ω ̸= 0. Let {𝛽
𝑛
}, {𝛽
𝑛,𝑖
}, 𝑖 =

1, . . . , 𝑁, be sequences in (0, 1) such that 0 < lim inf
𝑛→∞

𝛽
𝑛,𝑖

≤

lim sup
𝑛→∞

𝛽
𝑛,𝑖

< 1 for all index 𝑖. Moreover, Let one suppose
that (H1)–(H6) hold. Then, the sequences {𝑥𝑛}, {𝑦𝑛}, and {𝑢𝑛},
explicitly defined by scheme (30), all converge strongly to the
unique solution 𝑥

∗
∈ Ω of the following variational inequality:

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0, ∀𝑧 ∈ Ω. (99)

Proof. Since the mapping 𝑃
Ω
𝑄 is a 𝜌-contraction, it has a

unique fixed point 𝑥∗; it is the unique solution of (99). Since
(H1)–(H6) hold, the sequence {𝑥

𝑛
} is asymptotically regular

(by Lemma 16). In terms of Lemma 17, ‖𝑥
𝑛
− 𝑦
𝑛
‖ → 0 and
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‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0 as 𝑛 → ∞. Moreover, utilizing Lemmas 8

and 10, we have from (33)-(34) the following:

𝑥𝑛+1 − 𝑥
∗

2

≤ 𝜎
𝑛

𝑦𝑛 − 𝑥
∗

2
+ (1 − 𝜎

𝑛
)
𝑦𝑛 − 𝑥

∗

2

≤ 𝜎
𝑛

𝑦𝑛 − 𝑥
∗

2
+ (1 − 𝜎

𝑛
) (
𝑦𝑛 − 𝑥

∗ + 𝜆𝛼
𝑛

𝑝
)
2

≤ (
𝑦𝑛 − 𝑥

∗ + 𝜆𝛼
𝑛

𝑝
)
2

=
𝑦𝑛 − 𝑥

∗

2
+ 𝜆𝛼𝑛

𝑝
 (2

𝑦𝑛 − 𝑥
∗ + 𝜆𝛼

𝑛

𝑝
)

≤
𝛽𝑛 (𝑄𝑦𝑛,𝑁 − 𝑄𝑥

∗
) + (1 − 𝛽

𝑛
) (𝑦
𝑛,𝑁

− 𝑥
∗
)


2

+ 2𝛽
𝑛
⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑥
∗ + 𝜆𝛼

𝑛

𝑝
)

≤ (𝛽
𝑛𝜌

𝑦𝑛,𝑁 − 𝑥
∗ + (1 − 𝛽

𝑛)
𝑦𝑛,𝑁 − 𝑥

∗)
2

+ 2𝛽
𝑛
⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑥
∗ + 𝜆𝛼

𝑛

𝑝
)

= (1 − (1 − 𝜌) 𝛽
𝑛
)
2𝑦𝑛,𝑁 − 𝑥

∗

2

+ 2𝛽𝑛 ⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦𝑛 − 𝑥

∗
⟩

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑥
∗ + 𝜆𝛼

𝑛

𝑝
)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑢𝑛 − 𝑥

∗

2

+ 2𝛽
𝑛
⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

+ 𝜆𝛼𝑛
𝑝

 (2
𝑦𝑛 − 𝑥

∗ + 𝜆𝛼
𝑛

𝑝
)

≤ (1 − (1 − 𝜌) 𝛽
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+ 2𝛽
𝑛
⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑥
∗ + 𝜆𝛼

𝑛

𝑝
)

= (1 − (1 − 𝜌) 𝛽
𝑛)

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝜌) 𝛽𝑛 ⋅
2

1 − 𝜌
⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦𝑛 − 𝑥

∗
⟩

+ 𝜆𝛼
𝑛

𝑝
 (2

𝑦𝑛 − 𝑥
∗ + 𝜆𝛼

𝑛

𝑝
) .

(100)

Now, let {𝑥
𝑛𝑘
} be a subsequence of {𝑥

𝑛
} such that

lim sup
𝑛→∞

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ = lim
𝑘→∞

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑥
𝑛𝑘
− 𝑥
∗
⟩ .

(101)

By the boundedness of {𝑥
𝑛
}, we may assume, without loss of

generality, that𝑥
𝑛𝑘

⇀ 𝑧 ∈ 𝜔
𝑤
(𝑥
𝑛
). According toCorollary 26,

we know that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω, and hence 𝑧 ∈ Ω. Taking into

consideration that 𝑥∗ = 𝑃
Ω
𝑄𝑥
∗ we obtain from (101) that

lim sup
𝑛→∞

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

= lim sup
𝑛→∞

[⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ + ⟨𝑄𝑥

∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
𝑛
⟩]

= lim sup
𝑛→∞

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑘→∞

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑥
𝑛𝑘
− 𝑥
∗
⟩

= ⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0.

(102)

Since ∑
∞

𝑛=0
𝛼𝑛 < ∞ and ∑

∞

𝑛=0
𝛽𝑛 = ∞, we deduce that

∑
∞

𝑛=0
𝜆𝛼𝑛‖𝑝‖(2‖𝑦𝑛 −𝑥

∗
‖ +𝜆𝛼𝑛‖𝑝‖) < ∞ and∑

∞

𝑛=0
(1−𝜌)𝛽𝑛 =

∞. In terms of Lemma 9we derive 𝑥𝑛 → 𝑥
∗ as 𝑛 → ∞.

In a similar way, we can derive the following result.

Theorem 28. Let one suppose that Ω ̸= 0. Let {𝛽
𝑛}, {𝛽𝑛,𝑖}, 𝑖 =

1, . . . , 𝑁, be sequences in (0, 1) such that 𝛽𝑛,𝑖 → 𝛽𝑖 for all 𝑖 as
𝑛 → ∞. Suppose that there exists 𝑘 ∈ {1, . . . , 𝑁} for which
𝛽
𝑛,𝑘

→ 0 as 𝑛 → ∞. Let 𝑘
0
∈ {1, . . . , 𝑁} the largest index for

which 𝛽
𝑛,𝑘0

→ 0. Moreover, let one suppose that (H1), (H7),
and (H8) hold, and

(i) (𝛼𝑛 + 𝛽
𝑛
)/𝛽
𝑛,𝑘0

→ 0 as 𝑛 → ∞;
(ii) if 𝑖 ≤ 𝑘

0
and 𝛽

𝑛,𝑖
→ 0, then 𝛽

𝑛,𝑘0
/𝛽
𝑛,𝑖

→ 0 as 𝑛 →

∞;
(iii) if 𝛽

𝑛,𝑖
→ 𝛽
𝑖

̸= 0, then 𝛽
𝑖
lies in (0, 1).

Then, the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑢

𝑛
} explicitly defined by

scheme (30) all converge strongly to the unique solution 𝑥∗ ∈ Ω

of the following variational inequality:

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0, ∀𝑧 ∈ Ω. (103)

Remark 29. According to the above argument processes for
Theorems 27 and 28, we can readily see that if in scheme (30),
the iterative step𝑦

𝑛
= 𝛽
𝑛
𝑄𝑦
𝑛,𝑁

+(1−𝛽
𝑛
)𝑃
𝐶
(𝑦
𝑛,𝑁

−𝜆∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

))

is replaced by the iterative one 𝑦
𝑛
= 𝛽
𝑛
𝑄𝑥
𝑛
+(1−𝛽

𝑛
)𝑃
𝐶
(𝑦
𝑛,𝑁

−

𝜆∇𝑓𝛼𝑛
(𝑦𝑛,𝑁)), thenTheorems 27 and 28 remain valid.

Remark 30. Theorems 27 and 28 improve, extend, supple-
ment, and develop [17, Theorems 3.12 and 3.13] and [1,
Theorems 5.2 and 6.1] in the following aspects:

(a) the multistep iterative scheme (30) of [17] is extended
to develop our relaxed viscosity iterative scheme (30)
with regularization for MP (3), EP (10), and strict
pseudocontraction𝑇 by virtue of Xu iterative schemes
in [1];

(b) the argument techniques in Theorems 27 and 28 are
very different from the ones in [17,Theorems 3.12 and
3.13] and the ones in [1,Theorems 5.2 and 6.1] because
we use the properties of strict pseudocontractive
mappings and maximal monotone mappings (see,
e.g., Lemmas 7 and 10);
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(c) compared with the proof of Theorems 5.2 and 6.1
in [1], the proof of Theorems 27 and 28 shows that
lim
𝑛→∞

‖𝑦
𝑛,𝑁

− 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
)𝑦
𝑛,𝑁

‖ = lim
𝑛→∞

‖𝑦
𝑛
−

𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼𝑛
)𝑦
𝑛
‖ = 0 via the argument of

lim
𝑛→∞

‖∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

) − ∇𝑓(𝑝)‖ = 0, for all 𝑝 ∈ Ω (see
Lemma 20 and its proof);

(d) the problem of finding an element of Fix(𝑇) ∩

(⋂
𝑖
Fix(𝑆𝑖)) ∩ EP(𝐹, ℎ) ∩ Γ in Theorems 27 and 28 is

more general than the one of finding an element of
Fix(𝑇) ∩ (⋂

𝑖
Fix(𝑆
𝑖
)) ∩ EP(𝐹, ℎ) in [17, Theorems 3.12

and 3.13] and the one of finding an element of Γ in [1,
Theorems 5.2 and 6.1].

4. Applications

For a given nonlinear mapping 𝐴 : 𝐶 → 𝐻, we consider
again the variational inequality problem (VIP) of finding 𝑥 ∈

𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (104)

Recall that if 𝑢 is a point in 𝐶, then the following relation
holds:

𝑢 ∈ VI (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝐼 − 𝜆𝐴) 𝑢, for some 𝜆 > 0,

(105)

from which we have the following relation:

𝑢 ∈ Γ ⇐⇒ 𝑢 ∈ VI (𝐶, ∇𝑓) ⇐⇒ 𝑢 = 𝑃
𝐶
(𝐼 − 𝜆∇𝑓) 𝑢,

for some 𝜆 > 0.

(106)

An operator 𝐴 : 𝐶 → 𝐻 is said to be an 𝛼-inverse
strongly monotone operator if there exists a constant 𝛼 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
𝐴𝑥 − 𝐴𝑦
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, ∀𝑥, 𝑦 ∈ 𝐶. (107)

As an example, we recall that the 𝛼-inverse strongly
monotone operators are firmly nonexpansivemappings if𝛼 ≥

1 and that every 𝛼-inverse stronglymonotone operator is also
a (1/𝛼) Lipschitz continuous (see [19]). We observe that, if 𝐴
is 𝛼-inverse strongly monotone, the mapping 𝑃

𝐶
(𝐼 − 𝜇𝐴) is

nonexpansive for all 𝜇 ∈ (0, 2𝛼] since they are compositions
of nonexpansive mappings (see [19, page 419]).

Let us consider 𝑆
1
, . . . , 𝑆

𝑀
a finite number of nonexpan-

sive self-mappings on 𝐶 and 𝐴
1
, . . . , 𝐴

𝑁
be a finite number

of 𝛼-inverse strongly monotone operators. Let 𝑇 : 𝐶 → 𝐶

be a 𝜁-strict pseudocontraction on 𝐶 with fixed points. Let

us consider the following mixed problem of finding 𝑥
∗

∈

Fix(𝑇) ∩ EP(𝐹, ℎ) ∩ Γ such that

⟨(𝐼 − 𝑆1) 𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇) ∩ EP (𝐹, ℎ) ∩ Γ,

⟨(𝐼 − 𝑆
2
) 𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇) ∩ EP (𝐹, ℎ) ∩ Γ,

...

⟨(𝐼 − 𝑆
𝑀
) 𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇) ∩ EP (𝐹, ℎ) ∩ Γ,

⟨𝐴
1𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

⟨𝐴
2
𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

...

⟨𝐴
𝑁
𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(108)

We denote by (SVI) the set of solutions of the above (𝑁 +

𝑀) system. This problem is equivalent to finding a common
fixed point of 𝑇, {𝑃Fix(𝑇)∩EP(𝐹,ℎ)∩Γ𝑆𝑖}

𝑁

𝑖=1
, {𝑃
𝐶
(𝐼 − 𝜇𝐴

𝑖
)}
𝑀

𝑖=1
. The

following results are then consequences of Theorems 27 and
28.

Theorem 31. Let one suppose that Ω = Fix(𝑇) ∩ (SVI) ∩

EP(F, h) ∩ Γ ̸= 0. Fix 𝜇 ∈ (0, 2𝛼], and 𝜆 ∈ (0, 2/𝐿). Let {𝛼
𝑛
},

{𝛽
𝑛,𝑖
}, 𝑖 = 1, . . . , (𝑀 + 𝑁), be sequences in (0, 1) such that

0 < lim inf
𝑛→∞

𝛽
𝑛,𝑖

≤ lim sup
𝑛→∞

𝛽
𝑛,𝑖

< 1 for all index
𝑖. Moreover, Let one suppose that (H1)–(H6) hold. Then the
sequences {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑢

𝑛
} explicitly defined by the following

scheme:

𝐹 (𝑢
𝑛
, 𝑦) + ℎ (𝑢

𝑛
, 𝑦) +

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑦
𝑛,1

= 𝛽
𝑛,1
𝑃Fix(𝑇)∩EP(𝐹,ℎ)∩Γ𝑆1𝑢𝑛 + (1 − 𝛽

𝑛,1
) 𝑢
𝑛
,

𝑦𝑛,𝑖 = 𝛽𝑛,𝑖𝑃Fix(𝑇)∩EP(𝐹,ℎ)∩Γ𝑆𝑖𝑢𝑛

+ (1 − 𝛽
𝑛,𝑖
) 𝑦
𝑛,𝑖−1

, 𝑖 = 2, . . . ,𝑀,

𝑦
𝑛,𝑀+𝑗

= 𝛽
𝑛,𝑀+𝑗

𝑃
𝐶
(𝐼 − 𝜇𝐴

𝑗
) 𝑢
𝑛

+ (1 − 𝛽𝑛,𝑀+𝑗) 𝑦𝑛,𝑀+𝑗−1, 𝑗 = 1, . . . , 𝑁,

𝑦
𝑛 = 𝛽𝑛𝑄𝑦𝑛,𝑀+𝑁 + (1 − 𝛽𝑛)

× 𝑃
𝐶
(𝑦
𝑛,𝑀+𝑁

− 𝜆∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑀+𝑁

)) ,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
))

+ 𝛿
𝑛
𝑇𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
)) , ∀𝑛 ≥ 0,

(109)

all converge strongly to the unique solution 𝑥
∗

∈ Ω of the
following variational inequality:

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0, ∀𝑧 ∈ Ω. (110)
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Theorem 32. Let one suppose that Ω ̸= 0. Fix 𝜇 ∈ (0, 2𝛼] and
𝜆 ∈ (0, 2/𝐿). Let {𝛽

𝑛
}, {𝛽
𝑛,𝑖
}, 𝑖 = 1, . . . , (𝑀 + 𝑁), be sequences

in (0, 1) and 𝛽
𝑛,𝑖

→ 𝛽
𝑖
for all 𝑖 as 𝑛 → ∞. Suppose that there

exists 𝑘 ∈ {1, . . . ,𝑀 + 𝑁} such that 𝛽
𝑛,𝑘

→ 0 as 𝑛 → ∞. Let
𝑘
0
∈ {1, . . . ,𝑀 + 𝑁} be the largest index for which 𝛽

𝑛,𝑘0
→ 0.

Moreover, let one suppose that (H1), (H7), and (H8) hold, and

(i) (𝛼
𝑛
+ 𝛽
𝑛
)/𝛽
𝑛,𝑘0

→ 0 as 𝑛 → ∞;

(ii) if 𝑖 ≤ 𝑘
0 and 𝛽𝑛,𝑖 → 0, then 𝛽𝑛,𝑘0

/𝛽𝑛,𝑖 → 0 as 𝑛 →

∞;

(iii) if 𝛽
𝑛,𝑖 → 𝛽𝑖 ̸= 0, then 𝛽𝑖 lies in (0, 1).

Then, the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑢

𝑛
} explicitly defined by

scheme (109) all converge strongly to the unique solution 𝑥
∗
∈

Ω of the following variational inequality:

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0, ∀𝑧 ∈ Ω. (111)

Remark 33. If we choose ∇𝑓 = 𝐴
1
= ⋅ ⋅ ⋅ = 𝐴

𝑁
= 0 in system

(108), we obtain a system of hierarchical fixed point problems
introduced by Moudafi and Maingé [20, 21].

Further, utilizing Theorems 27 and 28, we again give
the following strong convergence theorems for finding a
common element of the solution set Γ of MP (3), the solution
set EP(𝐹, ℎ) of EP (10), and the common fixed point set
(⋂
𝑖
Fix(𝑆
𝑖
)) of a finite family of nonexpansive mappings 𝑆

𝑖
:

𝐶 → 𝐶, 𝑖 = 1, . . . , 𝑁.

Theorem 34. Let one suppose that Ω = (⋂
𝑖
Fix(𝑆
𝑖
)) ∩

EP(𝐹, ℎ) ∩ Γ ̸= 0. Let {𝛽
𝑛
}, {𝛽
𝑛,𝑖
}, 𝑖 = 1, . . . , 𝑁, be sequences

in (0, 1) such that 0 < lim inf
𝑛→∞

𝛽
𝑛,𝑖

≤ lim sup
𝑛→∞

𝛽
𝑛,𝑖

< 1

for all index 𝑖. Moreover, Let one suppose that there hold (H1)–
(H6) with 𝛾𝑛 = 0, for all 𝑛 ≥ 0. Then, the sequences {𝑥𝑛}, {𝑦𝑛},
and {𝑢𝑛} generated explicitly by

𝐹 (𝑢
𝑛
, 𝑦) + ℎ (𝑢

𝑛
, 𝑦) +

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑦
𝑛,1

= 𝛽
𝑛,1
𝑆
1
𝑢
𝑛
+ (1 − 𝛽

𝑛,1
) 𝑢
𝑛
,

𝑦𝑛,𝑖 = 𝛽𝑛,𝑖𝑆𝑖𝑢𝑛 + (1 − 𝛽𝑛,𝑖) 𝑦𝑛,𝑖−1, 𝑖 = 2, . . . , 𝑁,

𝑦
𝑛
= 𝛽
𝑛
𝑄𝑦
𝑛,𝑁

+ (1 − 𝛽
𝑛
) 𝑃
𝐶
(𝑦
𝑛,𝑁

− 𝜆∇𝑓
𝛼𝑛
(𝑦
𝑛,𝑁

)) ,

𝑥𝑛+1 = 𝜎𝑛𝑦𝑛 + (1 − 𝜎𝑛) 𝑃𝐶 (𝑦𝑛 − 𝜆∇𝑓𝛼𝑛
(𝑦𝑛)) , ∀𝑛 ≥ 0,

(112)

all converge strongly to the unique solution 𝑥
∗

∈ Ω of the
following variational inequality:

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0, ∀𝑧 ∈ Ω. (113)

Proof. In Theorems 27, put 𝑇 = 𝐼 the identity mapping and
𝛾
𝑛
= 0, for all 𝑛 ≥ 0. Then, 𝑇 is a 𝜁-strictly pseudocontractive

mapping with 𝜁 = 0. Hence, we deduce that Ω = Fix(𝑇) ∩

(⋂
𝑖
Fix(𝑆
𝑖
)) ∩ EP(𝐹, ℎ) ∩ Γ = (⋂

𝑖
Fix(𝑆
𝑖
)) ∩ EP(𝐹, ℎ) ∩ Γ ̸= 0,

(𝛾
𝑛
+ 𝛿
𝑛
)𝜁 ≤ 𝛾

𝑛
, for all 𝑛 ≥ 0, and

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
))

+ 𝛿𝑛𝑇𝑃𝐶 (𝑦𝑛 − 𝜆∇𝑓𝛼𝑛
(𝑦𝑛))

= 𝜎
𝑛
𝑦
𝑛
+ 𝛿
𝑛
𝑃
𝐶
(𝑦
𝑛
− 𝜆∇𝑓

𝛼𝑛
(𝑦
𝑛
))

= 𝜎𝑛𝑦𝑛 + (1 − 𝜎𝑛) 𝑃𝐶 (𝑦𝑛 − 𝜆∇𝑓𝛼𝑛
(𝑦𝑛)) .

(114)

Thus, the conditions inTheorem 27 are all satisfied. and from
which we obtain the desired result.

Theorem 35. Let one suppose that Ω = (⋂
𝑖
Fix(𝑆𝑖)) ∩

EP(𝐹, ℎ) ∩ Γ ̸= 0. Let {𝛽𝑛}, {𝛽𝑛,𝑖}, 𝑖 = 1, . . . , 𝑁, be sequences
in (0, 1) such that 𝛽𝑛,𝑖 → 𝛽

𝑖
for all 𝑖 as 𝑛 → ∞. Suppose that

there exists 𝑘 ∈ {1, . . . , 𝑁} for which 𝛽𝑛,𝑘 → 0 as 𝑛 → ∞.
Let 𝑘0 ∈ {1, . . . , 𝑁} be the largest index for which 𝛽𝑛,𝑘0

→ 0.
Moreover, let one suppose that there hold (H1), (H7), and (H8)
with 𝛾

𝑛
= 0, for all 𝑛 ≥ 0, and

(i) (𝛼
𝑛
+ 𝛽
𝑛
)/𝛽
𝑛,𝑘0

→ 0 as 𝑛 → ∞;
(ii) if 𝑖 ≤ 𝑘0 and 𝛽𝑛,𝑖 → 0, then 𝛽𝑛,𝑘0

/𝛽𝑛,𝑖 → 0 as 𝑛 →

∞;
(iii) if 𝛽

𝑛,𝑖
→ 𝛽
𝑖

̸= 0, then 𝛽
𝑖
lies in (0, 1).

Then the sequences {𝑥𝑛}, {𝑦𝑛}, and {𝑢𝑛} generated explicitly by
(112) all converge strongly to the unique solution 𝑥

∗
∈ Ω of the

following variational inequality:

⟨𝑄𝑥
∗
− 𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≤ 0, ∀𝑧 ∈ Ω. (115)
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