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The quantum effects for a physical system can be described by the set E(H) of positive operators on a complex Hilbert space H
that are bounded above by the identity operator 𝐼. For 𝐴, 𝐵 ∈ E(H), let 𝐴 ∘ 𝐵 = 𝐴

1/2
𝐵𝐴
1/2 be the sequential product and let

𝐴 ∗ 𝐵 = (𝐴𝐵 + 𝐵𝐴)/2 be the Jordan product of 𝐴, 𝐵 ∈ E(H). The main purpose of this note is to study some of the algebraic
properties of effects. Many of our results show that algebraic conditions on 𝐴 ∘ 𝐵 and 𝐴∗ 𝐵 imply that 𝐴 and 𝐵 have 3 × 3 diagonal
operator matrix forms with 𝐼R(𝐴)∩R(𝐵) as an orthogonal projection on closed subspaceR(𝐴) ∩ R(𝐵) being the common part of 𝐴
and 𝐵. Moreover, some generalizations of results known in the literature and a number of new results for bounded operators are
derived.

1. Introduction

Let H, B(H), and P(H) be complex Hilbert space, the
set of all bounded linear operators on H, and the set of all
orthogonal projections on H, respectively. For 𝐴 ∈ B(H),
we will denote by N(𝐴) and R(𝐴) the null space and the
range of 𝐴, respectively. An operator 𝐴 ∈ B(H) is said to
be injective ifN(𝐴) = {0}.R(𝐴) is the closure ofR(𝐴). 𝐴 is
said to be positive if (𝐴𝑥, 𝑥) ≥ 0 for all 𝑥 ∈ H. 𝐴 is said to be
a contraction if ‖𝐴‖ ≤ 1. 𝑃M is the orthogonal projection on
a closed subspaceM ⊆ H.

The elements of E(H) = {𝐴 ∈ B(H) : 0 ≤ 𝐴 ≤ 𝐼}

are called quantum effects. The elements of P(H) = {𝑃 ∈

E(H) : 𝑃
2 = 𝑃} are projections corresponding to quantum

events and are called sharp effects. For 𝐴, 𝐵 ∈ E(H), the
sequential product of 𝐴 and 𝐵 is 𝐴 ∘ 𝐵 = 𝐴

1/2𝐵𝐴1/2. We
interpret 𝐴 ∘ 𝐵 as the effect that occurs when 𝐴 occurs first
and 𝐵 occurs second [1–9]. Let 𝐴 ∗ 𝐵 = (𝐴𝐵 + 𝐵𝐴)/2 be the
Jordan product of 𝐴, 𝐵 ∈ E(H). If 𝐴𝐵 = 𝐵𝐴, we say that 𝐴
and 𝐵 are compatible. We define the negation of 𝐴 ∈ E(H)

by 𝐴
󸀠
= 𝐼 − 𝐴.

In this note, we will study some properties of the sequen-
tial product or the Jordan product. Our results show that if
one tries to impose classical conditions on𝐴 ∘ 𝐵 = 𝐴

1/2𝐵𝐴1/2

and 𝐴 ∗ 𝐵 = (𝐴𝐵 + 𝐵𝐴)/2, then this forces 𝐴 and 𝐵

to have closed relations with range relations. For example,

let 𝑇 = 𝐴
𝑛𝐵𝑛 for some 𝑛 ∈ Z+. Then, 𝑇𝑇∗ ∈ P(H) (or

𝐴 ∗ 𝐵 ∈ P(H)) if and only if 𝐴 and 𝐵 have 3 × 3 diagonal
operator matrix forms as follows:

𝐴 = 𝐼
R(𝐴)∩R(𝐵)

⊕ 𝐴
22

⊕ 0,

𝐵 = 𝐼
R(𝐴)∩R(𝐵)

⊕ 0 ⊕ 𝐵
33
,

(1)

where 𝐼
R(𝐴)∩R(𝐵)

as an orthogonal projection on closed
subspace R(𝐴) ∩ R(𝐵) is the common part of 𝐴 and 𝐵.
This results give us detailed information of matrix structures
between two operators 𝐴 and 𝐵. It is well known that if 𝐴 or
𝐵 ∈ P(H), then 𝐴 ∘ 𝐵 ≤ 𝐵 if and only if 𝐴𝐵 = 𝐵𝐴 (see
[2, Theorem 2.6(a)] and [10, Theorem 2.3]). We generate this
result and show that, under some conditions,𝐴∘𝐵 ≤ 𝐵 if and
only if 𝐴 and 𝐵 have 3 × 3 operator matrix forms:

𝐴 = 𝐼 ⊕ 0 ⊕ 𝐴
33
,

𝐵 = 𝐵
11

⊕ 𝐵
22

⊕ 0.
(2)

In [11, Lemma 3.4], the authors had gotten that if 𝐴, 𝐵 ∈

E(H) and dimH < ∞, then 𝐴 ∘ 𝐵 + 𝐴
󸀠 ∘ 𝐵 = 𝐵󸀠 if and only

if 𝐵 = (1/2)𝐼. The authors said that they did not know if the
condition dimH < ∞ can be relaxed. By some algebraic and
spectral techniques, we extend some results in [11] toB(H).
Some generalizations of results known in the literature and a
number of new results for bounded operators are derived.
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2. Main Results

Our main interest is in sequential products of quantum
effects.The next result gives some of the important properties
of the sequential product.

Lemma 1 (see [2]). Let 𝐴, 𝐵 ∈ E(H) and 𝑃,𝑄 ∈ P(H).
(i) 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴 if and only if 𝐴𝐵 = 𝐵𝐴.
(ii) If 𝐴 ∘ 𝐵 ∈ P(H), then 𝐴𝐵 = 𝐵𝐴.
(iii) 𝑃 ∘ 𝑄 ∈ P(H) if and only if 𝑃𝑄 = 𝑄𝑃.

Lemma 2 (see [12]). Let 𝐴 ∈ B(H) be a positive operator. If
𝐴 has the operator matrix representation 𝐴 = (𝐴

𝑖𝑗
)
𝑛×𝑛

with
respect to the space decomposition H = ⨁

𝑛

𝑖=1
H
𝑖
, then the

following statements hold.
(i) 𝐴
𝑖𝑖
as an operator onH

𝑖
is positive, 1 ≤ 𝑖 ≤ 𝑛.

(ii) 𝐴
𝑖𝑗

= 𝐴
1/2

𝑖𝑖
𝐷
𝑖𝑗
𝐴
1/2

𝑗𝑗
for some contraction 𝐷

𝑖𝑗
∈ B(H

𝑗
,

H
𝑖
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

(iii) If 𝐴
𝑖0𝑖0

= 0 for some 1 ≤ 𝑖
0

≤ 𝑛, then 𝐴
𝑖0𝑗

= 0 and
𝐴
𝑘𝑖0

= 0, 1 ≤ 𝑗, 𝑘 ≤ 𝑛.

Lemma 3 (see [13, Lemma 2.2]). Let𝐴 ∈ B(H) be a contrac-
tion and let 𝐴 as an operator from H = H

1
⊕ H
2
into H =

K
1
⊕ K
2
have the operator matrix

𝐴 = (
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) . (3)

If𝐴
11
is unitary fromH

1
ontoK

1
, then𝐴

12
= 0 and𝐴

21
= 0.

In [11], Gudder had obtained that if 𝐴, 𝐵 ∈ E(H) and
𝐴 + 𝐵 = 𝑃 ∈ P(H), then 𝐴 and 𝐵 are compatible. Based on
this result, we get the following interesting results.

Theorem 4. Let 𝐴, 𝐵 ∈ E(H) and 𝑃,𝑄 ∈ P(H).
(i) 𝑃 ≤ 𝐴 if and only if 𝑃𝐴 = 𝐴𝑃 = 𝑃; 𝐴 ≤ 𝑃 if and only

if 𝐴𝑃 = 𝑃𝐴 = 𝐴.
(ii) There exist 𝑃,𝑄 ∈ P(H) such that 𝐴 = 𝑃 + 𝑄 if and

only if 𝐴 is a projection.
(iii) If there exist 𝐴, 𝐵 ∈ E(H) such that 𝑃 = 𝐴 + 𝐵, then

𝐴𝐵 = 𝐵𝐴 = 𝐴 − 𝐴
2. In addition, if R(𝐵) ⊆ R(𝐴),

then 𝑃 = 𝐴 + 𝐵 if and only if 𝐴𝐵 = 𝐵𝐴 = 𝐴 − 𝐴2.

Proof. Note that𝑃 and𝐴, as operators onH = R(𝑃)⊕N(𝑃),
have the operator matrices

𝑃 = (
𝐼 0

0 0
) , 𝐴 = (

𝐴
1

𝐴
3

𝐴∗
3

𝐴
2

) , (4)

respectively, where 0 ≤ 𝐴
1
∈ B(R(𝑃)), 0 ≤ 𝐴

2
∈ B(N(𝑃)),

and 𝐴
3
∈ B(N(𝑃),R(𝑃)).

(i) By (4), it is clear that 𝑃 ≤ 𝐴 if 𝑃𝐴 = 𝐴𝑃 = 𝑃. On the
other hand, if 𝐴 − 𝑃 = (

𝐴1−𝐼 𝐴3

𝐴
∗

3
𝐴2

) ≥ 0, then 𝐴
1

= 𝐼 since
𝐴
1
⊕ 0 = 𝑃𝐴𝑃 ≤ 𝑃 ∈ E(H). From

𝐴
2
= (

𝐼 + 𝐴
3
𝐴∗
3

𝐴
3
+ 𝐴
3
𝐴
2

𝐴∗
3
+ 𝐴
2
𝐴∗
3

𝐴2
2
+ 𝐴∗
3
𝐴
3

) ≤ 𝐼, (5)

we get 𝐴
3
𝐴∗
3

= 0; that is 𝐴
3

= 0 and 𝐴𝑃 = 𝑃𝐴 = 𝐴. If
𝐴𝑃 = 𝑃𝐴 = 𝐴, then 𝐴

2
= 0 and 𝐴

3
= 0 in (4). We get that

𝐴 ≤ 𝑃. On the other hand, since

𝑃 − 𝐴 = (
𝐼 − 𝐴

1
−𝐴
3

−𝐴∗
3

−𝐴
2

) ≥ 0, (6)

𝐴
2
= 0 and 𝐴

3
= 0 by Lemma 2. Hence, 𝐴𝑃 = 𝑃𝐴 = 𝐴.

(ii) If𝐴 is a projection, denote𝑃 = 𝐴 and𝑄 = 0, then𝐴 =

𝑃 +𝑄. Conversely, suppose that there exist two projections 𝑃
and𝑄 such that 𝐴 = 𝑃 + 𝑄. If 𝑥 ∈ R(𝑃) is a unit vector, then
1 ≥ (𝐴𝑥, 𝑥) = (𝑃𝑥, 𝑥)+ (𝑄𝑥, 𝑥) = 1+ (𝑄𝑥, 𝑥), so (𝑄𝑥 ⋅ 𝑥) = 0.
That is, 𝑄𝑥 = 0 since 𝑄 is a positive operator. This shows
that 𝑄𝑃 = 0. Similarly, 𝑃𝑄 = 0. Hence, 𝑃𝑄 = 𝑄𝑃. The two
projections 𝑃 and 𝑄 are commutative; therefore, 𝑃 + 𝑄 = 𝐴

is a projection.
(iii) Since𝐴 ≤ 𝑃,𝐴𝑃 = 𝑃𝐴 = 𝐴 by item (i). So,𝐴(𝐴+𝐵) =

𝐴𝑃 = 𝐴 = 𝑃𝐴 = (𝐴 + 𝐵)𝐴; that is, 𝐴𝐵 = 𝐴 − 𝐴
2 = 𝐵𝐴.

Conversely, let 𝐴, 𝐵 ∈ E(H). Then there exists 𝑃 ∈ P(H)

such that R(𝐴) = R(𝑃). Since R(𝐵) ⊆ R(𝐴), 𝐴 and 𝐵 can
be written as operator matrices 𝐴 = 𝐴

1
⊕ 0, 𝐵 = 𝐵

1
⊕ 0

with respect to the space decompositionH = R(𝑃) ⊕N(𝑃),
respectively, where 𝐴

1
is an injective positive operator. If

𝐴𝐵 = 𝐴 − 𝐴2 = 𝐵𝐴, then 𝐴
1
𝐵
1

= 𝐴
1
− 𝐴2
1
. It follows that

𝐵
1
= 𝐼 − 𝐴

1
and 𝐴 + 𝐵 = 𝑃.

Let 𝑃
R(𝐴)

denote the self-adjoint projection onto the
closure ofR(𝐴). In general, that 𝑇𝑇∗ is a projection does not
imply 𝑇 = 𝑇∗. For example, if 𝑇 = ( 0 1

0 0
), then 𝑇𝑇∗ and 𝑇∗𝑇

are projections and 𝑇 ̸= 𝑇∗. But we have following result.

Theorem5. Let𝐴, 𝐵 ∈ E(H) and𝑇 = 𝐴𝑛𝐵𝑛 for some 𝑛 ∈ Z+.
Then, 𝑇𝑇∗ ∈ P(H) if and only if 𝑇∗𝑇 ∈ P(H) if and only if
𝐴 and 𝐵 have 3 × 3 operator matrix forms as

𝐴 = 𝐼 ⊕ 𝐴
22

⊕ 0, 𝐵 = 𝐼 ⊕ 0 ⊕ 𝐵
33 (7)

with respect to the space decompositionH = [R(𝐴)∩R(𝐵)]⊕

[R(𝐴) ⊖ (R(𝐴) ∩ R(𝐵))] ⊕ N(𝐴); that is, 𝐴𝐵 is a range
projection onR(𝐴) ∩ R(𝐵).

Proof. As we know, 𝜎(𝑇𝑇∗) \ {0} = 𝜎(𝑇∗𝑇) \ {0} (see
[14, Section 1.2.1]). So, for arbitrary 𝑇 ∈ B(H), 𝑇𝑇∗ is a
projection if and only if 𝑇∗𝑇 is a projection. If 𝐴 and 𝐵 have
the forms (7), then 𝑇 = 𝑇∗ = 𝑃

R(𝐴)∩R(𝐵)
and 𝑇𝑇∗ = 𝑇∗𝑇 ∈

P(H).
Necessity. Let 𝑆 = 𝑇𝑇∗ = 𝐴𝑛𝐵2𝑛𝐴𝑛 ∈ P(H). Then, 𝑆 ≤

𝐴2𝑛 ≤ 𝐼, and hence 𝑆 ≤ 𝑆𝐴2𝑛𝑆 ≤ 𝑆𝐴𝑆 ≤ 𝑆. It follows that
𝑆 = 𝑆𝐴𝑆. If we consider 𝑆 as 2 × 2 matrix form 𝑆 = 𝐼 ⊕ 0 with
respective space decompositionH = R(𝑆)⊕N(𝑆), then𝐴has
the corresponding matrix form 𝐴 = (

𝐼 𝐴3

𝐴
∗

3
𝐴2

). By Lemma 3,
we that get 𝐴

3
= 0. Hence, 𝑆 = 𝐴𝑆 = 𝑆𝐴 andR(𝑆) ⊆ R(𝐴).

From

𝑆 = 𝑆𝐴
𝑛
𝐵
2𝑛
𝐴
𝑛
= 𝑆𝐵
2𝑛
𝐴
𝑛

= 𝐴
𝑛
𝐵
2𝑛
𝐴
𝑛
𝐵
2𝑛
𝐴
𝑛
= 𝐴
𝑛
𝐵
2𝑛
𝑆,

(8)

we get 𝑆 = 𝑆𝐴𝑛𝐵2𝑛𝑆 = 𝑆𝐵2𝑛𝑆 ≤ 𝑆𝐵𝑆 ≤ 𝑆. By similar proof that
𝑆 = 𝑆𝐵𝑆 implies that 𝑆 = 𝑆𝐵 = 𝐵𝑆 and R(𝑆) ⊆ R(𝐵). Now,
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from 𝐴𝑛𝐵2𝑛𝐴𝑛 = 𝐴𝑛𝐵2𝑛𝐴𝑛𝐴𝑛𝐵2𝑛𝐴𝑛 we derive that 𝐴𝑛𝐵𝑛(𝐼 −

𝐵𝑛𝐴2𝑛𝐵𝑛)𝐵𝑛𝐴𝑛 = 0; that is, 𝐴𝑛𝐵𝑛 = 𝐴𝑛𝐵2𝑛𝐴2𝑛𝐵𝑛 = 𝑆𝐴𝑛𝐵𝑛 =

𝑆. We get that 𝑆 = 𝐴𝑛𝐵𝑛 = 𝐵𝑛𝐴𝑛. Hence, 𝐴𝐵 = 𝐵𝐴. If we
denote

H

= [R (𝐴) ∩ R (𝐵)] ⊕ [R (𝐴) ⊖ (R (𝐴) ∩ R (𝐵))] ⊕ N (𝐴) ,

(9)

then 𝐴 and 𝐵 can be rewritten as 𝐴 = 𝐴
11

⊕ 𝐴
22

⊕ 0 and
𝐵 = 𝐵

11
⊕ 0 ⊕ 𝐵

33
, where 𝐴

11
, 𝐴
22
, and 𝐵

11
are injective,

densely defined operators and 𝐴
11
𝐵
11

= 𝐵
11
𝐴
11
. Since 𝑆 =

𝐴𝑛𝐵2𝑛𝐴𝑛 = (𝐴𝐵)
2𝑛

= (𝐴
11
𝐵
11
)
2𝑛

⊕ 0 ⊕ 0 is projection, this
implies that 𝐴

11
𝐵
11

= 𝐵
11
𝐴
11

= 𝐼. So, 𝐴−1
11

= 𝐵
11

∈ E(H).
Hence, 𝐴

11
= 𝐵
11

= 𝐼; 𝐴 and 𝐵 have the matrix forms as in
(7).

InTheorem 5,𝑇 = 𝐴
𝑛
𝐵
𝑛
= 𝐵
𝑛
𝐴
𝑛
= 𝐴𝐵 = 𝐵𝐴 = 𝐼⊕0⊕0 =

𝑃
R(𝐴)∩R(𝐵)

.

Theorem 6. Let 𝐴, 𝐵 ∈ E(H). Then, 𝐴 ∗ 𝐵 ∈ P(H) if and
only if 𝐴 and 𝐵 have 3 × 3 operator matrix forms as

𝐴 = 𝐼 ⊕ 𝐴
22

⊕ 0, 𝐵 = 𝐼 ⊕ 0 ⊕ 𝐵
33 (10)

with respect to the space decompositionH = [R(𝐴)∩R(𝐵)]⊕

[R(𝐴) ⊖ (R(𝐴) ∩R(𝐵))] ⊕N(𝐴). In particular, 𝐴 ∗ 𝐵 = 0 if
and only if 𝐴𝐵 = 0.

Proof. By (10), if𝐴𝐵 = 𝐵𝐴 = 𝑃
R(𝐴)∩R(𝐵)

, then clearly𝐴∗𝐵 ∈

P(H).
Necessity. Observing that 𝐴 and 𝐵 as operators on H =

𝑅(𝐴)⊕N(𝐴) have the forms as𝐴 = ( 𝐴1 0
0 0

) and 𝐵 = (
𝐵1 𝐵3

𝐵
∗

3
𝐵33

),
where 𝐴

1
is injective, densely defined. Then

𝐴 ∗ 𝐵 = (

(𝐴
1
𝐵
1
+ 𝐵
1
𝐴
1
)

2

𝐴
1
𝐵
3

2

𝐵∗
3
𝐴
1

2
0

) (11)

is a projection implies that 𝐴
1
𝐵
3
= 0 by Lemma 2. So, 𝐵

3
=

0 because 𝐴
1
is injective, densely defined. 𝐵

1
can be further

written as 𝐵
1
= 𝐵
11

⊕ 0 with respect to space decomposition
R(𝐴) = (R(𝐴)∩R(𝐵))⊕(R(𝐴)⊖(R(𝐴)∩R(𝐵))), where𝐵

11

is injective, densely defined. Similarly, 𝐴
1
has corresponding

form as 𝐴
1

= 𝐴
11

⊕ 𝐴
22

with 𝐴
11

and 𝐴
22

being injective,
densely defined. So

𝐴 ∗ 𝐵 =
(𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11
)

2
⊕ 0 ⊕ 0. (12)

We say that (𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11
)/2 is injective. In fact,

if N(𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11
) ̸= {0}, then 𝐴

11
𝐵
11

= −𝐵
11
𝐴
11

on
N(𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11
) and hence 𝐴2

11
𝐵2
11

= 𝐵2
11
𝐴2
11

on
N(𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11
). Therefore, 𝐴

11
𝐵
11

= 𝐵
11
𝐴
11

on
N(𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11
). Hence, for every 0 ̸= 𝑥 ∈ N(𝐴

11
𝐵
11

+

𝐵
11
𝐴
11
),

𝐴
11
𝐵
11

+ 𝐵
11
𝐴
11

2
𝑥 = 𝐴

11
𝐵
11
𝑥 = 0. (13)

Since 𝐴
11

and 𝐵
11

are injective, we get 𝑥 = 0, which
contradicts the assumption. Now,𝐴∗𝐵 ∈ P(H) implies that
𝐴
11
𝐵
11
+𝐵
11
𝐴
11

= 2𝐼. For every unit vector𝑥 ∈ R(𝐴)∩R(𝐵),

1 = ⟨𝑥, 𝑥⟩ =
1

2
⟨𝐴
11
𝐵
11
𝑥, 𝑥⟩

+
1

2
⟨𝐵
11
𝐴
11
𝑥, 𝑥⟩ .

(14)

Since 𝐴
11
𝐵
11
is contraction, we derive that ⟨𝐴

11
𝐵
11
𝑥, 𝑥⟩ = 1

and ⟨𝐵
11
𝐴
11
𝑥, 𝑥⟩ = 1 for every unit vector 𝑥 ∈ R(𝐴)∩R(𝐵).

This concludes that 𝐴
11
𝐵
11

= 𝐵
11
𝐴
11

= 𝐼. So, 𝐴−1
11

= 𝐵
11

∈

E(H). Hence, 𝐴
11

= 𝐵
11

= 𝐼, 𝐴 and 𝐵 have the matrix forms
as in (7).

In particular, if 𝐴𝐵 = 0, then 𝐵𝐴 = 0 and 𝐴 ∗ 𝐵 = (𝐴𝐵 +

𝐵𝐴)/2 = 0. On the other hand, if 𝐴 ∗ 𝐵 = 0, then 𝐵
3
= 0 and

𝐴
1
𝐵
1
= −𝐵
1
𝐴
1
in (11). We have 𝐴2

1
𝐵
1
= −𝐴

1
𝐵
1
𝐴
1
= 𝐵
1
𝐴2
1
.

Therefore, 𝐴
1
𝐵
1
= 𝐵
1
𝐴
1
; that is, 𝐴𝐵 = 0.

Next, we are now interested in the question of when 𝐴 ∘

𝐵 ≥ 𝐵 or𝐴∘𝐵 ≤ 𝐵. InTheorem 2.6 of [2] it is proved that, ifH
is finite dimensional and 𝐴 ∘ 𝐵 ≥ 𝐵, then 𝐴𝐵 = 𝐵𝐴 = 𝐵, and
it is asked whether this holds for infinite-dimensional spaces
H. In [5, Theorem 2.6], the authors answer this question
positively. Here, we include a different proof because it is very
short.

Theorem 7. Let 𝐴, 𝐵 ∈ E(H) such that 𝐴 ∘ 𝐵 ≥ 𝐵 if and only
if

𝐴 = 𝐼 ⊕ 𝐴
1
, 𝐵 = 𝐵

1
⊕ 0,

where 𝐴
1
∈ B (N(𝐼 − 𝐴)

⊥
) , 𝐵
1
∈ B (N (𝐼 − 𝐴)) .

(15)

Proof. If 𝐴𝐵 = 𝐵𝐴 = 𝐵, then clearly 𝐴 ∘ 𝐵 ≥ 𝐵. On the other
hand, for arbitrary 0 < 𝛿 < 1, let Δ

1
= [1 − 𝛿, 1] ∩ 𝜎(𝐴)

and Δ
2

= [0, 1 − 𝛿) ∩ 𝜎(𝐴). Let 𝐴 = ∫
‖𝐴‖

0
𝜆𝑑𝐸
𝜆
be the

spectral representation of 𝐴. Thus, 𝐴 has the operator matrix
form 𝐴 = 𝐴

1
⊕ 𝐴
2
with respect to the space decomposition

H = H
1
⊕ H
2
, where H

1
= 𝐸(Δ

1
)H and H

2
= 𝐸(Δ

2
)H.

It is clear that 𝐴
2

≤ (1 − 𝛿)𝐼H2 . Let 𝐵 have corresponding
matrix form. Since 𝐵 ≤ 𝐴1/2𝐵𝐴1/2 ≤ 𝐴𝐵𝐴 ≤ 𝐴3/2𝐵𝐴3/2 ≤

⋅ ⋅ ⋅ ≤ 𝐴𝑛𝐵𝐴𝑛 ≤ ⋅ ⋅ ⋅ , 𝑛 ∈ N. Hence

(
𝐴
𝑛

1
0

0 𝐴𝑛
2

)(
𝐵
1

𝐵
3

𝐵∗
3

𝐵
2

)(
𝐴
𝑛

1
0

0 𝐴𝑛
2

)

= (

𝐴𝑛
1
𝐵
1
𝐴𝑛
1

𝐴𝑛
1
𝐵
3
𝐴𝑛
2

𝐴
𝑛

2
𝐵
∗

3
𝐴
𝑛

1
𝐴
𝑛

2
𝐵
2
𝐴
𝑛

2

) ≥ (
𝐵
1

𝐵
3

𝐵∗
3

𝐵
2

) .

(16)

It follows 𝐴𝑛
2
𝐵
2
𝐴𝑛
2

≥ 𝐵
2

≥ 0 for all 𝑛 ∈ N. Since 𝐴𝑛
2
is

convergence by strong operator topology to zero, we get that
𝐵
2
= 0. By Lemma 2, we know that 𝐵

3
= 0. Hence,𝐴𝑛

1
𝐵
1
𝐴𝑛
1
≥

𝐵
1
for arbitrary 0 < 𝛿 < 1. Note that⋂

0<𝛿<1
[[1−𝛿, 1]∩𝜎(𝐴)] ⊆

{1}. Hence. 𝐴
1
= 𝐼H1 and 𝐴, 𝐵 have the form (15).
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Note that if 𝐴, 𝐵 ∈ E(H), then (i) 𝐴𝐵 = 𝐵𝐴 = 𝐵 ⇔

𝐵(𝐼 − 𝐴) = 0 ⇔ R(𝐼 − 𝐴) ⊆ N(𝐵); (ii) 𝐵 ∘ 𝐴 = 𝐵 ⇔

𝐵
1/2(𝐼 − 𝐴)𝐵1/2 = 0 ⇔ 𝐵(𝐼 − 𝐴) = 0; (iii) 𝐵 ∘ 𝐴 ≥ 𝐵 ⇔

−𝐵1/2(𝐼 − 𝐴)𝐵1/2 ≥ 0 ⇔ 𝐵(𝐼 − 𝐴) = 0. By Theorem 7, it is
easy to get the following results.

Corollary 8. Consider 𝐴, 𝐵 ∈ E(H).

𝐵 = 𝑃N(𝐼−𝐴)𝐵 ⇐⇒ 𝐴 ∘ 𝐵 ≥ 𝐵 ⇐⇒ 𝐴 ∘ 𝐵 = 𝐵

⇐⇒ 𝐵 ∘ 𝐴 ≥ 𝐵 ⇐⇒ 𝐵 ∘ 𝐴 = 𝐵

⇐⇒ 𝐴 = 𝐼 ⊕ 𝐴
1
,

𝐵 = 𝐵
1
⊕ 0, 𝐴

1
, 𝐵
1
are defined in (15)

⇐⇒ 𝐴𝐵 = 𝐵𝐴 = 𝐵.

(17)

From Corollary 10, we know that 𝐴𝑃
R(𝐵)

= 𝑃
R(𝐵)

𝐴 =

𝑃
R(𝐴)∩R(𝐵)

. However,𝐴∘𝐵 ≤ 𝐵 does not imply𝐴𝐵 = 𝐵𝐴. One
can check this fact by choices𝐴 = (

1/4 1/4

1/4 1/4
) and 𝐵 = (

3/4 0

0 1/4
)

in C2 (see [2]). However, we obtain the following result.

Theorem 9. Let 𝐴, 𝐵 ∈ E(H) and 𝑃 ∈ P(H) such that
R(𝑃) = R(𝐴) ∩ R(𝐵).

(i) If 𝐴𝑃 = 𝑃, then 𝐴 ∘ 𝐵 ≤ 𝐵 if and only if 𝐴 and 𝐵 have
3 × 3 operator matrix forms

𝐴 = 𝐼 ⊕ 0 ⊕ 𝐴
33
, 𝐵 = 𝐵

11
⊕ 𝐵
22

⊕ 0 (18)

with respect to the space decomposition H = R(𝑃) ⊕

[R(𝐵) ⊖ R(𝑃)] ⊕ N(𝐵).

(ii) If 𝐵𝑃 = 𝑃, then 𝐴 ∘ 𝐵 ≤ 𝐵 if and only if 𝐴 and 𝐵 have
3 × 3 operator matrix forms

𝐴 = 𝐴
11

⊕ 𝐴
22

⊕ 0, 𝐵 = 𝐼 ⊕ 0 ⊕ 𝐵
33 (19)

with respect to the space decomposition H = R(𝑃) ⊕

[R(𝐴) ⊖ R(𝑃)] ⊕ N(𝐴).

Proof. By (18) and (19), it is clear that 𝐴𝐵 = 𝐵𝐴 and 𝐴 ∘ 𝐵 =

𝐴1/2𝐵𝐴1/2 = 𝐵1/2𝐴𝐵1/2 ≤ 𝐵.
Necessity. (i) If 𝐴𝑃 = 𝑃, by Lemma 3, 𝐴 and 𝐵 as operators
onR(𝑃) ⊕ [R(𝐵) ⊖R(𝑃)] ⊕N(𝐵) have the operator matrix
forms

𝐴 = (

𝐼 0 0

0 0 0

0 0 𝐴
33

) ,

𝐵 = (

𝐵
11

𝐵
12

0

𝐵∗
12

𝐵
22

0

0 0 0

) .

(20)

If 𝐴 ∘ 𝐵 ≤ 𝐵, then 0 ≤ 𝐴𝐵𝐴 ≤ 𝐴
1/2𝐵𝐴1/2 ≤ 𝐵. So

𝐵 − 𝐴𝐵𝐴 = (

0 𝐵
12

0

𝐵∗
12

𝐵
22

0

0 0 0

) ≥ 0. (21)

By Lemma 2, we have 𝐵
12

= 0. So, (18) holds.
(ii) If 𝐵𝑃 = 𝑃, then 𝐴 and 𝐵 as operators on R(𝑃) ⊕

[R(𝐴) ⊖ R(𝑃)] ⊕ N(𝐴) can be denoted as

𝐴 = (

𝐴
11

𝐴
12

0

𝐴∗
12

𝐴
22

0

0 0 0

) ,

𝐵 = (

𝐼 0 0

0 0 0

0 0 𝐵
33

).

(22)

We have

𝐵 − 𝐴𝐵𝐴 = (

𝐼 − 𝐴2
11

−𝐴
11
𝐴
12

0

−𝐴∗
12
𝐴
11

−𝐴∗
12
𝐴
12

0

0 0 𝐵
33

) ≥ 0. (23)

By Lemma 2, we have 𝐴∗
12
𝐴
12

= 0; that is, 𝐴
12

= 0 and
(18) holds.

Let 𝐴, 𝐵 ∈ E(H) and 𝑃 = 𝑃
R(𝐴)∩R(𝐵)

. Theorem 9 implies
that if 𝐴𝑃 = 𝑃 or 𝐵𝑃 = 𝑃, then 𝐴 ∘ 𝐵 ≤ 𝐵 ⇔ 𝐴𝐵 =

𝐵𝐴. In particular, if 𝐴 or 𝐵 ∈ P(H), then 𝐴𝑃
R(𝐴)∩R(𝐵)

=

𝑃
R(𝐴)∩R(𝐵)

or𝐵𝑃
R(𝐴)∩R(𝐵)

= 𝑃
R(𝐴)∩R(𝐵)

hold automatically.
We get the following corollary.

Corollary 10 (see [2,Theorem 2.6(a)] and [10,Theorem 2.3]).
Let 𝐴, 𝐵 ∈ E(H). If 𝐴 or 𝐵 ∈ P(H), then 𝐴 ∘ 𝐵 ≤ 𝐵 if and
only if 𝐴𝐵 = 𝐵𝐴.

In [11, Lemma 3.4], the authors had gotten that if 𝐴, 𝐵 ∈

E(H) and dim H < ∞, then 𝐴 ∘ 𝐵 + 𝐴
󸀠 ∘ 𝐵 = 𝐵󸀠 if and

only if 𝐵 = (1/2)𝐼. The authors said they did not know if the
condition dim H < ∞ can be relaxed. In the following, we
show that the condition dimH < ∞ in [11, Lemma 3.4] can
be relaxed.

Theorem 11. Consider 𝐴, 𝐵 ∈ E(H). 𝐴 ∘ 𝐵 + 𝐴󸀠 ∘ 𝐵 = 𝐵󸀠 if
and only if 𝐵 = (1/2)𝐼.

Proof. If𝐴∘𝐵+𝐴󸀠∘𝐵 = 𝐴1/2𝐵𝐴1/2+(𝐼−𝐴)
1/2

𝐵(𝐼−𝐴)
1/2

= 𝐵󸀠,
then

𝐴
1/2

𝐵𝐴
1/2

= 𝐼 − 𝐵 − (𝐼 − 𝐴)
1/2

𝐵(𝐼 − 𝐴)
1/2

. (24)
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So

𝐴𝐵𝐴 = 𝐴
1/2

(𝐼 − 𝐵)𝐴
1/2

− (𝐼 − 𝐴)
1/2

𝐴
1/2

𝐵𝐴
1/2

(𝐼 − 𝐴)
1/2

= 𝐴 − 𝐴
1/2

𝐵𝐴
1/2

− (𝐼 − 𝐴)
1/2

𝐴
1/2

𝐵𝐴
1/2

(𝐼 − 𝐴)
1/2

= 𝐴 − [𝐼 − 𝐵 − (𝐼 − 𝐴)
1/2

𝐵(𝐼 − 𝐴)
1/2

]

− (𝐼 − 𝐴)
1/2

[𝐼 − 𝐵 − (𝐼 − 𝐴)
1/2

𝐵(𝐼 − 𝐴)
1/2

]

× (𝐼 − 𝐴)
1/2

= 2𝐴 − 2𝐼 + 2𝐵 − 𝐴𝐵 − 𝐵𝐴 + 𝐴𝐵𝐴

+ 2(𝐼 − 𝐴)
1/2

𝐵(𝐼 − 𝐴)
1/2

= 2𝐴 − 2𝐼 + 2𝐵 − 𝐴𝐵 − 𝐵𝐴 + 𝐴𝐵𝐴

+ 2 [𝐼 − 𝐵 − 𝐴
1/2

𝐵𝐴
1/2

]

= 2𝐴 − 𝐴𝐵 − 𝐵𝐴 + 𝐴𝐵𝐴 − 2𝐴
1/2

𝐵𝐴
1/2

.

(25)

We get

2𝐴 = 𝐴𝐵 + 𝐵𝐴 + 2𝐴
1/2

𝐵𝐴
1/2

, (26)

which is equal to𝐴−𝐴1/2𝐵𝐴1/2−𝐴𝐵 = −[𝐴−𝐵𝐴−𝐴1/2𝐵𝐴1/2].
Put 𝑇 = 𝐴1/2 − 𝐵𝐴1/2 − 𝐴1/2𝐵. Then, 𝑇 = 𝑇∗ and 𝐴1/2𝑇 =

−𝑇𝐴1/2. Product 𝑇 from right, we get

𝐴
1/2

𝑇
2
= −𝑇𝐴

1/2
𝑇 = 𝑇

2
𝐴
1/2

. (27)

Since 𝐴 ≥ 0 and 𝑇 = 𝑇∗, we derive that 𝑇2 is positive,
and hence 𝐴1/2𝑇2 = −𝑇𝐴1/2𝑇 = 𝑇2𝐴1/2 ≥ 0. Note that
−𝑇𝐴1/2𝑇 ≤ 0. We get that 𝑇𝐴1/2𝑇 = 𝑇𝐴1/4[𝑇𝐴1/4]

∗
= 0;

that is, 𝑇𝐴1/4 = 0. Therefore, 𝐴1/2𝑇 = 𝑇𝐴1/2 = 0. Since
𝐴1/2𝑇 = 𝐴−𝐴1/2𝐵𝐴1/2−𝐴𝐵 and𝑇𝐴1/2 = 𝐴−𝐴1/2𝐵𝐴1/2−𝐵𝐴,
we obtain that 𝐴𝐵 = 𝐵𝐴. In this case, 𝐴, 𝐵, as operators on
R(𝐴) ⊕ N(𝐴), have 2 × 2 operator matrix form

𝐴 = (
𝐴
1

0

0 0
) , 𝐵 = (

𝐵
1

0

0 𝐵
2

) ,

where 𝐴
1
, 𝐵
1
∈ B (R(𝐴)) , 𝐵

2
∈ B (N (𝐴))

(28)

and 𝐴
1
is injective, densely defined. By (26), we get that 𝐴 =

2𝐴𝐵. By (28), we get, 𝐵
1

= (1/2)𝐼R(𝐴). By (24), we get that
𝐵
2
= (1/2)𝐼N(𝐴). Hence, 𝐵 = (1/2)𝐼. Conversely, by (28), it is

clear that 𝐵 = (1/2)𝐼 implies that 𝐴 ∘ 𝐵 + 𝐴󸀠 ∘ 𝐵 = 𝐵󸀠.

For A,B ⊆ E(H) with A = {𝐴
𝑖
} and B = {𝐵

𝑗
},

the sequential product of A and B is defined by A ∘ B =

{𝐴
𝑖
∘𝐵
𝑗
}. We interpretA∘B to be themeasurement obtained

when A is performed first and B is performed second. The
sequential product is noncommutative and nonassociative in
general. We write A ≈ B if the nonzero elements of A

are a permutation of the nonzero elements of B. “≈” is an
equivalence relation, and when A ≈ B we say that A and
B are equivalent. In this case, the two submeasurements are
identical up to an ordering of their outcomes [11].

The results in [11, Theorem 3.1] could be modified as the
following. Note that, in [2, Theorem 4.4], it had proved that
𝐴 ∘ 𝐵 + 𝐴

󸀠 ∘ 𝐵 = 𝐵 if and only if 𝐴𝐵 = 𝐵𝐴.

Theorem 12. Suppose, 𝐴, 𝐵 ∈ E(H), A = {𝐴, 𝐴󸀠}, and B =

{𝐵, 𝐵󸀠}. IfA ∘ B ≈ B ∘ A, then 𝐴𝐵 = 𝐵𝐴.

Proof. Denote

𝑇 =: (𝐴 ∘ 𝐵, 𝐴 ∘ 𝐵
󸀠
, 𝐴
󸀠
∘ 𝐵, 𝐴

󸀠
∘ 𝐵
󸀠
)

=: (𝑋
00
, 𝑋
01
, 𝑋
10
, 𝑋
11
) ,

(𝐵 ∘ 𝐴, 𝐵
󸀠
∘ 𝐴, 𝐵 ∘ 𝐴

󸀠
, 𝐵
2
∘ 𝐴
󸀠
)

=: (𝑋
𝑇

00
, 𝑋
𝑇

01
, 𝑋
𝑇

10
, 𝑋
𝑇

11
) ,

(29)

respectively. If there exists one corresponding term𝑋
𝑖𝑗

= 𝑋
𝑇

𝑖𝑗
,

0 ≤ 𝑖, 𝑗 ≤ 1, then 𝐴𝐵 = 𝐵𝐴 by Lemma 1. Next, we consider
equality for noncorresponding terms.

Case I. If 𝑇 = (𝑋𝑇
01
, 𝑋𝑇
00
, 𝑋𝑇
11
, 𝑋𝑇
10
), then by comparing the

third and the fourth components in two sides, we get that
𝑋
10

+ 𝑋
11

= 𝑋𝑇
10

+ 𝑋𝑇
11
; that is, 𝐵 ∘ 𝐴󸀠 + 𝐵󸀠 ∘ 𝐴󸀠 = 𝐴󸀠. So,

𝐴𝐵 = 𝐵𝐴.
Case II. If 𝑇 = (𝑋𝑇

01
, 𝑋𝑇
10
, 𝑋𝑇
11
, 𝑋𝑇
00
) or 𝑇 = (𝑋𝑇

11
, 𝑋𝑇
00
, 𝑋𝑇
01
,

𝑋𝑇
10
), then by comparing the first and the third components

in two sides, we get that 𝑋
00

+ 𝑋
10

= 𝑋𝑇
01

+ 𝑋𝑇
11
, that is, 𝐴 ∘

𝐵 + 𝐴󸀠 ∘ 𝐵 = 𝐵󸀠. By Theorem 11, we get 𝐴𝐵 = 𝐵𝐴.

Case III. If 𝑇 = (𝑋𝑇
01
, 𝑋𝑇
11
, 𝑋𝑇
00
, 𝑋𝑇
10
), then by comparing the

first and the second components in two sides, we get that
𝑋
00

+ 𝑋
01

= 𝑋𝑇
01

+ 𝑋𝑇
11
; that is, 𝐴 = 𝐵󸀠, and hence 𝐴𝐵 = 𝐵𝐴.

Case IV. If 𝑇 = (𝑋𝑇
10
, 𝑋𝑇
00
, 𝑋𝑇
11
, 𝑋𝑇
01
), then by comparing the

first and the second components in two sides, we get that
𝑋
00

+ 𝑋
01

= 𝑋𝑇
00

+ 𝑋𝑇
10
; that is, 𝐴 = 𝐵. So, 𝐴𝐵 = 𝐵𝐴.

Case V. If 𝑇 = (𝑋𝑇
10
, 𝑋𝑇
11
, 𝑋𝑇
00
, 𝑋𝑇
01
), then by comparing the

first and the third components in two sides, we get that𝑋
00

+

𝑋
10

= 𝑋
𝑇

00
+ 𝑋
𝑇

10
; that is, 𝐴 ∘ 𝐵 + 𝐴

󸀠
∘ 𝐵 = 𝐵. So 𝐴𝐵 = 𝐵𝐴.

Case VI. If 𝑇 = (𝑋𝑇
10
, 𝑋𝑇
11
, 𝑋𝑇
01
, 𝑋𝑇
00
), then by comparing the

third and the fourth components in two sides we get 𝑋
10

+

𝑋
11

= 𝑋𝑇
00

+ 𝑋𝑇
01
, that is, 𝐵 ∘ 𝐴 + 𝐵󸀠 ∘ 𝐴 = 𝐴󸀠. ByTheorem 11,

we get that 𝐴 = (1/2)𝐼 and 𝐴𝐵 = 𝐵𝐴.

Case VII. If 𝑇 = (𝑋𝑇
11
, 𝑋𝑇
10
, 𝑋𝑇
00
, 𝑋𝑇
01
) or 𝑇 = (𝑋𝑇

11
, 𝑋𝑇
10
, 𝑋𝑇
01
,

𝑋𝑇
00
), then by comparing the first and the second components

in two sides, we get 𝑋
00

+ 𝑋
01

= 𝑋𝑇
10

+ 𝑋𝑇
11
; that is, 𝐵 ∘ 𝐴󸀠 +

𝐵󸀠 ∘ 𝐴󸀠 = 𝐴. ByTheorem 11, we get that 𝐴 = (1/2)𝐼 and 𝐴𝐵 =

𝐵𝐴.

The converse does not hold. Indeed,A∘A ≈ A∘A and yet
the elements inA need not be commutative. In the following,
we give a characterization of the two submeasurements that
are identical up to an arbitrary ordering of their outcomes.
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Corollary 13. Suppose that 𝐴, 𝐵 ∈ E(H), A = {𝐴, 𝐴󸀠}, and
B = {𝐵, 𝐵󸀠}. An arbitrary permutation of the elements inB∘A
is equivalent toA ∘ B if and only if 𝐴 = 𝐵 = (1/2)𝐼.

Proof. If 𝐴 = 𝐵 = (1/2)𝐼, then 𝐴 = 𝐴󸀠 = 𝐵 = 𝐵󸀠, and
clearly an arbitrary permutation of the elements in B ∘ A is
equivalent toA ∘ B.

Conversely, by Cases IV and VII in the proof of
Theorem 12, we have 𝐴 = 𝐵 = (1/2)𝐼.
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