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A linear different operator 𝐿 is called weakly hypoelliptic if any local solution 𝑢 of 𝐿𝑢 = 0 is smooth. We allow for systems, that
is, the coefficients may be matrices, not necessarily of square size. This is a huge class of important operators which cover all
elliptic, overdetermined elliptic, subelliptic, and parabolic equations.We extend several classical theorems from complex analysis to
solutions of any weakly hypoelliptic equation: theMontel theorem providing convergent subsequences, the Vitali theorem ensuring
convergence of a given sequence, and Riemann’s first removable singularity theorem. In the case of constant coefficients, we show
that Liouville’s theorem holds, any bounded solution must be constant, and any 𝐿𝑝-solution must vanish.

1. Introduction

Hypoelliptic partial differential equations form a huge class
of linear PDEs many of which are very important in applica-
tions. This class contains all elliptic, overdetermined elliptic,
subelliptic, and parabolic equations. Recall that a linear
differential operator 𝐿 is called hypoelliptic if any solution
𝑢 to 𝐿𝑢 = 𝑓 is smooth wherever 𝑓 is smooth. The study
of hypoelliptic operators was initiated by Hörmander and
others; see, for example, [1–4].

We generalize this class of operators even further by only
demanding that any solution 𝑢 to 𝐿𝑢 = 0 be smooth. We
call such operators weakly hypoelliptic. This is not to be con-
fused with partially hypoelliptic operators as introduced by
Gårding and Malgrange [5] nor with the almost hypoelliptic
operators due to Elliott [6].We show by example that the class
of weakly hypoelliptic operators is strictly larger than that of
hypoelliptic operators. The example of a weakly hypoelliptic
but nonhypoelliptic operator that we give is defined on R2

and is overdetermined elliptic on R2
\ {0}. It is of first order,

and its principal symbol vanishes at 0. Thus, the class of
weakly hypoelliptic operators allows for a certain degeneracy
of the principal symbol on “small sets” and might be of
interest for geometric applications.

Holomorphic functions are the solutions to the Cauchy-
Riemann equations which are elliptic in the case of one
variable and overdetermined elliptic in the case of several

variables. In any case, they are characterized as solutions
to certain hypoelliptic PDEs. We show that the solutions
to any weakly hypoelliptic equation share some of the nice
properties of holomorphic functions which are familiar from
classical complex analysis.

Montel’s theorem says that a locally bounded sequence
of holomorphic functions subconverges to a holomorphic
function. This does not hold for real analytic functions.
For instance, the sequence 𝑢𝑗(𝑥) = cos(𝑗𝑥) is a uniformly
bounded sequence of real-analytic functions on R but does
not have a convergent subsequence; see, for example, [7,
Ex. 1.4.34]. We show that even a slightly stronger version
of the Montel theorem holds for solutions to any weakly
hypoelliptic equation: any locally 𝐿1-bounded sequence sub-
converges in the 𝐶

∞-topology to a solution (Theorem 4).
The Vitali theorem for holomorphic functions has a similar
generalization (Theorem 6). For hypoelliptic equations, this
has been known for many decades and has motivated the
study of so-called Montel spaces in functional analysis.

In case the underlying domain is R𝑛 and the weakly
hypoelliptic operator has constant coefficients and satisfies a
weighed homogeneity condition, we show that the Liouville
theorem holds: any bounded solution must be constant
(Theorem 7), and any𝐿𝑝-solutionmust be zero (Theorem 12).
This applies to powers of the Laplace and Dirac operators
but also to powers of the heat operator. In the proof, we
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use a simple scaling argument and apply the general Montel
theorem.

Finally, we generalize Riemann’s first removable singu-
larity theorem and show that a solution to a weakly hypoe-
lliptic equation can be extended across a submanifold 𝑆 of
sufficiently high codimension provided that the solution is
locally bounded near 𝑆 (Theorem 14 and Corollary 15).

The general setup is such that we consider a linear
differential operator 𝐿 acting on sections of vector bundles.
So, locally, 𝐿 describes a system of linear PDEs with smooth
coefficients. These coefficients may be matrices of not neces-
sarily square size. Readers who are not too fond of geometric
terminologymay simply replace “manifolds” by “open subsets
of R𝑛” and “sections of vector bundles” by “vector-valued
functions.”

The classical proofs of these theorems for holomorphic
functions are typically based on special properties of holo-
morphic functions such as Cauchy’s integral formula. There-
fore they may create the misleading impression that these
theorems are also very special for holomorphic functions. In
the contrary, the above mentioned theorems remain true for
all solutions of the largest class of linear PDEs where one
could hope for them to hold. Moreover, as we will see, the
proofs of the general statements are actually rather simple.

2. Weakly Hypoelliptic Operators

Let𝑀 be an 𝑛-dimensional differentiable manifold equipped
with a smooth positive 𝑛-density vol. Let 𝐸 → 𝑀 and
𝐹 → 𝑀 be real vector bundles. If the bundles are complex
we simply forget the complex structure and consider them
as real bundles. We denote the spaces of smooth sections by
𝐶

∞
(𝑀, 𝐸) and 𝐶

∞
(𝑀, 𝐹), respectively. Let 𝐿 : 𝐶

∞
(𝑀, 𝐸) →

𝐶
∞
(𝑀, 𝐹) be a linear differential operator of order 𝑘 ∈

N. The fact that smooth sections are mapped to smooth
sections encodes the smoothness of the coefficients of 𝐿

in local coordinates. The operator 𝐿 restricts to a linear
map D(𝑀, 𝐸) → D(𝑀, 𝐹) where D stands for compactly
supported smooth sections.

Let 𝐸∗
→ 𝑀 and 𝐹

∗
→ 𝑀 be the dual bundles.

Given 𝐿, there is a unique linear differential operator 𝐿∗
:

𝐶
∞
(𝑀, 𝐹

∗
) → 𝐶

∞
(𝑀, 𝐸

∗
), the formally dual operator,

characterized by

∫
𝑀

⟨𝐿𝑢, 𝜑⟩ vol = ∫
𝑀

⟨𝑢, 𝐿
∗
𝜑⟩ vol (1)

for all 𝑢 ∈ 𝐶
∞
(𝑀, 𝐸) and 𝜑 ∈ 𝐶

∞
(𝑀, 𝐹

∗
) such that supp(𝑢)∩

supp(𝜑) is compact. Here ⟨⋅, ⋅⟩ denote the canonical pairing of
𝐸 and 𝐸

∗ and of 𝐹 and 𝐹
∗.

We extend 𝐿 to an operator, again denoted by 𝐿, map-
ping distributional sections to distributional sections, 𝐿 :

D󸀠
(𝑀, 𝐸) → D󸀠

(𝑀, 𝐹) by

(𝐿𝑢) [𝜑] := 𝑢 [𝐿
∗
𝜑] (2)

for all 𝑢 ∈ D󸀠
(𝑀, 𝐸) and 𝜑 ∈ D(𝑀, 𝐹

∗
), compare for

example, [8, Sec. 1.1.2]. Here we denote by 𝑢[𝜓] the evaluation
of the distribution 𝑢 ∈ D󸀠

(𝑀, 𝐸) on the test section 𝜓 ∈

D(𝑀, 𝐸
∗
).

The differential operator 𝐿 is called hypoelliptic if for any
open subset Ω ⊂ 𝑀 and any 𝑢 ∈ D󸀠

(Ω, 𝐸) such that 𝐿𝑢 is
smooth we have that 𝑢 is smooth. Since we will be interested
in solutions of 𝐿𝑢 = 0 only, we make the following definition:
The differential operator 𝐿 is called weakly hypoelliptic if for
any open subset Ω ⊂ 𝑀 any 𝑢 ∈ D󸀠

(Ω, 𝐸) satisfying 𝐿𝑢 = 0

must be smooth. Hörmander’s work [1, Ch. III] (see also the
proof of Theorem 2.1 in [9, p. 63]) shows that for operators
with constant coefficients over 𝑀 = R𝑛 hypoellipticity and
weak hypoellipticity are equivalent, at least in the scalar case,
that is, if the coefficients of 𝐿 are scalars rather than matrices.
It seems likely that this is also true if the coefficients are
constant matrices. In general however, if the coefficients are
variable, the class of weakly hypoelliptic operators is strictly
larger than that of hypoelliptic operators.

Example 1. Let 𝑀 = R2, let 𝐸 be the trivial real line bundle
and 𝐹 the trivial R2-bundle. The operator 𝐿 = (𝐿1, 𝐿2) :

𝐶
∞
(R2

,R) → 𝐶
∞
(R2

,R2
) is given by

𝐿1 = 𝑟
𝜕

𝜕𝑟
− 2 = 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
− 2,

𝐿2 = 𝑟
𝜕

𝜕𝜃
= −𝑦

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑦
.

(3)

Here (𝑥, 𝑦) are the usual Cartesian coordinates while (𝑟, 𝜃)

denote polar coordinates, 𝑥 = 𝑟 cos(𝜃), 𝑦 = 𝑟 sin(𝜃). On R2
\

{0} the operator 𝐿 is overdetermined elliptic (see below) and
hence hypoelliptic. But 𝐿 is not hypoelliptic on R2 because
𝑢 = 𝑟

2 log 𝑟 is not smooth while 𝐿𝑢 = (𝑟
2
, 0) is smooth.

We check that 𝐿 is weakly hypoelliptic. Regularity is an
issue at the origin only. Let 𝑢 ∈ D󸀠

(Ω,R) with 𝐿𝑢 = 0 where
Ω is an open disk in R2 centered at the origin. Then 𝑢 is
smooth on Ω \ {0}. From 𝐿1𝑢 = 0 we see that 𝑢 = 𝛼(𝜃)𝑟

2

on Ω \ {0} and 𝐿2𝑢 = 0 shows that 𝛼 does not depend on 𝜃.
Hence 𝑢 = 𝛼𝑟

2
= 𝛼 ⋅ (𝑥

2
+ 𝑦

2
) on Ω \ {0}. Subtracting this

smooth function we may without loss of generality assume
that supp(𝑢) ⊂ {0}. In this case, 𝑢 is a linear combination of
the delta function and its derivatives:

𝑢 = ∑

𝑖,𝑗

𝛽𝑖𝑗

𝜕
𝑖+𝑗
𝛿0

𝜕𝑥𝑖𝜕𝑦𝑗
. (4)

Fix 𝑖0 and 𝑗0, and choose a test function 𝜑 ∈ 𝐶
∞

𝑐
(Ω,R)which

coincides with themonomial 𝑥𝑖0𝑦
𝑗0 on a neighborhood of the

origin. Then, we see

0 = 𝐿1𝑢 [𝜑]

= 𝑢 [−
𝜕 (𝑥𝜑)

𝜕𝑥
−
𝜕 (𝑦𝜑)

𝜕𝑦
− 2𝜑]

= 𝑢 [− (𝑖0 + 1 + 𝑗0 + 1 + 2) ⋅ 𝜑]

= − (4 + 𝑖0 + 𝑗0) ⋅ ∑

𝑖,𝑗

𝛽𝑖𝑗 ⋅ (−1)
𝑖+𝑗

⋅ 𝛿0 [
𝜕
𝑖+𝑗
𝜑

𝜕𝑥𝑖𝜕𝑦𝑗
]

= − (4 + 𝑖0 + 𝑗0) ⋅ 𝛽𝑖0𝑗0
⋅ (−1)

𝑖0+𝑗0 ⋅ 𝑖0! ⋅ 𝑗0!.

(5)



International Journal of Differential Equations 3

Thus 𝛽𝑖0𝑗0
= 0 for all 𝑖0 and 𝑗0 and therefore 𝑢 = 0. To

summarize, we have seen that 𝐿 is weakly hypoelliptic, but
not hypoelliptic.

For anyweakly hypoelliptic operator we denote the kernel
of 𝐿 : D󸀠

(𝑀, 𝐸) → D󸀠
(𝑀, 𝐹) byH(𝑀, 𝐿) ⊂ 𝐶

∞
(𝑀, 𝐸).

For 𝑗 ∈ N0 and any relatively compact measurable subset
𝐴 ⊂ 𝑀 we define the 𝐶𝑗-norm of 𝑢 ∈ 𝐶

𝑗
(𝑀, 𝐸) by

‖𝑢‖𝐶𝑗(𝐴) := sup
𝑥∈𝐴

max (󵄨󵄨󵄨󵄨󵄨∇
𝑗
𝑢 (𝑥)

󵄨󵄨󵄨󵄨󵄨
, . . . , |∇𝑢 (𝑥)| , |𝑢 (𝑥)|) .

(6)

Here we have tacitly equipped 𝐸 and the tangent bundle
𝑇𝑀 with a Riemannian metric and a connection ∇. These
data induce fiberwise norms and connections on the bundles
𝑇

∗
𝑀 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑇

∗
𝑀 ⊗ 𝐸. Note that ∇

𝑗
𝑢 is a section of

𝑇
∗
𝑀⊗ ⋅ ⋅ ⋅ ⊗ 𝑇

∗
𝑀⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗 factors
⊗𝐸. Since𝐴 is relatively compact, different

choices ofmetric and connections yield equivalent𝐶𝑗-norms.
If𝐾 ⊂ 𝑀 is a compact subset, then we denote by𝐶𝑗

(𝐾, 𝐸)

the set of all restrictions to 𝐾 of 𝑗-times continuously
differentiable sections, defined on an open neighborhood of
𝐾. Equipped with the norm ‖ ⋅ ‖𝐶𝑗(𝐾), 𝐶

𝑗
(𝐾, 𝐸) becomes a

Banach space.
Similarly, we define the 𝐿𝑝-norm for 1 ≤ 𝑝 < ∞ by

‖𝑢‖
𝑝

𝐿𝑝(𝐴)
:= ∫

𝐴

|𝑢|
𝑝vol (𝑥) . (7)

Again, different choices of the metric and the volume density
yield equivalent 𝐿𝑝-norms. The 𝐿

∞-norm extends the 𝐶
0-

norm to the space of all essentially bounded measurable
sections. The starting points are the following hypoelliptic
estimates (compare [10, p. 331, Prop. 2] for the hypoelliptic
case).

Lemma 2 (hypoelliptic estimates). Let 𝐿 be weakly hypoellip-
tic. Then, for any 𝑗 ∈ N, for any compact subset 𝐾 ⊂ 𝑀, and
any open subsetΩ ⊂ 𝑀 containing𝐾, there is a constant𝐶 > 0

such that

‖𝑢‖𝐶𝑗(𝐾) ≤ 𝐶 ⋅ ‖𝑢‖𝐿1(Ω), (8)

for all 𝑢 ∈ H(𝑀, 𝐿).

Proof. Let 𝑉 be the kernel of the continuous linear map
𝐿 : 𝐿

1
(Ω, 𝐸) ⊂ D󸀠

(Ω, 𝐸) → D󸀠
(Ω, 𝐹). Hence 𝑉 is a

closed subspace of 𝐿1
(Ω, 𝐸) and thus a Banach space with

the norm ‖ ⋅ ‖𝐿1(Ω). Since 𝐿 is weakly hypoelliptic we have
𝑉 ⊂ 𝐶

∞
(Ω, 𝐸). Thus we get the linear restriction map res :

𝑉 → 𝐶
𝑗
(𝐾, 𝐸), 𝑢 󳨃→ 𝑢|𝐾.

This map is closed. Namely, let 𝑢𝑖 → 𝑢 with respect to
‖ ⋅ ‖𝐿1(Ω) and res(𝑢𝑖) → V with respect to ‖ ⋅ ‖𝐶𝑗(𝐾). Then we
also have res(𝑢𝑖) → V with respect to ‖ ⋅ ‖𝐿1(𝐾) and therefore
res(𝑢) = V which proves closedness.

The closed graph theorem implies that res is bounded
which is (8) for all 𝑢 ∈ H(Ω, 𝐿). In particular, (8) holds for
all 𝑢 ∈ H(𝑀, 𝐿).

Corollary 3. Let 𝐿 be a weakly hypoelliptic operator over a
compact manifold 𝑀 (without boundary). Then H(𝑀, 𝐿) is
finite-dimensional.

Proof. Since 𝑀 is compact, we can take 𝐾 = Ω =

𝑀 in Lemma 2. Thus, the 𝐶
0-norm and the 𝐶

1-norm are
equivalent on H(𝑀, 𝐿). By the Arzelà-Ascoli theorem the
embedding 𝐶

1
(𝑀, 𝐸) 󳨅→ 𝐶

0
(𝑀, 𝐸) is compact. Hence the

identity map on H(𝑀, 𝐿) is compact; thus H(𝑀, 𝐿) is finite
dimensional.

A differential operator 𝐿 is called elliptic if the principal
symbol 𝜎𝐿(𝜉) is invertible for all nonzero covectors 𝜉 ∈ 𝑇

∗
𝑀.

Elliptic regularity theory implies that all elliptic operators are
hypoelliptic; see [11, Thm. 11.1.10] or [12, Ch. III, Sec. 5]. The
class of elliptic operators contains many examples of high
importance for applications such as the Laplace and Dirac
operator.

More generally, if the principal symbol 𝜎𝐿(𝜉) is injective
instead of bijective for all nonzero covectors 𝜉 ∈ 𝑇

∗
𝑀, then

one calls 𝐿 overdetermined elliptic. In this case 𝐿∗
𝐿 is elliptic

where 𝐿
∗ denotes the formal adjoint of 𝐿. Now if 𝐿𝑢|Ω is

smooth, so is 𝐿∗
𝐿𝑢|Ω and hence 𝑢|Ω is smooth by elliptic

regularity. Therefore overdetermined elliptic operators are
hypoelliptic as well.

Another way to generalize elliptic operators within the
class of hypoelliptic operators is to consider subelliptic oper-
ators with a loss of 𝛿 derivatives where 𝛿 ∈ (0, 1). These
operators can also be characterized by a condition on their
principal symbol; see [13, Ch. XXVII] for details.

If 𝐿 is parabolic, for example, if 𝐿 describes the heat equa-
tion on a Riemannian manifold, then parabolic regularity
using anisotropic Sobolev spaces shows that 𝐿 is hypoelliptic;
see for example, [14, Sec. 6.4].

In contrast, hyperbolic differential operators, for example,
those which describe wave equations, are not hypoelliptic.

Table 1 is a (very incomplete) table of examples for
hypoelliptic operators relevant for applications.

3. Convergence Results

Let 1 ≤ 𝑝 ≤ ∞. A family F ⊂ 𝐶
∞
(𝑀, 𝐸) is called locally

𝐿
𝑝-bounded if for each compact subset 𝐾 ⊂ 𝑀 we have

sup
𝑢∈F

‖𝑢 (𝑥)‖𝐿𝑝(𝐾) < ∞. (9)

Let 1 ≤ 𝑝 ≤ 𝑞 < ∞. By Hölder’s inequality, ‖𝑢‖𝐿𝑝(𝐾) ≤

vol(𝐾)
(𝑞−𝑝)/𝑝𝑞

⋅ ‖𝑢‖𝐿𝑞(𝐾). For 𝑞 = ∞, we have ‖𝑢‖𝐿𝑝(𝐾) ≤

vol(𝐾)
1/𝑝

⋅ ‖𝑢‖𝐿∞(𝐾).Therefore, local 𝐿𝑞-boundedness implies
local 𝐿

𝑝-boundedness whenever 𝑞 ≥ 𝑝. In particular,
local 𝐿1-boundedness is the weakest of these boundedness
conditions.

We say that a sequence (𝑢𝑗) in𝐶
∞
(𝑀, 𝐸) converges in the

𝐶
∞-topology if the restriction to any compact subset𝐾 ⊂ 𝑀

converges in every𝐶𝑗-norm. In other words, the sections and
all their derivatives converge locally uniformly.

Theorem 4 (generalized Montel theorem). Let 𝐿 be a weakly
hypoelliptic operator. Then, any locally 𝐿

1-bounded sequence
𝑢1, 𝑢2, . . . ∈ H(𝑀, 𝐿) has a subsequence which converges in
the 𝐶∞-topology to some 𝑢 ∈ H(𝑀, 𝐿).
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Table 1: Examples of hypoelliptic differential operators.

𝐿 𝑀 𝐸 𝐹 H(𝑀, 𝐿) Type Reference
𝜕/𝜕𝑧,
Cauchy-Riemann Open subset of C Trivial C-line bundle Trivial C-line

bundle
Holomorphic
functions Elliptic [15, Sec. I.5]

𝜕𝐸 Complex manifold Holomorphic vector
bundle 𝐸 ⊗ 𝑇

∗
𝑀

0,1 Holomorphic
sections

Overdet.
elliptic [16, Sec. 0.5]

∇
∗
∇ + 𝑙.𝑜.𝑡.,

Laplace-type Riemannian manifold Riem. vector bundle
with connection 𝐸

Harmonic
sections Elliptic [17, Sec. 2.1]

Δ
2, bi-Laplacian Riemannian manifold Trivial R-line bundle Trivial R-line

bundle
Biharmonic
functions Elliptic

𝐷, Dirac Riemannian spin
manifold Spinor bundle Spinor bundle Harmonic

spinors Elliptic [12, Ch. II, §5]

𝜕/𝜕𝑡 − Δ, heat
operator

Interval ×
Riemannian manifold Trivial R-line bundle Trivial R-line

bundle Parabolic [14, Sec. 6.4]

Δ𝑋, sub-Laplacian
Sub-Riemannian
manifold (bracket

generating)
Trivial R-line bundle Trivial R-line

bundle Subelliptic [18, Thm. 1.1]

∑
𝑗
𝑋

∗

𝑗
𝑋𝑗, where𝑋𝑗 =

complex vector fields
(bracket cond.)

R𝑛 Trivial C-line bundle Trivial C-line
bundle

Sobolev-
subell. [19, Thm. C]

Bismut’s hypoelliptic
Laplacian 𝑇

∗
𝑋 ⊕

𝑛

𝑗=0
∧

𝑗
𝑇

∗
𝑇

∗
𝑋 𝐸 Hypoelliptic [20, Ch. 3]

𝜕
2
/𝜕𝑥

2
+𝑥𝜕/𝜕𝑦−𝜕/𝜕𝑡,

Kolmogorov (0,∞) ×R2 Trivial R-line bundle Trivial R-line
bundle Hypoelliptic [21, Sec. 22.2]

The experts will notice that this is a direct consequence of
Lemma 2 because we have the following.

Proof (short). By Lemma 2, the sequence 𝑢1, 𝑢2, . . . is
bounded with respect to the 𝐶

∞-topology (in the sense
of topological vector spaces). Since 𝐶

∞
(𝑀, 𝐸) is known

to be a Montel space [22, p. 148, Cor. 2] so is the closed
subspace H(𝑀, 𝐿) (when equipped with the 𝐶∞-topology).
This means that bounded closed subsets are compact; hence
𝑢1, 𝑢2, . . . has a convergent subsequence.

For those unfamiliar with the theory ofMontel spaces, we
can also provide the following.

Proof (elementary). Let 𝐾 ⊂ 𝑀 be a compact subset. We
choose an open, relatively compact subsetΩ ⋐ 𝑀 containing
𝐾. We fix 𝑗 ∈ N. Since, by Lemma 2,

󵄩󵄩󵄩󵄩𝑢]
󵄩󵄩󵄩󵄩𝐶𝑗+1(𝐾)

≤ 𝐶 ⋅
󵄩󵄩󵄩󵄩𝑢]

󵄩󵄩󵄩󵄩𝐿1(Ω)
≤ 𝐶 ⋅

󵄩󵄩󵄩󵄩𝑢]
󵄩󵄩󵄩󵄩𝐿1(Ω)

≤ 𝐶
󸀠
, (10)

the sequence (𝑢])] is bounded in the 𝐶
𝑗+1-norm. By the

Arzelà-Ascoli theorem there is a subsequence which con-
verges in the𝐶𝑗-normover𝐾.The diagonal argument yields a
subsequence which converges in all 𝐶𝑗-norms over𝐾, 𝑗 ∈ N.

Now we exhaust 𝑀 by compact sets 𝐾1 ⊂ 𝐾2 ⊂

𝐾3 ⊂ ⋅ ⋅ ⋅ ⊂ 𝑀. We have seen that over each 𝐾𝜇 we can
pass to a subsequence converging in all 𝐶𝑗-norms. Applying
the diagonal argument once more, we find a subsequence
converging in all 𝐶𝑗-norms over all 𝐾𝜇. Thus we found a
subsequence which converges in the 𝐶

∞-topology to some
𝑢 ∈ 𝐶

∞
(𝑀, 𝐸).

Since 𝐿 : 𝐶
∞
(𝑀, 𝐸) → 𝐶

∞
(𝑀, 𝐹) is (sequentially)

continuous with respect to the𝐶∞-topology, we have 𝐿𝑢 = 0,
that is, 𝑢 ∈ H(𝑀, 𝐿).

The generalized Montel theorem applies to all examples
listed inTable 1. Even in the case of holomorphic functions (in
one or several variables) Theorem 4 is a slight improvement
over the classical Montel theorem because the classical
condition of local 𝐿∞-boundedness is replaced by the weaker
condition of local 𝐿1-boundedness.The standard proof of the
classical Montel theorem uses the Cauchy integral formula
to show equicontinuity and then applies the Arzelà-Ascoli
theorem, see for example, [7, Sec. 1.4.3].

In the case of harmonic functions on a Euclidean domain
the Montel theorem is also classical. One can use estimates
based on the Poisson kernel to show equicontinuity and then
apply the Arzelà-Ascoli theorem [23, p. 35, Thm. 2.6].

TheMontel theorem provides a criterion for the existence
of a convergent subsequence. The next theorem provides
a sufficient criterion which ensures that a given sequence
converges itself.

Definition 5. Let 𝐿 be a weakly hypoelliptic operator on 𝑀.
A subset 𝐴 ⊂ 𝑀 is called a set of uniqueness for 𝐿 if for any
𝑢 ∈ H(𝑀, 𝐿) the condition 𝑢|𝐴 = 0 implies 𝑢 = 0.

Every dense subset 𝐴 of𝑀 is a set of uniqueness because
H(𝑀, 𝐿) ⊂ 𝐶

0
(𝑀, 𝐸).

For holomorphic function of one variable, that is, 𝐿 =

𝜕/𝜕𝑧, the set𝐴 is a set of uniqueness if it has an accumulation
point in𝑀 ⊂ C.

Many (but not all) important elliptic operators have the
so-called weak unique continuation property. This means that
if 𝐴 has nonempty interior, then it is a set of uniqueness
provided that 𝑀 is connected. Laplace- and Dirac-type
operators belong to this class.
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Theorem 6 (generalized Vitali theorem). Let 𝐿 be a weakly
hypoelliptic operator and let 𝐴 ⊂ 𝑀 be a set of uniqueness for
𝐿. Let 𝑢1, 𝑢2, . . . ∈ H(𝑀, 𝐿) be a locally 𝐿1-bounded sequence.
Suppose that the pointwise limit lim𝑗→∞𝑢𝑗(𝑥) exists for all 𝑥 ∈

𝐴.
Then, (𝑢𝑗)𝑗 converges in the 𝐶

∞-topology to some 𝑢 ∈

H(𝑀, 𝐿).

Proof. ByTheorem 4, every subsequence of (𝑢𝑗)𝑗 has a subse-
quence for which the assertion holds. The limit functions for
these subsequences are inH(𝑀, 𝐿) and coincide on𝐴; hence
they all agree. Hence, (𝑢𝑗)𝑗 has a unique accumulation point
𝑢 ∈ H(𝑀, 𝐿).

If the sequence (𝑢𝑗)𝑗 itself did not converge to 𝑢, then
we could extract a subsequence staying outside a 𝐶

∞-
neighborhood of 𝑢. But this subsequence would again have
a subsequence converging to 𝑢, a contradiction.

4. Liouville Property

We now concentrate on the case𝑀 = R𝑛. All vector bundles
overR𝑛 are trivial, so sections can be identifiedwith functions
R𝑛

→ R𝑁. Hence, the coefficients of the differential operator
𝐿 are 𝑁 × 𝑁

󸀠-matrices. If these matrices do not depend on
the point 𝑥 ∈ R𝑛 we say that 𝐿 has constant coefficients.
The Laplace operator Δ, the Dirac operator 𝐷 and the heat
operator 𝜕/𝜕𝑥1 − ∑

𝑛

𝑗=2
(𝜕

2
/𝜕𝑥

2

𝑗
) are examples of hypoelliptic

operators on R𝑛 with constant coefficients.
Let𝑃 be a polynomial in 𝑛 real variables. Here𝑃 is allowed

to have matrix-valued coefficients of fixed size. Let 𝑤 =

(𝑤1, . . . , 𝑤𝑛) with 𝑤𝑗 > 0. We call 𝑃 weighed homogeneous
with weight 𝑤 if 𝑃(𝑡𝑤1𝑥1, . . . , 𝑡

𝑤𝑛𝑥𝑛) = 𝑡
𝑘
𝑃(𝑥1, . . . , 𝑥𝑛) for

some 𝑘 and all 𝑡 ∈ R, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛. The
corresponding differential operator with constant coefficients
𝐿 = 𝑃(𝜕/𝜕𝑥) = 𝑃(𝜕/𝜕𝑥1, . . . , 𝜕/𝜕𝑥𝑛) is then also called
weighed homogeneous. The Dirac and Laplace operator are
examples for weighed homogeneous differential operators
with weight𝑤 = (1, . . . , 1) as well as the heat operator (weight
𝑤 = (2, 1, . . . , 1)).

We can now state the following Liouville-type theorem.

Theorem7 (generalized Liouville theorem). Let𝐿 be aweakly
hypoelliptic operator over R𝑛. Suppose that 𝐿 has constant
coefficients in𝑁

󸀠
× 𝑁-matrices and is weighed homogeneous.

Then, each bounded function in H(R𝑛
, 𝐿) must be con-

stant.

Proof. Let 𝑢 ∈ H(R𝑛
, 𝐿) be bounded. For 𝜀 > 0, we

put 𝑢𝜀(𝑥) := 𝑢(𝜀
−𝑤1𝑥1, . . . , 𝜀

−𝑤𝑛𝑥𝑛). Since 𝑢 is bounded,
the family (𝑢𝜀) is uniformly bounded. Moreover, (𝐿𝑢𝜀)(𝑥) =

𝜀
−𝑘
𝐿𝑢(𝜀

−𝑤1𝑥1, . . . , 𝜀
−𝑤𝑛𝑥𝑛) = 0 so that 𝑢𝜀 ∈ H(R𝑛

, 𝐿). By
Theorem 4, there is a sequence 𝜀𝑗 ↘ 0 such that 𝑢𝜀𝑗

converges
locally uniformly to some V ∈ H(R𝑛

, 𝐿). We observe 𝑢𝜀(0) =

𝑢(0) and hence V(0) = 𝑢(0).
Fix 𝑥 ∈ R𝑛. For 𝜀 > 0 we put 𝑥𝜀 := (𝜀

𝑤1𝑥1, . . . , 𝜀
𝑤𝑛𝑥𝑛).

Then 𝑢𝜀(𝑥𝜀) = 𝑢(𝑥) and 𝑥𝜀 → 0 as 𝜀 ↘ 0. Locally uniform
convergence yields 𝑢(𝑥) = 𝑢𝜀𝑗

(𝑥𝜀𝑗
) → V(0) = 𝑢(0), hence

𝑢(𝑥) = 𝑢(0), so 𝑢 is constant.

Example 8. We directly recover the classical Liouville theo-
rems for holomorphic and for harmonic functions. In the case
of bounded harmonic functions Nelson gave a particularly
short proof based on the mean value property [24]. In fact,
for harmonic functions it suffices to assume that they are
bounded from below (or from above) [23, Thm. 3.1]. This
cannot be deduced from Theorem 7 but the theorem also
applies to biharmonic functions on R𝑛 or to solutions of
higher powers of Δ. The function 𝑢(𝑥) = |𝑥|

2 is biharmonic,
bounded from below and nonconstant. Hence unlike for
harmonic functions we need to assume boundedness from
above and frombelow to conclude that a biharmonic function
is constant.

Similarly, bounded harmonic spinors on R𝑛 must be
constant.

Remark 9. Here is a silly argument why all bounded polyno-
mials on R𝑛 must be constant. Given such a polynomial 𝑢
choose ℓ ∈ N larger than half the degree of 𝑢. Then Δ

ℓ
𝑢 = 0

andTheorem 7 applies.

Example 10. Theorem 7 also applies to the heat operator.
Bounded solutions to the heat equation on R𝑛

= R × R𝑛−1

must be constant. Note that there do exist nontrivial solutions
on R𝑛 which vanish for 𝑥1 ≤ 0 [25, pp. 211–213]. They are
unbounded on R𝑛−1 for each 𝑥1 > 0 however.

Moreover, Theorem 7 applies to powers of the heat oper-
ator. So, for instance, bounded solutions to

(
𝜕

𝜕𝑥1

−

𝑛

∑

𝑗=2

𝜕
2

𝜕𝑥
2
𝑗

)

2

𝑢 = 0 (11)

must be constant.

Remark 11. Theorem 7 does not hold for hyperbolic opera-
tors.The function𝑢(𝑥1, 𝑥2) = sin(𝑥1) sin(𝑥2) is non-constant,
bounded and solves the wave equation 𝜕

2
𝑢/𝜕𝑥

2

1
− 𝜕

2
𝑢/𝜕𝑥

2

2
=

0. Thus Theorem 7 does not extend to partially hypoelliptic
operators in the sense of Gårding and Malgrange [5].

Theorem 12 (generalized Liouville theorem, 𝐿𝑝-version). Let
1 ≤ 𝑝 < ∞. Let 𝐿 be a weakly hypoelliptic operator over R𝑛.
Suppose that 𝐿 has constant coefficients in𝑁󸀠

×𝑁-matrices and
is weighed homogeneous. Then,

H (R
𝑛
, 𝐿) ∩ 𝐿

𝑝
(R

𝑛
,R

𝑁
) = {0} . (12)

Proof. Let 𝑢 ∈ H(R𝑛
, 𝐿) ∩ 𝐿

𝑝
(R𝑛

,R𝑁
). For 𝜀 ∈ (0, 1], define

𝑢𝜀 as in the proof of Theorem 7. We use the same notation as
in that proof. From

󵄩󵄩󵄩󵄩𝑢𝜀

󵄩󵄩󵄩󵄩

𝑝

𝐿𝑝(R𝑛)

= ∫
R𝑛

󵄨󵄨󵄨󵄨𝑢 (𝜀
−𝑤1𝑥1, . . . , 𝜀

−𝑤𝑛𝑥𝑛)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑛

= ∫
R𝑛

󵄨󵄨󵄨󵄨𝑢 (𝑦1, . . . , 𝑦𝑛)
󵄨󵄨󵄨󵄨

𝑝
𝜀
𝑤1+⋅⋅⋅+𝑤𝑛𝑑𝑦1 ⋅ ⋅ ⋅ 𝑑𝑦𝑛

≤ ‖𝑢‖
𝑝

𝐿𝑝(R𝑛)
< ∞,

(13)
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we see that (𝑢𝜀)𝜀 is an 𝐿
𝑝-bounded family on R𝑛. Using

Theorem 4 as in the proof of Theorem 7, we find that 𝑢 is
constant. Since 𝑢 is also 𝐿𝑝, it must be zero.

Remark 13. In the case of scalar constant coefficient hypoel-
liptic operators,Theorems 7 and 12 can also be seen as follows.
If the polynomial 𝑃 had a zero 𝑥 ̸= 0, then 𝑃 would vanish
along the curve 𝑡 󳨃→ (𝑡

𝑤1𝑥1, . . . , 𝑡
𝑤𝑛𝑥𝑛) by homogeneity. This

would violate Hörmander’s hypoellipticity criterion [1, Thm.
3.3.I] for 𝐿 = 𝑃(𝜕/𝜕𝑥). Thus, 𝑥 = 0 is the only zero of 𝑃. Now,
[26, Thm. 2.28] (whose proof is a simple application of the
Fourier transform) says that any solution 𝑢 ∈ H(R𝑛

, 𝐿)must
be a polynomial. If it is in 𝐿

∞
(R𝑛

) or in 𝐿
𝑝
(R𝑛

), it must be
constant or vanish, respectively.

5. Removable Singularities

Let 𝑀 be a Riemannian manifold, and denote the Rieman-
nian distance of 𝑥, 𝑦 ∈ 𝑀 by 𝑑(𝑥, 𝑦). For a subset 𝑆 ⊂ 𝑀, let
𝑑(𝑥, 𝑆) := inf𝑦∈𝑆𝑑(𝑥, 𝑦). For 𝑟 > 0, we denote by

𝑁(𝑆, 𝑟) := {𝑥 ∈ 𝑀 | 𝑑 (𝑥, 𝑆) ≤ 𝑟} \ 𝑆 (14)

the closed 𝑟-neighborhood of 𝑆 with 𝑆 removed.

Theorem 14. Let 𝑆 ⊂ 𝑀 be an embedded submanifold of
codimension 𝑚 ≥ 1. Let 𝐿 be a weakly hypoelliptic operator
of order 𝑘 ≥ 1 over𝑀. Let 𝑢 ∈ H(𝑀 \ 𝑆, 𝐿). Suppose that for
each compact subset𝐾 ⊂ 𝑀 there exists a constant 𝐶 > 0 such
that for all sufficiently small 𝑟 > 0

‖𝑢‖𝐿1(𝑁(𝑆,𝑟)∩𝐾) = o (𝑟𝑘) as 𝑟 ↘ 0. (15)

Then 𝑢 extends uniquely to some 𝑢 ∈ H(𝑀, 𝐿).

Proof. Uniqueness of the extension is clear because 𝑀 \ 𝑆 is
dense in 𝑀. To show existence let 𝜒 : R → R be a smooth
function such that

(i) 𝜒 ≡ 0 on (−∞, 1/2];
(ii) 𝜒 ≡ 1 on [1,∞);
(iii) 0 ≤ 𝜒 ≤ 1 everywhere.

For 𝑟 > 0, we define 𝜒𝑟 ∈ 𝐶
0
(𝑀) by

𝜒𝑟 (𝑥) := 𝜒(
𝑑 (𝑥, 𝑆)

𝑟
) . (16)

Given a compact subset 𝐾 ⊂ 𝑀 the function 𝜒𝑟 is smooth in
a neighborhood of𝐾 provided that 𝑟 is small enough. This is
true because the function 𝑥 󳨃→ 𝑑(𝑥, 𝑆) is smooth on an open
neighborhood of 𝑆 with 𝑆 removed.

We extend 𝑢 to a distribution 𝑢 ∈ D󸀠
(𝑀, 𝐸): let 𝜑 ∈

D(𝑀, 𝐸
∗
) be a test section. The compact support of 𝜑 is

denoted by𝐾. For 𝑟 > 0 sufficiently small𝜒𝑟𝜑 ∈ D(𝑀\𝑆, 𝐸
∗
),

we put

𝑢 [𝜑] := lim
𝑟↘0

𝑢 [𝜒𝑟𝜑] . (17)

The limit exists because for 0 < 𝑟1 ≤ 𝑟2

󵄨󵄨󵄨󵄨󵄨
𝑢 [𝜒𝑟1

𝜑] − 𝑢 [𝜒𝑟2
𝜑]
󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝑁(𝑆,𝑟2)∩𝐾

|𝑢 (𝑥)| ⋅
󵄨󵄨󵄨󵄨󵄨
𝜒𝑟1

(𝑥) − 𝜒𝑟2
(𝑥)

󵄨󵄨󵄨󵄨󵄨

⋅
󵄨󵄨󵄨󵄨𝜑 (𝑥)

󵄨󵄨󵄨󵄨 vol (𝑥)

≤ 2 ⋅
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶0(𝐾)

⋅ ‖𝑢‖𝐿1(𝑁(𝑆,𝑟2)∩𝐾)

= o (𝑟𝑘
2
) as 𝑟2 ↘ 0.

(18)

We check that 𝑢 is a distribution. Fix a compact subset 𝐾 ⊂

𝑀. Then, choosing 𝑟0 > 0 sufficiently small, we obtain

‖𝑢‖𝐿1(𝐾\𝑆) = ‖𝑢‖𝐿1(𝑁(𝑆,𝑟0)∩𝐾) + ‖𝑢‖
𝐿1(𝐾\𝑁(𝑆,𝑟0))

< ∞. (19)

Here, the first summand is finite because of the assumption in
the theorem and the second because𝐾 \ 𝑁(𝑆, 𝑟0) is a compact
subset of 𝑀 \ 𝑆. Hence, we find for all 𝜑 ∈ D(𝑀, 𝐸

∗
) with

supp(𝜑) ⊂ 𝐾

󵄨󵄨󵄨󵄨𝑢 [𝜑]
󵄨󵄨󵄨󵄨 = lim

𝑟↘0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐾\𝑆

⟨𝑢 (𝑥) , 𝜒𝑟 (𝑥) 𝜑 (𝑥)⟩ vol (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝑢‖𝐿1(𝐾\𝑆) ⋅
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶0(𝐾)

,

(20)

so 𝑢 is continuous in 𝜑.
It remains to show that 𝑢 solves 𝐿𝑢 = 0 in the distri-

butional sense. For 𝜑 ∈ D(𝑀, 𝐸
∗
), we compute

𝑢 [𝐿
∗
𝜑] = lim

𝑟↘0
∫
𝑀\𝑆

⟨𝑢 (𝑥) , 𝜒𝑟 (𝑥) (𝐿
∗
𝜑) (𝑥)⟩ vol (𝑥)

= lim
𝑟↘0

∫
𝑀\𝑆

⟨𝐿 (𝜒𝑟𝑢) (𝑥) , 𝜑 (𝑥)⟩ vol (𝑥)

= lim
𝑟↘0

∫
𝑀\𝑆

⟨𝜒𝑟𝐿𝑢 (𝑥) +

𝑘−1

∑

𝑗=0

𝑃𝑗 (𝜒𝑟) 𝑢 (𝑥) , 𝜑 (𝑥)⟩

× vol (𝑥)

= lim
𝑟↘0

𝑘−1

∑

𝑗=0

∫
𝑀\𝑆

⟨𝑃𝑗 (𝜒𝑟) 𝑢 (𝑥) , 𝜑 (𝑥)⟩ vol (𝑥)

= lim
𝑟↘0

𝑘−1

∑

𝑗=0

∫
𝑀\𝑆

⟨𝑢 (𝑥) , 𝑃𝑗(𝜒𝑟)
∗
𝜑 (𝑥)⟩ vol (𝑥) ,

(21)

where 𝑃𝑗(𝜒𝑟) is a linear differential operator of order 𝑗 for
each fixed 𝑟. It is obtained from the general Leibniz rule.
The coefficients of 𝑃𝑗(𝜒𝑟) depend linearly on 𝜒𝑟 and its
derivatives up to order 𝑘 − 𝑗. Since 𝜒𝑟 is constant outside
𝑁(𝑆, 𝑟) \𝑁(𝑆, 𝑟/2), the coefficients of 𝑃𝑗(𝜒𝑟) are supported in
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𝑁(𝑆, 𝑟) \ 𝑁(𝑆, 𝑟/2). For this reason, the integration by parts
above is justified; there are no boundary terms. We find

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑀\𝑆

⟨𝑢 (𝑥) , 𝑃𝑗(𝜒𝑟)
∗
𝜑 (𝑥)⟩ vol (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 ⋅
󵄩󵄩󵄩󵄩𝜒𝑟

󵄩󵄩󵄩󵄩𝐶𝑘−𝑗(𝐾)
⋅
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶𝑗(𝐾)

⋅ ‖𝑢‖𝐿1(𝑁(𝑆,𝑟)∩𝐾)

≤ 𝐶
󸀠
⋅ 𝑟

𝑗−𝑘
⋅
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶𝑗(𝐾)

⋅ o (𝑟𝑘)

= o (𝑟𝑗) as 𝑟 ↘ 0.

(22)

Hence, 𝑢[𝐿∗
𝜑] = 0, that is, 𝐿𝑢 = 0 in the distributional sense.

By weak hypoellipticity of 𝐿, the extension 𝑢must be smooth
and solves 𝐿𝑢 = 0 in the classical sense.

Corollary 15. Let 𝐿 be a weakly hypoelliptic operator of order
𝑘 ≥ 1 over 𝑀. Let 𝑆 ⊂ 𝑀 be an embedded submanifold of
codimension𝑚 ≥ 𝑘 + 1. Let𝑢 ∈ H(𝑀\𝑆, 𝐿) be locally bounded
near 𝑆.

Then, 𝑢 extends uniquely to some 𝑢 ∈ H(𝑀, 𝐿).

Proof. Since 𝑢 is locally bounded near 𝑆, we have for any
compact subset𝐾 ⊂ 𝑀

‖𝑢‖𝐿1(𝑁(𝑆,𝑟)∩𝐾)

≤ ‖𝑢‖𝐿∞(𝐾\𝑆) ⋅ vol (𝑁 (𝑆, 𝑟) ∩ 𝐾)

≤ 𝐶 ⋅ ‖𝑢‖𝐿∞(𝐾\𝑆) ⋅ 𝑟
𝑚
= O (𝑟

𝑚
)

(23)

as 𝑟 ↘ 0. Since𝑚 ≥ 𝑘+1, we get ‖𝑢‖𝐿1(𝑁(𝑆,𝑟)∩𝐾) = O(𝑟𝑘+1), and
therefore ‖𝑢‖𝐿1(𝑁(𝑆,𝑟)∩𝐾) = o(𝑟𝑘) as 𝑟 ↘ 0. Theorem 14 yields
the claim.

Example 16. Let 𝑀 ⊂ C𝑛 be an open subset and 𝑆 ⊂ 𝑀 a
complex submanifold of complex codimension ≥1. Then, any
holomorphic function 𝑢 on 𝑀 \ 𝑆, locally bounded near 𝑆,
extends uniquely to a holomorphic function on 𝑀. This is
Corollary 15 with 𝑘 = 1 and 𝑚 = 2. It is classically known as
Riemann’s first removable singularity theorem [7, Thm. 4.2.1].

Note that 𝑆 being a complex submanifold is actually
irrelevant; any real submanifold of real codimension 2 will
do. Moreover, byTheorem 14 one can relax the condition that
𝑢 be locally bounded near 𝑆. A local estimate of the form
|𝑢(𝑥)| ≤ 𝐶 ⋅ 𝑑(𝑥, 𝑆)

−𝛼 with 𝛼 < 1 is sufficient. This criterion
is sharp because for 𝑀 = C, 𝑆 = {0}, 𝐿 = 𝜕/𝜕𝑧, and
𝑢(𝑧) = 1/𝑧, we have a solution of 𝐿𝑢 = 0 on 𝑀 \ 𝑆 which
satisfies |𝑢(𝑧)| = 𝑑(𝑥, 𝑆)

−1 but does not extend across 𝑆.
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[13] L. Hörmander,The Analysis of Linear Partial Differential Oper-
ators. IV. Fourier Integral Operators, vol. 275 of Grundlehren
derMathematischenWissenschaften, Springer, Berlin, Germany,
1985.

[14] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, vol.
47 of AMS/IP Studies in Advanced Mathematics, American
Mathematical Society, International Press, Boston, Mass, USA,
2009.

[15] E. Freitag and R. Busam, Complex Analysis, Universitext,
Springer, Berlin, Germany, 2005.

[16] P. Griffiths and J. Harris, Principles of Algebraic Geometry,Wiley
Classics Library, JohnWiley & Sons, New York, NY, USA, 1994.

[17] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and
Dirac Operators, vol. 298 of Grundlehren der Mathematischen
Wissenschaften, Springer, Berlin, Germany, 1992.
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