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Two countable families of hemirelatively nonexpansive mappings are considered based on a hybrid projection algorithm. Strong
convergence theorems of iterative sequences are obtained in an uniformly convex and uniformly smooth Banach space. As
applications, convex feasibility problems, equilibrium problems, variational inequality problems, and zeros of maximal monotone
operators are studied.

1. Introduction

Throughout this paper, we always assume that 𝐸 is a real
Banach space, 𝐸∗ is the dual space of 𝐸, 𝐶 is a nonempty
closed convex subset of 𝐸 and ⟨⋅, ⋅⟩ is the pairing between 𝐸,
and 𝐸

∗. We denote by N and R the sets of positive integers
and real numbers, respectively.

Let 𝑓 : 𝐶 × 𝐶 → R be a bifunction and 𝐴 : 𝐶 →

𝐸
∗ a nonlinear mapping. The “so-called” generalized mixed

equilibrium problem is to find 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

The set of solutions to (1) is denoted by GMEP(𝑓, 𝐴, 𝜑),
that is,

GMEP (𝑓, 𝐴, 𝜑) = {𝑥 ∈ 𝐶 : 𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩

+ 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶} .

(2)

1.1. Analysis of Special Cases. (1) If 𝜑(⋅) ≡ 0, the problem (1)
reduces to the generalized equilibrium problem, which is to
find 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The set of solutions to (3) is denoted by GEP(𝑓, 𝐴).

(2) If 𝐴 ≡ 0, the problem (1) reduces to the mixed
equilibrium problem, which is to find 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (4)

The set of solutions to (4) is denoted by MEP(𝑓, 𝜑).
(3) If 𝑓(⋅, ⋅) ≡ 0, the problem (1) reduces to the mixed

variational inequality of Browder type, which is to find 𝑥 ∈ 𝐶

such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (5)

The set of solutions to (5) is denoted by MVI(𝐴, 𝜑, 𝐶).
(4) If 𝑓(⋅, ⋅) ≡ 0 in (3), the problem (3) reduces to the

classic variational inequality, which is to find 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (6)

which is called the Hartmann-Stampacchia variational
inequality. The set of solutions to (6) is denoted by VI(𝐴, 𝐶).

(5) If 𝐴 ≡ 0 in (3), the problem (3) reduces to the classic
equilibrium problem, which is to find 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (7)

The set of solutions to (7) is denoted by EP(𝑓). Given a
mapping 𝑇 : 𝐶 → 𝐸

∗, let 𝑓(𝑥, 𝑦) = ⟨𝑇𝑥, 𝑦 − 𝑥⟩ for all
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𝑥, 𝑦 ∈ 𝐶. Then 𝑝 ∈ EP(𝑓) if and only if ⟨𝑇𝑝, 𝑦 −𝑝⟩ ≥ 0 for all
𝑦 ∈ 𝐶; that is, 𝑝 is a solution of the variational inequality.

(6) If 𝑓(⋅, ⋅) ≡ 0 in (4), the problem (4) reduces to the
minimize problem, which is to find 𝑥 ∈ 𝐶 such that

𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (8)

The set of solutions to (8) is denoted by Argmin(𝜑).
The problem (1) is very general in the sense that it

includes, as special case, optimization problems, variational
inequalities, minimax problems, monotone inclusion prob-
lems, saddle point problems, vector equilibrium problems,
and the Nash equilibrium problem in noncooperative games.
Numerous problems in physics, optimization, and economics
reduce to finding a solution of some special case or the
problem (1). Some solution methods have been proposed to
solve the problems (1), (3)–(8) in Hilbert spaces and Banach
spaces; see, for example, [1–7] and references therein.

A Banach space 𝐸 is said to be strictly convex if ‖(𝑥 +

𝑦)/2‖ < 1 for all 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦.
Let 𝑆
𝐸
= {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1} be the unit sphere of 𝐸, and define

𝑓 : 𝑆
𝐸
× 𝑆
𝐸
×R \ {0} → R by

𝑓 (𝑥, 𝑦, 𝑡) =

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡

(9)

for 𝑥, 𝑦 ∈ 𝑆
𝐸
and 𝑡 ∈ R \ {0}. A Banach space 𝐸 is said

to be smooth if the limit lim
𝑡→0

𝑓(𝑥, 𝑦, 𝑡) exists for each
𝑥, 𝑦 ∈ 𝑆

𝐸
. It is also said to be uniformly smooth if the limit

lim
𝑡→0

𝑓(𝑥, 𝑦, 𝑡) is attained uniformly for (𝑥, 𝑦) ∈ 𝑆
𝐸
× 𝑆
𝐸
.

Themodulus of convexity of𝐸 is the function 𝛿 : [0, 2] →
[0, 1] defined by

𝛿 (𝜀) = inf {1 −


𝑥 + 𝑦

2


: 𝑥, 𝑦 ∈ 𝐸,

‖𝑥‖ =
𝑦
 = 1,

𝑥 − 𝑦
 ≥ 𝜀} .

(10)

A Banach space 𝐸 is uniformly convex if and only if 𝛿(𝜀) > 0

for all 𝜀 ∈ (0, 2]. Let 𝑝 be a fixed real number with 𝑝 ≥ 2.
A Banach space 𝐸 is said to be 𝑝-uniformly convex if there
exists a constant 𝑐 > 0 such that 𝛿(𝜀) ≥ 𝑐𝜀

𝑝 for all 𝜀 ∈ [0, 2].
Observe that every 𝑝-uniformly convex is uniformly convex.
One should note that no Banach space is 𝑝-uniformly convex
for 1 < 𝑝 < 2. It is well known that 𝐿

𝑝
(𝑙
𝑝
) or 𝑊𝑝

𝑚
is 𝑝-

uniformly convex if 𝑝 ≥ 2 and 2-uniformly convex if 1 <

𝑝 ≤ 2; see [8] for more details.
For each𝑝 > 1, the generalized dualitymapping 𝐽

𝑝
: 𝐸 →

2
𝐸
∗

is defined by

𝐽
𝑝
(𝑥) = {𝑥

∗

∈ 𝐸
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
𝑝

,

𝑥
∗ = ‖𝑥‖

𝑝−1

} , ∀𝑥 ∈ 𝐸.

(11)

In particular, if 𝑝 = 2, 𝐽
𝑝
is called the normalized duality

mapping. If 𝐸 is a Hilbert space, then 𝐽
𝑝

= 𝐼, where 𝐼

is the identity mapping. In this paper, We denote by 𝐽 the

normalized duality mapping. It is known that the duality
mapping 𝐽 has the following properties:

(i) if 𝐸 is smooth, then 𝐽 is single valued;
(ii) if 𝐸 is strictly convex, then 𝐽 is one to one;
(iii) if 𝐸 is reflexive, then 𝐽 is surjective;
(iv) if 𝐸 is uniformly smooth, then 𝐽 is uniformly norm-

to-norm continuous on each bounded subset of 𝐸;
(v) if 𝐸∗ is uniformly convex, then 𝐽 is uniformly contin-

uous on bounded subsets of 𝐸 and 𝐽 is single valued
and also one to one (see [9–12]).

Let 𝐸 be a smooth Banach space. Consider the function
defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐸. (12)

It is obvious from the definition of the function 𝜙 that

(‖𝑥‖ −
𝑦
)
2

≤ 𝜙 (𝑥, 𝑦) ≤ (‖𝑥‖ +
𝑦
)
2

, ∀𝑥, 𝑦 ∈ 𝐸. (13)

We also know that 𝜙(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 (see [13]).
Moreover, if 𝐸 is a Hilbert space, (12) reduces to 𝜙(𝑥, 𝑦) =

‖𝑥 − 𝑦‖
2, for any 𝑥, 𝑦 ∈ 𝐸.

Let 𝐶 be a closed convex subset of 𝐸, and let 𝑇 be a
mapping from𝐶 into itself.We denote by𝐹(𝑇) the set of fixed
points of 𝑇. A point 𝑝 in 𝐶 is said to be an asymptotic fixed
point of 𝑇 [14] if 𝐶 contains a sequence {𝑥

𝑛
} which converges

weakly to 𝑝 such that the strong lim
𝑛→∞

(𝑥
𝑛
− 𝑇𝑥
𝑛
) = 0. The

set of asymptotic fixed points of 𝑇 will be denoted by 𝐹(𝑇). A
point 𝑝 in 𝐶 is said to be a strong asymptotic fixed point of 𝑇
[14] if𝐶 contains a sequence {𝑥

𝑛
}which converges strong to𝑝

such that lim
𝑛→∞

‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ = 0.The set of strong asymptotic

fixed points of 𝑇 will be denoted by 𝐹(𝑇).
Let 𝑇 : 𝐶 → 𝐶 be a mapping, and recall the following

definition:

(a) 𝑇 is called nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶; (14)

(b) 𝑇 is called relatively nonexpansive if 𝐹(𝑇) = 𝐹(𝑇) ̸= 0

and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ; (15)

(c) amapping𝑇 is said to beweak relatively nonexpansive
if 𝐹(𝑇) = 𝐹(𝑇) ̸= 0 and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ; (16)

(d) a mapping 𝑇 is called hemirelatively nonexpansive if
𝐹(𝑇) ̸= 0 and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) . (17)

Remark 1. From the definitions, it is obvious that a relatively
nonexpansive mapping is a weak relatively nonexpansive
mapping, and a weak relatively nonexpansive mapping is a
hemi-relatively nonexpansive mapping, but the converse is
not true.
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Next, we give an example which is a closed hemirelatively
nonexpansive mapping.

Example 2. Let Π
𝐶
be the generalized projection from a

smooth, strictly convex, and reflexive Banach space 𝐸 onto a
nonempty closed convex subset𝐶 ⊂ 𝐸.ThenΠ

𝐶
is a relatively

nonexpansive mapping, and then it is also a closed hemi-
relatively nonexpansive mapping.

In 2005, Matsushita and Takahashi [13] obtained strong
convergence theorems for a single relatively nonexpansive
mapping in a uniformly convex and uniformly smooth
Banach space 𝐸. To be more precise, they proved the follow-
ing theorem.

Theorem MT (see Matsushita and Takahashi [13, Theorem
3.1]). Let 𝐸 be precisely a uniformly convex and uniformly
smooth Banach space and 𝐶 a nonempty closed convex subset
of 𝐸, and let 𝑇 be a relatively nonexpansive mapping from 𝐶

into itself, and let {𝛼
𝑛
} be a sequence of real numbers such that

0 ≤ 𝛼
𝑛
< 1 and lim sup

𝑛→∞
𝛼
𝑛
< 1. Suppose that {𝑥

𝑛
} is given

by

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= Π
𝐶
(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥, ∀𝑛 ∈ N ∪ {0} ,

(18)

where 𝐽 is the duality mapping on 𝐸. If 𝐹(𝑇) is nonempty,
then {𝑥

𝑛
} converges strongly to Π

𝐹(𝑇)
𝑥, where Π

𝐹(𝑇)
is the

generalized projection from 𝐶 onto 𝐹(𝑇).

Since then, algorithms constructed for solving the same
equilibrium problem, variational inequality problems, and
fixed point of relatively nonexpansive mappings (or weak
relatively nonexpansive mappings or hemi-relatively nonex-
panisve mappings) have been further developed by many
authors. For a part of works related to these problems,
please see [4, 15–18], and for the hybrid algorithm projection
methods for these problems, please see [19–44] and the
references therein.

Motivated and inspired by the results in the literature,
in this paper we focus our attention on finding a common
fixed point of two countable families of hemi-relatively
nonexpansive mappings (we shall give the definition of a
countable family of hemi-relatively nonexpansive mappings
in the next section) by using a simple hybrid algorithm. Fur-
thermore, we will give some applications of ourmain result in
equilibrium problems, variational inequality problems, and
convex feasibility problems.

2. Preliminaries

Let 𝐶 be a closed convex subset of 𝐸, and let {𝑇
𝑛
}
∞

𝑛=0
be a

countable family of mappings from 𝐶 into itself. We denote
by 𝐹 the set of common fixed points of {𝑇

𝑛
}
∞

𝑛=0
. That is,

𝐹 = ⋂
∞

𝑛=0
𝐹(𝑇
𝑛
), where 𝐹(𝑇

𝑛
) denote the set of fixed points

of 𝑇
𝑛
, for all 𝑛 ∈ N ∪ {0}.
Recall that {𝑇

𝑛
}
∞

𝑛=0
is said to be uniformly closed, if 𝑝 ∈

⋂
∞

𝑛=1
𝐹(𝑇
𝑛
), whenever {𝑥

𝑛
} ⊂ 𝐶 converges strongly to 𝑝 and

‖𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞ (see [45] for more details).

A point 𝑝 ∈ 𝐶 is said to be an asymptotic fixed point of
{𝑇
𝑛
}
∞

𝑛=0
if𝐶 contains a sequence {𝑥

𝑛
}which converges weakly

to 𝑝 such that lim
𝑛→∞

‖𝑇
𝑛
𝑥
𝑛
−𝑥
𝑛
‖ = 0.The set of asymptotic

fixed points of {𝑇
𝑛
}
∞

𝑛=0
will be denoted by 𝐹({𝑇

𝑛
}
∞

𝑛=0
).

A point 𝑝 ∈ 𝐶 is said to be a strong asymptotic fixed
point of {𝑇

𝑛
}
∞

𝑛=0
if𝐶 contains a sequence {𝑥

𝑛
}which converges

strongly to 𝑝 such that lim
𝑛→∞

‖𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ = 0. The set of

strong asymptotic fixed points of {𝑇
𝑛
}
∞

𝑛=0
will be denoted by

𝐹({𝑇
𝑛
}
∞

𝑛=0
).

Using the definition of (strong) asymptotic fixed point of
{𝑇
𝑛
}
∞

𝑛=0
, Su et al. [46] introduced the following definitions.

Definition 3 (see Su et al. [46]). Countable family of map-
pings {𝑇

𝑛
} is said to be countable family of relatively nonex-

pansive mappings if 𝐹({𝑇
𝑛
}
∞

𝑛=0
) = 𝐹({𝑇

𝑛
}
∞

𝑛=0
) ̸= 0 and

𝜙 (𝑝, 𝑇
𝑛
𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇

𝑛
) , 𝑛 ∈ N ∪ {0} .

(19)

Definition 4 (see Su et al. [46]). Countable family of map-
pings {𝑇

𝑛
} is said to be countable family of weak relatively

nonexpansive mappings if 𝐹({𝑇
𝑛
}
∞

𝑛=0
) = 𝐹({𝑇

𝑛
}
∞

𝑛=0
) ̸= 0 and

𝜙 (𝑝, 𝑇
𝑛
𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇

𝑛
) , 𝑛 ∈ N ∪ {0} .

(20)

Now, we introduce the definition of countable family
of hemi-relatively nonexpansive mappings which is more
general than countable family of relatively nonexpansive
mappings and countable family of weak relatively nonexpan-
sive mappings.

Definition 5. Countable family of mappings {𝑇
𝑛
} is said to be

countable family of hemi-relatively nonexpansive mappings
if 𝐹({𝑇

𝑛
}
∞

𝑛=0
) ̸= 0 and

𝜙 (𝑝, 𝑇
𝑛
𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇

𝑛
) , 𝑛 ∈ N ∪ {0} .

(21)

Remark 6. FromDefinitions 3–5, one has the following facts.

(1) The definitions of relatively nonexpansive mapping,
weak relatively nonexpansive mapping, and hemi-
relatively nonexpansive mapping are special cases of
Definitions 3, 4, and 5 as 𝑇

𝑛
≡ 𝑇 for all 𝑛 ∈ N ∪ {0}.

(2) Countable family of hemi-relatively nonexpansive
mappings, which do not need the restriction
𝐹({𝑇
𝑛
}
∞

𝑛=0
) = 𝐹({𝑇

𝑛
}
∞

𝑛=0
) (or 𝐹({𝑇

𝑛
}
∞

𝑛=0
) = 𝐹({𝑇

𝑛
}
∞

𝑛=0
)),

is more general than countable family of relatively
nonexpansive mappings (or countable family of weak
relatively nonexpansive mappings).

Next we give an example which is a countable family of
hemi-relatively nonexpansive mappings but not a countable
family of relatively nonexpansive mappings.
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Example 7. Let 𝐸 be any smooth Banach space and 𝑥
0
= (1 +

1/𝑛)
𝑛

𝑥
0

̸= 0 any element of 𝐸. Define a countable family of
mappings 𝑇

𝑛
: 𝐸 → 𝐸 as follows: for all 𝑛 ≥ 1,

𝑇
𝑛
(𝑥) =

{{{

{{{

{

(
1

2
+

1

2𝑛+1
)𝑥
0
, if𝑥 = (

1

2
+

1

2𝑛
)𝑥
0
,

−𝑥, if𝑥 ̸= (
1

2
+

1

2𝑛
)𝑥
0
.

(22)

Then {𝑇
𝑛
}
∞

𝑛=1
is a countable family of hemi-relatively non-

expansive mappings but not a countable family of relatively
nonexpansive mappings.

Proof. First, it is obvious that 𝑇
𝑛
has a unique fixed point 0;

that is, 𝐹(𝑇
𝑛
) = {0} for all 𝑛 ≥ 1. In addition, one easily sees

that
𝑇𝑛𝑥

 ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝐸, 𝑛 ≥ 1. (23)

This implies that
𝑇𝑛𝑥



2

− ‖𝑥‖
2

≤ 2 ⟨0, 𝐽𝑇
𝑛
𝑥 − 𝐽𝑥⟩ = 2 ⟨𝑝, 𝐽𝑇

𝑛
𝑥 − 𝐽𝑥⟩ , (24)

for all 𝑝 ∈ ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
). It follows from the above inequality

that
𝑝


2

− 2 ⟨𝑝, 𝐽𝑇
𝑛
𝑥⟩ +

𝑇𝑛𝑥


2

≤
𝑝


2

− 2 ⟨𝑝, 𝐽𝑥⟩ + ‖𝑥‖
2

,

(25)

for all 𝑝 ∈ ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
) and 𝑥 ∈ 𝐸. That is,

𝜙 (𝑝, 𝑇
𝑛
𝑥) ≤ 𝜙 (𝑝, 𝑥) , (26)

for all 𝑝 ∈ ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
) and 𝑥 ∈ 𝐸. Hence, {𝑇

𝑛
}
∞

𝑛=1
is a

countable family of hemi-relatively nonexpansive mappings.
On the other hand, letting

𝑥
𝑛
= (

1

2
+

1

2𝑛
)𝑥
0
, ∀𝑛 ≥ 1, (27)

from the definition of 𝑇
𝑛
, one has

𝑇
𝑛
𝑥
𝑛
= (

1

2
+

1

2𝑛+1
)𝑥
0
, ∀𝑛 ≥ 1, (28)

which implies that ‖𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
‖ → 0 and 𝑥

𝑛
→ 𝑒�̆�

0
(𝑥
𝑛
⇀

𝑒�̆�
0
) as 𝑛 → ∞. That is, 𝑒�̆�

0
∈ 𝐹({𝑇

𝑛
}
∞

𝑛=0
) but 𝑒�̆�

0
∉

𝐹({𝑇
𝑛
}
∞

𝑛=0
), which shows that {𝑇

𝑛
}
∞

𝑛=1
is not a countable family

of relatively nonexpansive mappings.

In what follows, we will need the following lemmas.

Lemma 8 (see Alber [47]). Let 𝐶 be a convex subset of a
smooth real Banach space 𝐸. Let 𝑥 ∈ 𝐸 and 𝑥

0
∈ 𝐶. Then

𝑥
0
= Π
𝐶
𝑥 if and only if

⟨𝑧 − 𝑥
0
, 𝐽𝑥
0
− 𝐽𝑥⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (29)

Lemma 9 (see Alber [47]). Let 𝐶 be a nonempty, closed, and
convex subset of a reflexive, strictly convex, and smooth real
Banach space 𝐸, and let 𝑥 ∈ 𝐸. Then for each 𝑦 ∈ 𝐶,

𝜙 (𝑦,Π
𝐶
𝑥) + 𝜙 (Π

𝐶
𝑥, 𝑥) ≤ 𝜙 (𝑦, 𝑥) . (30)

Lemma 10 (see Kamimura and Takahashi [48]). Let 𝐸 be a
uniformly convex and smooth real Banach space, and let {𝑥

𝑛
},

{𝑦
𝑛
} be two sequences of 𝐸. If 𝜙(𝑥

𝑛
, 𝑦
𝑛
) → 0 and either {𝑥

𝑛
}

or {𝑦
𝑛
} is bounded, then ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0.

3. Main Results

Now, we give our main results in this paper.

Theorem 11. Let𝐶 be a nonempty, closed, and convex subset of
a uniformly smooth and uniformly convex Banach space 𝐸. Let
{𝑆
𝑛
}, {𝑇
𝑛
} be two uniformly closed countable families of hemi-

relatively nonexpansive mappings from 𝐶 into itself such that

F = {

∞

⋂

𝑛=1

𝐹 (𝑆
𝑛
)}⋂{

∞

⋂

𝑛=1

𝐹 (𝑇
𝑛
)} ̸= 0. (31)

For a point 𝑥
0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence

generated by the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝑆

𝑛
𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑇

𝑛
𝑥
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(32)

where the sequences 𝑦
𝑛

= 𝑇
𝑛
𝑥
𝑛
. Then the sequence {𝑥

𝑛
}

converges strongly to a point 𝑞 = ΠF𝑥0, where ΠF is the
generalized projection from 𝐶 ontoF.

Proof. We first show that 𝐶
𝑛+1

is closed and convex. It is
obvious that 𝐶

𝑛+1
is closed. Since

𝜙 (𝑧, 𝑆
𝑛
𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑇

𝑛
𝑥
𝑛
)

⇐⇒
𝑆𝑛𝑦𝑛



2

−
𝑇𝑛𝑥𝑛



− 2 ⟨𝑧, 𝐽𝑆
𝑛
𝑦
𝑛
− 𝐽𝑇
𝑛
𝑥
𝑛
⟩ ≥ 0,

(33)

𝜙 (𝑧, 𝑇
𝑛
𝑥
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)

⇐⇒
𝑇𝑛𝑥𝑛



2

−
𝑥𝑛



− 2 ⟨𝑧, 𝐽𝑇
𝑛
𝑥
𝑛
− 𝐽𝑥
𝑛
⟩ ≥ 0,

(34)

𝐶
𝑛+1

is convex. Therefore, 𝐶
𝑛+1

is closed and convex for all
𝑛 ∈ N ∪ {0}.

Let 𝑢 ∈ F; from the definition of 𝑆
𝑛
and 𝑇

𝑛
, we have

𝜙 (𝑢, 𝑆
𝑛
𝑦
𝑛
) ≤ 𝜙 (𝑢, 𝑦

𝑛
) = 𝜙 (𝑢, 𝑇

𝑛
𝑥
𝑛
) ≤ 𝜙 (𝑢, 𝑥

𝑛
) . (35)

Hence, we have 𝑢 ∈ 𝐶
𝑛+1

. This implies that F ⊂ 𝐶
𝑛+1

for
arbitrary 𝑛 ∈ N ∪ {0}.

Noticing 𝑥
𝑛
= Π
𝐶
𝑛

𝑥
0
, from Lemma 8, we have

⟨𝑥
𝑛
− 𝑧, 𝐽𝑥

0
− 𝐽𝑥
𝑛
⟩ ≥ 0, ∀𝑧 ∈ 𝐶

𝑛
. (36)

SinceF ⊂ 𝐶
𝑛
for all 𝑛 ∈ N ∪ {0}, we arrive at

⟨𝑥
𝑛
− 𝑝, 𝐽𝑥

0
− 𝐽𝑥
𝑛
⟩ ≥ 0, ∀𝑝 ∈ F. (37)

From Lemma 9, we have

𝜙 (𝑥
𝑛
, 𝑥
0
) = 𝜙 (Π

𝐶
𝑛

𝑥
0
, 𝑥
0
)

≤ 𝜙 (𝑝, 𝑥
0
) − 𝜙 (𝑝, 𝑥

𝑛
) ≤ 𝜙 (𝑝, 𝑥

0
)

(38)
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for each 𝑝 ∈ F ⊂ 𝐶
𝑛
and for all 𝑛 ∈ N ∪ {0}. So the sequence

{𝜙(𝑥
𝑛
, 𝑥
0
)} is bounded. On the other hand, noticing that 𝑥

𝑛
=

Π
𝐶
𝑛

𝑥
0
and 𝑥

𝑛+1
= Π
𝐶
𝑛+1

𝑥
0
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, we have

𝜙 (𝑥
𝑛
, 𝑥
0
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
0
) , ∀𝑛 ∈ N ∪ {0} . (39)

This implies that the sequence {𝜙(𝑥
𝑛
, 𝑥
0
)} is nondecreasing. It

follows that the limit of {𝜙(𝑥
𝑛
, 𝑥
0
)} exists. By the construction

of 𝐶
𝑛
, we have that 𝑥

𝑚
= Π
𝐶
𝑚

𝑥
0
∈ 𝐶
𝑚
⊂ 𝐶
𝑛
for any positive

integer𝑚 ≥ 𝑛. It follows that

𝜙 (𝑥
𝑚
, 𝑥
𝑛
) = 𝜙 (𝑥

𝑚
, Π
𝐶
𝑛

𝑥
0
) ≤ 𝜙 (𝑥

𝑚
, 𝑥
0
) − 𝜙 (𝑥

𝑛
, 𝑥
0
) .

(40)

Letting 𝑚, 𝑛 → ∞ in (40), by the existence of the limit
of {𝜙(𝑥

𝑛
, 𝑥
0
)}, we have 𝜙(𝑥

𝑚
, 𝑥
𝑛
) → 0. It follows from

Lemma 10 that 𝑥
𝑛
− 𝑥
𝑚

→ 0 as 𝑚, 𝑛 → ∞. Hence {𝑥
𝑛
}

is a Cauchy sequence. Therefore, there exists a point 𝑞 ∈ 𝐶

such that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞.

Since 𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, we have from the

definition of 𝐶
𝑛+1

that

𝜙 (𝑥
𝑛+1

, 𝑆
𝑛
𝑦
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑇
𝑛
𝑥
𝑛
)

≤ 𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
) , ∀𝑛 ∈ N ∪ {0} .

(41)

From the inequality above, we have

𝜙 (𝑥
𝑛+1

, 𝑇
𝑛
𝑥
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
) , ∀𝑛 ∈ N ∪ {0} ,

𝜙 (𝑥
𝑛+1

, 𝑆
𝑛
𝑦
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
) , ∀𝑛 ∈ N ∪ {0} .

(42)

On the other hand, taking𝑚 = 𝑛 + 1 in (40), we have

lim
𝑛→∞

𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (43)

From (42) and (43), we have that

lim
𝑛→∞

𝜙 (𝑥
𝑛+1

, 𝑇
𝑛
𝑥
𝑛
) = 0,

lim
𝑛→∞

𝜙 (𝑥
𝑛+1

, 𝑆
𝑛
𝑦
𝑛
) = 0.

(44)

By using Lemma 10, the inequalities (43) and (44) follow
that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0, (45)

lim
𝑛→∞

𝑥𝑛+1 − 𝑇𝑛𝑥𝑛
 = 0, (46)

lim
𝑛→∞

𝑥𝑛+1 − 𝑆𝑛𝑦𝑛
 = 0. (47)

Respectively, noticing that
𝑥𝑛 − 𝑇𝑛𝑥𝑛

 =
𝑥𝑛 − 𝑥𝑛+1 + 𝑥𝑛+1 − 𝑇𝑛𝑥𝑛



≤
𝑥𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑇𝑛𝑥𝑛

 .

(48)

It follows from (45) and (46) that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑛𝑥𝑛
 = 0. (49)

From uniform closedness of {𝑇
𝑛
}, we get 𝑞 ∈ ⋂

∞

𝑛=1
𝐹(𝑇
𝑛
). On

the other hand, noticing that 𝑦
𝑛
= 𝑇
𝑛
𝑥
𝑛
, we have

lim
𝑛→∞

𝑦
𝑛
= lim
𝑛→∞

𝑥
𝑛
= 𝑞,

𝑦𝑛 − 𝑆𝑛𝑦𝑛
 =

𝑦𝑛 − 𝑥𝑛+1 + 𝑥𝑛+1 − 𝑆𝑛𝑦𝑛


≤
𝑦𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑆𝑛𝑦𝑛



≤
𝑇𝑛𝑥𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑆𝑛𝑦𝑛

 .

(50)

It follows from (46) and (47) that
lim
𝑛→∞

𝑦𝑛 − 𝑆𝑛𝑦𝑛
 = 0. (51)

From uniform closedness of {𝑆
𝑛
}, we also have 𝑞 ∈

⋂
∞

𝑛=1
𝐹(𝑆
𝑛
). Therefore, 𝑞 ∈ F.

Finally, we show that 𝑞 = ΠF𝑥0. From 𝑥
𝑛
= Π
𝐶
𝑛

𝑥
0
, we

have

⟨𝑥
𝑛
− 𝑝, 𝐽𝑥

0
− 𝐽𝑥
𝑛
⟩ ≥ 0, ∀𝑝 ∈ F ⊂ 𝐶

𝑛
. (52)

Taking the limit as 𝑛 → ∞ in (52), we obtain

⟨𝑞 − 𝑝, 𝐽𝑥
0
− 𝐽𝑞⟩ ≥ 0, ∀𝑝 ∈ F, (53)

and hence 𝑝 = ΠF𝑥0 from Lemma 8. This completes the
proof.

Remark 12. Theorem 11 improves Theorem 3.15 of Zhang et
al. [49] in the following senses:

(1) from the class of a countable family of weak relatively
nonexpansive mappings to the one of a countable
family of hemi-relatively nonexpansive mappings;

(2) from a single countable family of mappings to two
countable families of mappings.

When 𝑇
𝑛
= 𝐼 in (32), we can obtain the following corol-

lary immediately.

Corollary 13. Let𝐶 be a nonempty, closed and convex subset of
a uniformly smooth and uniformly convex Banach space 𝐸. Let
{𝑆
𝑛
} be a uniformly closed countable family of hemi-relatively

nonexpansive mappings from 𝐶 into itself such that

F = {

∞

⋂

𝑛=1

𝐹 (𝑆
𝑛
)} ̸= 0. (54)

For a point 𝑥
0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence

generated by the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝑆

𝑛
𝑥
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
.

(55)

Then the sequence {𝑥
𝑛
} converges strongly to a point 𝑞 = ΠF𝑥0,

where ΠF is the generalized projection from 𝐶 ontoF.

Remark 14. Wenotice that if {𝑆
𝑛
} is a countable family ofweak

relatively nonexpansive mappings, Corollary 13 is still held.
Therefore, Corollary 13 extends and improves Theorem 3.15
in [49].
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4. Applications to Convex Feasibility Problems

In this section, we consider the following convex feasibility
problem (CFP):

finding an 𝑥 ∈

∞

⋂

𝑛=1

𝐶
𝑛
, (56)

where 𝑛 ∈ N ∪ {0}, and {𝐶
𝑛
}
∞

𝑛=0
is an intersecting closed

convex subset sequence of a Banach space 𝐸. This prob-
lem is a frequently appearing problem in diverse areas of
mathematical and physical sciences. There is a considerable
investigation on (CFP) in the framework of Hilbert spaces
which captures applications in various disciplines such as
image restoration [50–53], computer tomography [54], and
radiation therapy treatment planning [55]. In computer
tomography with limited data, in which an unknown image
has to be reconstructed from a priori knowledge and from
measured results, each piece of information gives a constraint
which in turn gives rise to a convex set 𝐶

𝑛
to which the

unknown image should belong (see [56]).
UsingTheorem 11, we discuss the convex feasibility prob-

lems as an application.

Theorem 15. Let𝐶 be a nonempty, closed, and convex subset of
a uniformly smooth and uniformly convex Banach space 𝐸. Let
{Ω
𝑛
}
∞

𝑛=0
, {Ω∗
𝑛
}
∞

𝑛=0
be two countable families of nonempty closed

convex subset of 𝐶 such that

Ω = {

∞

⋂

𝑛=0

Ω
𝑛
}⋂{

∞

⋂

𝑛=0

Ω
∗

𝑛
} ̸= 0. (57)

For a point 𝑥
0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence

generated by the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, Π

Ω
𝑛

𝑦
𝑛
) ≤ 𝜙 (𝑧, Π

Ω
∗

𝑛

𝑥
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(58)

where the sequences 𝑦
𝑛
= Π
Ω
∗

𝑛

𝑥
𝑛
. Then the sequence {𝑥

𝑛
}

converges strongly to a point 𝑞 = Π
Ω
𝑥
0
, where Π

Ω
is the

generalized projection from 𝐶 onto Ω.

Proof. From Lemma 9, we easily have that {Π
Ω
𝑛

} and {Π
Ω
∗

𝑛

}

are two countable families of hemi-relatively nonexpansive
mappings. In view of the continuity ofΠ

Ω
𝑛

andΠ
Ω
∗

𝑛

, we have
that {Π

Ω
𝑛

} and {Π
Ω
∗

𝑛

} are two uniformly closed countable
families of hemi-relatively nonexpansive mappings. Thus, by
using Theorem 11, we have that the sequence {𝑥

𝑛
} converges

strongly to a point 𝑞 = Π
Ω
𝑥
0
. This completes the proof.

If we only consider a countable family of nonempty closed
convex subset of𝐶, the following corollary can be obtained by
usingTheorem 15.

Corollary 16. Let 𝐶 be a nonempty, closed, and convex subset
of a uniformly smooth and uniformly convex Banach space 𝐸.

Let {Ω
𝑛
}
∞

𝑛=0
be a countable family of nonempty closed convex

subset of 𝐶 such that

Ω = {

∞

⋂

𝑛=0

Ω
𝑛
} ̸= 0. (59)

For a point 𝑥
0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence

generated by the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, Π

Ω
𝑛

𝑥
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
.

(60)

Then the sequence {𝑥
𝑛
} converges strongly to a point 𝑞 = Π

Ω
𝑥
0
,

where Π
Ω
is the generalized projection from 𝐶 onto Ω.

Proof. Putting Π
Ω
∗

𝑛

≡ 𝐼 for all 𝑛 ∈ N ∪ {0} in algorithm
(58), the conclusion can be obtained fromTheorem 15 imme-
diately.

5. Applications to Generalized Mixed
Equilibrium Problems

In this section, we apply our main results to prove some
strong convergence theorems concerning generalized mixed
equilibrium problems in a Banach space 𝐸.

Let 𝐴 : 𝐶 → 𝐸
∗ be a mapping. First, we recall the

following definition:
(I) 𝐴 is called monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (61)

(II)𝐴 is called 𝛼-inverse stronglymonotone if there exists
a constant 𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
𝐴𝑥 − 𝐴𝑦
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, ∀𝑥, 𝑦 ∈ 𝐶. (62)

We remark here that an 𝛼-inverse strongly monotone 𝐴 is
(1/𝛼)-Lipschitz continuous.

For solving the generalized mixed equilibrium problem
(1), let us assume that the nonlinear mapping 𝐴 : 𝐶 → 𝐸

∗

is monotone and continuous, the function 𝜑 : 𝐶 → R is
convex and lower semicontinuous, and the bifunction𝑓 : 𝐶 ×

𝐶 → R satisfies the following conditions:

(𝐴
1
) 𝑓(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;

(𝐴
2
) 𝑓 is monotone, that is, 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0, for all
𝑥, 𝑦 ∈ 𝐶;

(𝐴
3
) lim sup

𝑡↓0
𝑓(𝑥 + 𝑡(𝑧 − 𝑥), 𝑦) ≤ 𝑓(𝑥, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈

𝐶;
(𝐴
4
) the function 𝑦 → 𝑓(𝑥, 𝑦) is convex and lower
semicontinuous for all 𝑥 ∈ 𝐶.

The following result can be found in Blum and Oettli [1].

Lemma 17 (see Blum and Oettli [1]). Let 𝐶 be a closed convex
subset of a smooth, strictly convex, and reflexive Banach space
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𝐸, let 𝑓 be a bifunction from 𝐶 × 𝐶 toR satisfying (𝐴
1
)–(𝐴
4
),

and let 𝑟 > 0 and 𝑥 ∈ 𝐸. Then, there exists 𝑧 ∈ 𝐶 such that

𝑓 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (63)

Lemma 18. Let𝐶 be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space 𝐸, let 𝐴 : 𝐶 → 𝐸

∗

be a monotone and continuous mapping, let the function 𝜑 :

𝐶 → R be convex and lower semicontinuous, and let 𝑓 be
a bifunction from 𝐶 × 𝐶 to R satisfying (𝐴

1
)–(𝐴
4
). Then,

𝑓(𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑(𝑦) − 𝜑(𝑥) satisfies (𝐴
1
)–(𝐴
4
).

Proof. For convenience, we set 𝐹(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 −

𝑥⟩+𝜑(𝑦)−𝜑(𝑥). So, we only need to prove that𝐹(𝑥, 𝑦) satisfies
(𝐴
1
)–(𝐴
4
).

(I) We show that 𝐹(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶. Since 𝑓(𝑥, 𝑦)
satisfies (𝐴

1
), we have

𝐹 (𝑥, 𝑥) = 𝑓 (𝑥, 𝑥) + ⟨𝐴𝑥, 𝑥 − 𝑥⟩

+ 𝜑 (𝑥) − 𝜑 (𝑥) = 𝑓 (𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝐶.

(64)

(II) We show that 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) +
𝐹(𝑦, 𝑥) ≤ 0, for all 𝑥, 𝑦 ∈ 𝐶; since 𝐴 is continuous and
monotone, from (𝐴

2
), we have

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑥)

= 𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥)

+ 𝑓 (𝑦, 𝑥) + ⟨𝐴𝑦, 𝑥 − 𝑦⟩ + 𝜑 (𝑥) − 𝜑 (𝑦)

= 𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝑓 (𝑦, 𝑥) + ⟨𝐴𝑦, 𝑥 − 𝑦⟩

≤ 0 + ⟨𝐴𝑥 − 𝐴𝑦, 𝑦 − 𝑥⟩ = − ⟨𝐴𝑦 − 𝐴𝑧, 𝑦 − 𝑥⟩ ≤ 0.

(65)

(III) We show that lim sup
𝑡↓0
𝐹(𝑥 + 𝑡(𝑧 − 𝑥), 𝑦) ≤ 𝐹(𝑥, 𝑦),

for all 𝑥, 𝑦, 𝑧 ∈ 𝐶; Since 𝐴 is continuous and 𝜑 is lower
semicontinuous, we have

lim sup
𝑡↓0

𝐹 (𝑥 + 𝑡 (𝑧 − 𝑥) , 𝑦)

= lim sup
𝑡↓0

𝑓 (𝑥 + 𝑡 (𝑧 − 𝑥) , 𝑦)

+ lim sup
𝑡↓0

⟨𝐴 (𝑥 + 𝑡 (𝑧 − 𝑥)) , 𝑦 − (𝑥 + 𝑡 (𝑧 − 𝑥))⟩

+ lim sup
𝑡↓0

[𝜑 (𝑦) − 𝜑 (𝑥 + 𝑡 (𝑧 − 𝑥))]

≤ 𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥) = 𝐹 (𝑥, 𝑦) .

(66)

(IV) We show that the function 𝑦 → 𝐹(𝑥, 𝑦) is convex
and lower semicontinuous for each 𝑥 ∈ 𝐶.

For each 𝑥 ∈ 𝐶, for all 𝑡 ∈ (0, 1) and for all 𝑦, 𝑧 ∈ 𝐶, since
𝑓 satisfies (𝐴

4
) and 𝜑 is convex, we have

𝐹 (𝑥, 𝑡𝑦 + (1 − 𝑡) 𝑧)

= 𝑓 (𝑥, 𝑡𝑦 + (1 − 𝑡) 𝑧)

+ ⟨𝐴𝑥, 𝑡𝑦 + (1 − 𝑡) 𝑧 − 𝑥⟩

+ 𝜑 (𝑡𝑦 + (1 − 𝑡) 𝑧) − 𝜑 (𝑥)

= 𝑡 [𝑓 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥)]

+ (1 − 𝑡) [𝑓 (𝑥, 𝑡) + ⟨𝐴𝑥, 𝑧 − 𝑥⟩ + 𝜑 (𝑧) − 𝜑 (𝑥)]

= 𝑡𝐹 (𝑥, 𝑦) + (1 − 𝑡) 𝐹 (𝑥, 𝑧) .

(67)

This completes the proof.

Lemma 19 (see Takahashi and Zembayashi [17]). Let 𝐶 be a
closed convex subset of a uniformly smooth, strictly convex, and
reflexive Banach space𝐸, and let𝑓 be a bifunction from𝐶×𝐶 to
R satisfying (𝐴

1
)–(𝐴
4
). For 𝑟 > 0 and 𝑥 ∈ 𝐸, define amapping

𝑇
𝑟
: 𝐸 → 𝐶 as follows:

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩

≥ 0, ∀𝑦 ∈ 𝐶}

(68)

for all 𝑥 ∈ 𝐸. Then, the following properties hold:

(1) 𝑇
𝑟
is single valued;

(2) 𝑇
𝑟
is a firmly nonexpansive-type mapping; that is, for

all 𝑥, 𝑦 ∈ 𝐸,

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦⟩ ≤ ⟨𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ ; (69)

(3) EP(𝑓) = 𝐹(𝑇
𝑟
) = 𝐹(𝑇

𝑟
);

(4) EP(𝑓) is closed and convex;

(5) 𝜙(𝑞, 𝑇
𝑟
𝑥) + 𝜙(𝑇

𝑟
𝑥, 𝑥) ≤ 𝜙(𝑞, 𝑥), for all 𝑥 ∈ 𝐸, 𝑞 ∈

𝐹(𝑇
𝑟
).

Lemma 20 (see Zhang et al. [57]). Let 𝐸 be a 𝑝-uniformly
convex with 𝑝 ≥ 0 and uniformly smooth Banach space, and
let 𝐶 be a nonempty closed convex subset of 𝐸. Let 𝑓 be a
bifunction from 𝐶 × 𝐶 toR satisfying (𝐴

1
)–(𝐴
4
). Let {𝑟

𝑛
} be a

positive real sequence such that lim
𝑛→∞

𝑟
𝑛
= 𝑟 > 0. Then the

sequence of mappings 𝑇
𝑟
𝑛

is uniformly closed.

Next, we shall apply Theorem 11 to solve two generalized
mixed equilibrium problems. To accomplish this purpose,
let 𝐴, 𝐵 : 𝐶 → 𝐸

∗ be two monotone and continuous
mappings, let the function 𝜑, 𝜓 : 𝐶 → R be convex and
lower semicontinuous, and let 𝑓 and 𝑔 be a bifunction from
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𝐶 × 𝐶 to R satisfying (𝐴
1
)–(𝐴
4
). For 𝑟 > 0 and 𝑥 ∈ 𝐸, define

two mappings 𝐽
𝑟
, 𝐾
𝑟
: 𝐸 → 𝐶 as follows:

𝐽
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) + ⟨𝐴𝑧, 𝑦 − 𝑧⟩ + 𝜑 (𝑦) − 𝜑 (𝑧)

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(70)

𝐾
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝑔 (𝑧, 𝑦) + ⟨𝐵𝑧, 𝑦 − 𝑧⟩ + 𝜓 (𝑦) − 𝜓 (𝑧)

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(71)

Theorem 21. Let 𝐸 be a 𝑝-uniformly convex with 𝑝 ≥ 2

and uniformly smooth Banach space, and let 𝐶 be a nonempty
closed convex subset of𝐸. Let𝐴, 𝐵 : 𝐶 → 𝐸

∗ be twomonotone
and continuous mappings, let the function 𝜑, 𝜓 : 𝐶 → R

be convex and lower semicontinuous, and let 𝑓 and 𝑔 be a
bifunction from 𝐶 × 𝐶 to R satisfying (𝐴

1
)–(𝐴
4
) such that

I = GMEP(𝑓, 𝐴, 𝜑)⋂GMEP(𝑔, 𝐵, 𝜓) ̸= 0. For a point 𝑥
0
∈

𝐶 chosen arbitrarily, let {𝑥
𝑛
} be a sequence generated by the

following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, V

𝑛
) ≤ 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(72)

where 𝑢
𝑛
= 𝐽
𝑟
𝑛

𝑥
𝑛
, V
𝑛
= 𝐾
𝑟
𝑛

𝑢
𝑛
, and lim

𝑛→∞
𝑟
𝑛
= 𝑟. Then the

sequence {𝑥
𝑛
} converges strongly to a point 𝑞 = ΠI𝑥0, where

ΠI is the generalized projection from 𝐶 ontoI.

Proof. From Lemmas 18 and 20, we learn that {𝐽
𝑟
𝑛

} and
{𝐾
𝑟
𝑛

} are uniformly closed. And by Lemma 19 (5), one can
easily get that {𝐽

𝑟
𝑛

} and {𝐾
𝑟
𝑛

} are uniformly closed countable
families of hemi-relatively nonexpansive mappings. Notice
that if 𝐸 is 𝑝-uniformly convex, it must be uniformly convex.
Therefore, by usingTheorem 11, we can obtain the conclusion
of Theorem 21. This completes the proof.

Theorem 22. Let 𝐸 be a 𝑝-uniformly convex with 𝑝 ≥ 2

and uniformly smooth Banach space, and let 𝐶 be a nonempty
closed convex subset of 𝐸. Let𝐴 : 𝐶 → 𝐸

∗ be a monotone and
continuous mappings, let the function 𝜑 : 𝐶 → R be convex
and lower semicontinuous and let𝑓 be a bifunction from𝐶×𝐶

to R satisfying (𝐴
1
)–(𝐴
4
) such that I = GMEP(𝑓, 𝐴, 𝜑) ̸= 0.

For a point 𝑥
0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence

generated by the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(73)

where 𝑢
𝑛
= 𝐽
𝑟
𝑛

𝑥
𝑛
and lim

𝑛→∞
𝑟
𝑛
= 𝑟. Then the sequence

{𝑥
𝑛
} converges strongly to a point 𝑞 = ΠI𝑥0, where ΠI is the

generalized projection from 𝐶 ontoI.

Proof. From Lemmas 18 and 20, we learn that {𝐽
𝑟
𝑛

} is uni-
formly closed. And by Lemma 19(5), one can easily get
that {𝐽

𝑟
𝑛

} is an uniformly closed countable family of hemi-
relatively nonexpansive mappings. Notice that if 𝐸 is 𝑝-
uniformly convex, it must be uniformly convex. Therefore,
by using Corollary 13, we can obtain the conclusion of
Theorem 21. This completes the proof.

If we let 𝑓 ≡ 0, 𝜑 ≡ 0 in (70) and 𝐵 ≡ 0, 𝜓 ≡ 0 in (71), the
following corollary can be obtained by usingTheorem 21.

Corollary 23. Let 𝐸 be a 𝑝-uniformly convex with 𝑝 ≥ 2

and uniformly smooth Banach space, and let 𝐶 be a nonempty
closed convex subset of 𝐸. Let 𝑔 be a bifunction from 𝐶 × 𝐶 to
R satisfying (𝐴

1
)–(𝐴
4
) and 𝐴 : 𝐶 → 𝐸

∗ a monotone and
continuous mapping. Suppose thatI = VI(𝐴, 𝐶)⋂EP(𝑔) ̸= 0.
For a point 𝑥

0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence

generated by the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, V

𝑛
) ≤ 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(74)

where 𝑢
𝑛
= 𝐽
𝑟
𝑛

𝑥
𝑛
, V
𝑛
= 𝐾
𝑟
𝑛

𝑢
𝑛
, and lim

𝑛→∞
𝑟
𝑛
= 𝑟. Then the

sequence {𝑥
𝑛
} converges strongly to a point 𝑞 = ΠI𝑥0, where

ΠI is the generalized projection from 𝐶 onto I.

Remark 24. By analysis of special cases for generalized
mixed equilibriumproblem,we can obtain the corresponding
results based onTheorems 21 and 22 in sequence. Here, we do
not itemize these results.

6. Applications to Maximal
Monotone Operators

Let A be a multivalued operator from 𝐸 to 𝐸∗ with domain
𝐷(A) = {𝑧 ∈ 𝐸 : A𝑧 ̸= 0} and range 𝑅(A) = {𝑧 ∈ 𝐸 : 𝑧 ∈

𝐷(A)}. An operatorA is said to be monotone if

⟨𝑥
1
− 𝑥
2
, 𝑦
1
− 𝑦
2
⟩ ≥ 0, ∀𝑥

1
, 𝑥
2
∈ 𝐷 (A) ,

𝑦
1
∈ A𝑥
1
, 𝑦
2
∈ A𝑥
2
.

(75)

Amonotone operatorA is said to be maximal if its graph
𝐺(A) = {(𝑥, 𝑦) : 𝑦 ∈ A𝑥} is not properly contained in the
graph of any othermonotone operator. It is well known that if
A is a maximal monotone operator, thenA−10 is closed and
convex.

The following result is also well known.

Lemma 25 (see Rockafellar [58]). Let 𝐸 be a reflexive, strictly
convex, and smooth Banach space andA a monotone operator
from 𝐸 to 𝐸∗.ThenA is maximal if and only if 𝑅(𝐽+𝑟A) = 𝐸

∗

for all 𝑟 > 0.

Let 𝐸 be a reflexive, strictly convex, and smooth Banach
space and A a maximal monotone operator from 𝐸 to 𝐸

∗.
Using Lemma 25 and the strict convexity of 𝐸, it follows that,
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for all 𝑟 > 0 and 𝑥 ∈ 𝐸, there exists a unique 𝑥
𝑟
∈ 𝐷(A) such

that

𝐽𝑥 ∈ 𝐽𝑥
𝑟
+ 𝑟A𝑥

𝑟
. (76)

If 𝐽
𝑟
𝑥 = 𝑥

𝑟
, then we can define a single-valued mapping

𝐽
𝑟
: 𝐸 → 𝐷(A) by 𝐽

𝑟
= (𝐽 + 𝑟A)

−1

𝐽 and such a 𝐽
𝑟
is called

the resolvent of A. We know that A−10 = 𝐹(𝐽
𝑟
) for all 𝑟 > 0

(see [10, 59] for more details).
First, we give an important lemma for this section and

remark that the following lemma can be as example of a
countable family of hemi-relatively nonexpansive mappings.

Lemma 26. Let 𝐸 be a strictly convex and uniformly smooth
Banach space, letA be a maximal monotone operator from 𝐸

to 𝐸∗ such thatA−10 is nonempty, and let {𝑟
𝑛
} be a sequence of

positive real numbers which is bounded away from 0 such that
𝐽
𝑟
𝑛

= (𝐼 + 𝑟
𝑛
A)
−1. Then {𝐽

𝑟
𝑛

} is a uniformly closed countable
family of hemi-relatively nonexpansive mappings.

Proof. One has⋂∞
𝑛=0

𝐹(𝐽
𝑟
𝑛

) = A−10 ̸= 0. Firstly, we show 𝐽
𝑟
𝑛

is
uniformly closed. Let {𝑧

𝑛
} be a sequence such that 𝑧

𝑛
→ 𝑝

and lim
𝑛→∞

‖𝑧
𝑛
− 𝐽
𝑟
𝑛

𝑧
𝑛
‖ = 0. Since 𝐽 is uniformly norm-to-

norm continuous on bounded sets, we obtain

1

𝑟
𝑛

(𝐽𝑧
𝑛
− 𝐽𝐽
𝑟
𝑛

𝑧
𝑛
) → 0, as 𝑛 → ∞. (77)

It follows from

1

𝑟
𝑛

(𝐽𝑧
𝑛
− 𝐽𝐽
𝑟
𝑛

𝑧
𝑛
) ∈ A𝐽

𝑟
𝑛

𝑧
𝑛

(78)

and the monotonicity of 𝐵 that

⟨𝑤 − 𝐽
𝑟
𝑛

𝑧
𝑛
, 𝑤
∗

−
1

𝑟
𝑛

(𝐽𝑧
𝑛
− 𝐽𝐽
𝑟
𝑛

𝑧
𝑛
)⟩ ≥ 0 (79)

for all 𝑤 ∈ 𝐷(A) and 𝑤∗ ∈ A𝑤. Letting 𝑛 → ∞, one has
⟨𝑤 − 𝑝, 𝑤

∗

⟩ ≥ 0 for all 𝑤 ∈ 𝐷(A) and 𝑤∗ ∈ A𝑤. Therefore,
from the maximality of A, one obtains 𝑝 ∈ A−10 = 𝐹(𝐽

𝑟
𝑛

).
Hence, 𝐽

𝑟
𝑛

is uniformly closed.
In addition, for any 𝑤 ∈ 𝐸 and 𝑝 ∈ ⋂

∞

𝑛=0
𝐹(𝐽
𝑟
𝑛

), from the
monotonicity ofA, one has

𝜙 (𝑝, 𝐽
𝑟
𝑛

𝑤) =
𝑝


2

− 2 ⟨𝑝, 𝐽𝐽
𝑟
𝑛

𝑤⟩ +

𝐽
𝑟
𝑛

𝑤


2

=
𝑝


2

+ 2 ⟨𝑝, 𝐽𝑤 − 𝐽𝐽
𝑟
𝑛

𝑤 − 𝐽𝑤⟩ +

𝐽
𝑟
𝑛

𝑤


2

=
𝑝


2

+ 2⟨𝑝, 𝐽𝑤 − 𝐽𝐽
𝑟
𝑛

𝑤⟩ − 2 ⟨𝑝, 𝐽𝑤⟩ +

𝐽
𝑟
𝑛

𝑤


2

=
𝑝


2

− 2 ⟨𝐽
𝑟
𝑛

𝑤 − 𝑝 − 𝐽
𝑟
𝑛

𝑤, 𝐽𝑤 − 𝐽𝐽
𝑟
𝑛

𝑤 − 𝐽𝑤⟩

− 2 ⟨𝑝, 𝐽𝑤⟩ +

𝐽
𝑟
𝑛

𝑤


2

=
𝑝


2

− 2 ⟨𝐽
𝑟
𝑛

𝑤 − 𝑝, 𝐽𝑤 − 𝐽𝐽
𝑟
𝑛

𝑤 − 𝐽𝑤⟩

+ 2 ⟨𝐽
𝑟
𝑛

𝑤, 𝐽𝑤 − 𝐽𝐽
𝑟
𝑛

𝑤⟩ − 2 ⟨𝑝, 𝐽𝑤⟩ +

𝐽
𝑟
𝑛

𝑤


2

≤
𝑝


2

+ 2 ⟨𝐽
𝑟
𝑛

𝑤, 𝐽𝑤 − 𝐽𝐽
𝑟
𝑛

𝑤⟩

− 2 ⟨𝑝, 𝐽𝑤⟩ +

𝐽
𝑟
𝑛

𝑤


2

=
𝑝


2

− 2 ⟨𝑝, 𝐽𝑤⟩ + ‖𝑤‖
2

−

𝐽
𝑟
𝑛

𝑤


2

+ 2 ⟨𝐽
𝑟
𝑛

𝑤, 𝐽𝑤⟩ − ‖𝑤‖
2

= 𝜙 (𝑝, 𝑤) − 𝜙 (𝐽
𝑟
𝑛

𝑤,𝑤) ≤ 𝜙 (𝑝, 𝑤) ,

(80)

for all 𝑛 ∈ N ∪ {0}. This implies that {𝐽
𝑟
𝑛

} is a countable
family of hemi-relatively nonexpansive mappings. Hence,
{𝐽
𝑟
𝑛

} is a uniformly closed countable family of hemi-relatively
nonexpansive mappings.

We consider the problem of strong convergence con-
cerning maximal monotone operators in a Banach space.
Such a problem has been also studied in [4, 13, 49]. Using
Theorem 11, we obtain the following result.

Theorem 27. Let 𝐶 be a nonempty, closed, and convex subset
of a uniformly smooth and uniformly convex Banach space 𝐸.
Let A, B be two maximal monotone operators from 𝐸 to 𝐸∗
such that F = A−10⋂B−10 ̸= 0, and let {𝑟

𝑛
} be a sequence

of positive real numbers which is bounded away from 0 such
that 𝐽A

𝑟
𝑛

= (𝐼 + 𝑟
𝑛
A)
−1 and 𝐽

B
𝑟
𝑛

= (𝐼 + 𝑟
𝑛
B)
−1. For a point

𝑥
0
∈ 𝐶 chosen arbitrarily, let {𝑥

𝑛
} be a sequence generated by

the following iterative algorithm:

𝐶
0
= 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝐽

B
𝑟
𝑛

𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝐽

A
𝑟
𝑛

𝑥
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(3.1)

where the sequences𝑦
𝑛
= 𝐽

A
𝑟
𝑛

𝑥
𝑛
.Then the sequence {𝑥

𝑛
} conver-

ges strongly to a point 𝑞 = ΠF𝑥0, where ΠF is the generalized
projection from 𝐶 ontoF.

Proof. From Lemma 26, we know that {𝐽A
𝑟
𝑛

} and {𝐽
B
𝑟
𝑛

} are
two uniformly closed countable families of hemi-relatively
nonexpansive mappings. Furthermore, applying Theorem 11,
one sees that the sequence {𝑥

𝑛
} converges strongly to a point

ΠF𝑥0.
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