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A robust nonlinear dynamic inversion (RNDI) technique is proposed in order to synchronize the behavior of chaotic gyros subjected
to uncertainties such as model mismatches and disturbances. Gyro is a crucial device that measures and maintains the orientation
of a vehicle. By Leipnik andNewton in 1981, chaotic behavior of a gyro under specific conditions was established. Hence, controlling
and synchronizing a gyro that shows irregular (chaotic) motion are very important.The proposed synchronizationmethod is based
onnonlinear dynamic inversion (NDI) control.NDI is a nonlinear control technique that removes the original systemdynamics into
the user-defined desired dynamics. Since NDI removes the original dynamics directly, it does not need linearizing and designing
gain-scheduled controllers for each equilibriumpoint.However, achieving perfect cancellation of the original nonlinear dynamics is
impossible in real applications due to model uncertainties and disturbances.This paper proposes the robustness assurance method
of NDI based on slidingmode control (SMC). Firstly, similarities of the conventional NDI control and SMC are provided. And then
the RNDI control technique is proposed. The feasibility and effectiveness of the proposed method are demonstrated by numerical
simulations.

1. Introduction

Chaotic behavior is a widely observed phenomenon in nature
as well as nonlinear systems. This presents a challenging
problem as direct control of chaotic systems is very difficult.
Chaos synchronization is a control process in which the
motions of coupled chaotic systems under different initial
conditions are synchronized [1–10]. Since chaotic systems
are very sensitive to the initial conditions, system behaviors
initiated distinctly cause irregular different motions. Figure 1
shows the irregular motions of two chaotic systems, called
drive and response systems, under different initial conditions.
Since the work of Pecora and Carroll in 1990, various
chaos synchronization techniques based on nonlinear control
theory have been developed. As shown in Figure 2, chaos
synchronization of two chaotic systems entails controlling the
motion of the response system by introducing an additional
control input, such as adaptive control [2], passive control
[3], backstepping control [4, 5], and sliding mode control
[6, 7]. The feasibility of controlling chaotic systems has
been explored in various fields of science and engineering,

such as secure communications, chemical reactions, power
converters, biological systems, and information processing
[2, 5–10].

In this paper, a robust nonlinear dynamic inversion
(RNDI) technique is proposed for the synchronization of
chaotic gyros perturbed by bounded uncertainties. Gyro is
a device that measures and maintains the orientation of a
vehicle. For this reason, gyro is one of the most crucial
instruments in safety-critical systems such as aircrafts, space-
crafts, and underwater vehicles. Since the work of Leipnik
and Newton [11] who verified chaotic behavior of gyro under
specific conditions in 1981, controlling and synchronizing a
gyro has received considerable attention [5, 6, 10]. However,
synchronization of gyros showing irregular (chaotic)motions
is still a challenging problem.

The proposed RNDI control method is an extension
of nonlinear dynamic inversion (NDI). NDI is a nonlinear
control technique that removes the original system dynamics
into the user-defined desired dynamics [12]. Different from
many other nonlinear controllers that linearize the original
system in order to design gain-scheduled controllers for
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Figure 1: Behaviors of unsynchronized chaotic systems.
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Figure 2: Behaviors of synchronized chaotic systems.

each equilibrium points, NDI does not need designing gain-
scheduled controllers, since it removes the system original
dynamics directly. Hence, NDI avoids difficulties of ensuring
stability between operating points. For this reason, NDI is
widely applied in the aerospace industry [13–16] that operates
in various equilibrium points. However, the main drawback
of NDI is poor robustness. That is, achieving perfect cancel-
lation of original nonlinear dynamics is impossible in real
applications due to the presence of model uncertainties and
disturbances acting on the system. Hence, the robustness
issue has received a great deal of interest in designing NDI
[12–16]. One of the most widely used methods for solving
this issue is employing an additional linear controller to form
an outer-loop controller while NDI works as an inner-loop
controller. However, the main drawback of this method is
increased order of the control system. For instance, the con-
troller order increases to 14 when using an 𝐻

∞
-based outer-

loop controller for X-38 [12]. Recently, Yang et al. proposed
the robust dynamic inversion (RDI) control method for
linearized systems. The proposed RDI controller guarantees
stability against uncertainties without using any outer-loop
controller [14]. This paper proposes an extension of the RDI
controller for nonlinear systems. Similarities of the NDI and
the SMC are provided firstly. And then the RNDI control
technique is proposed by following the design method of
the SMC provided in [17]. Numerical simulations of the
synchronization problem with chaotic gyros show that the
proposed method achieves the desired control performance,
although the systems are perturbed by uncertainties.

2. The Proposed Robust Nonlinear
Dynamic Inversion

2.1. Conceptual Design of Nonlinear Dynamic Inversion. Let
us consider the following nonlinear dynamical system:

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢,

𝑦 = ℎ (𝑥) ,

(1)

where 𝑥 ∈ X, an open set of 𝑅
𝑛, is a state vector and 𝑢 :

𝑅 → 𝑅 is an input. 𝑓 and 𝑔 defined on X are a smooth
nonlinear state dynamic function and a smooth nonlinear
control distribution function, respectively. Further, 𝑦 ∈ Y, an
open set of 𝑅, is an output and ℎ : 𝑅

𝑛

→ 𝑅 is a smooth
nonlinear function. If 𝐿

𝑔
ℎ(𝑥) ̸= 0 for all 𝑥 ∈ X, then the

NDI control input for a single-input and single-output (SISO)
system is designed as follows:

𝑢NDI = [𝐿
𝑔
ℎ (𝑥)]

−1

[ ̇𝑦des − 𝐿
𝑓
ℎ (𝑥)] , (2)

where 𝐿
(⋅)

is the Lie derivative with respect to (⋅) and
𝑦des represents the desired dynamics that determines the
system response after canceling the original dynamics. By
substituting (2) into (1), the dynamic system controlled by
NDI can be represented as follows:

̇𝑦 = ̇𝑦des. (3)

Hence, the original nonlinear dynamics are replaced with
the desired dynamics. However, the robustness issue must
be considered in designing an NDI controller as perfect
cancelation of the original dynamics cannot be achieved in
real applications.

2.2. The Proposed Robust Nonlinear Dynamic Inversion. Let
𝜎 : Y → 𝑅 be a smooth function such that {𝑦 | 𝜎(𝑦) = 0} is
a smoothmanifold. In general, 𝜎(𝑦) = 0 is known as a sliding
surface or sliding manifold in sliding mode control (SMC)
theory [17, 18]. SMC consists of two phases called reaching
and sliding phases [18]. One method for designing a sliding
surface is using equivalent control. This method, defined as
ideal sliding motion, determines an equivalent input, 𝑢eq, that
forces the output to stay on the sliding surface 𝜎(𝑦) = 0.
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In this approach, the equivalent input can be analyzed by
means of themanifold invariant conditions [17]:

𝜎̇ (𝑦) = 𝜎̇ (ℎ (𝑥)) = (
𝜕𝜎

𝜕𝑦
) [𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢eq] = 0,

󳨐⇒ 𝑢eq = −[(
𝜕𝜎

𝜕𝑦
)𝐿
𝑔
ℎ (𝑥)]

−1

[(
𝜕𝜎

𝜕𝑦
)𝐿
𝑓
ℎ (𝑥)] ,

(4)

where [(𝜕𝜎/𝜕𝑦)𝐿
𝑔
ℎ(𝑥)] is assumed to be nonsingular. Then,

the dynamics of the system on the sliding surface is governed
by

̇𝑦 = [𝐼 − 𝐿
𝑔
ℎ (𝑥) [(

𝜕𝜎

𝜕𝑦
)𝐿
𝑔
ℎ(𝑥)]

−1

(
𝜕𝜎

𝜕𝑦
)]𝐿
𝑓
ℎ (𝑥) .

(5)

The dynamics (5) is defined as the ideal sliding dynamics. As
shown in (5), the characteristics of the ideal sliding dynamics
are determined by the sliding surface. Hence, choosing a
sliding surface that makes the system stable is critical in the
design of a sliding mode controller.

For the desired dynamics, 𝑦des ∈ Y, let 𝑦∗ = 𝑦des − 𝑦 =

𝑦des − ℎ(𝑥) ∈ Y. Then, the equivalent input can be obtained
as follows:

𝜎̇ (𝑦
∗

) = (
𝜕𝜎

𝜕𝑦∗
) ̇𝑦
∗

= (
𝜕𝜎

𝜕𝑦∗
) ̇𝑦des

− (
𝜕𝜎

𝜕𝑦∗
) [𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢eq] = 0,

󳨐⇒ 𝑢eq = [(
𝜕𝜎

𝜕𝑦∗
)𝐿
𝑔
ℎ (𝑥)]

−1

× [(
𝜕𝜎

𝜕𝑦∗
) ̇𝑦des − (

𝜕𝜎

𝜕𝑦∗
)𝐿
𝑓
ℎ (𝑥)] .

(6)

In (6), if the sliding surface is identity (i.e., 𝜎(𝑦∗) = 𝑦
∗), then

the equivalent input yields

𝑢eq = [𝐿
𝑔
ℎ (𝑥)]

−1

[ ̇𝑦des − 𝐿
𝑓
ℎ (𝑥)] . (7)

Comparing (7) with (2), the equivalent input designed with
an identity sliding surface can be considered as the conven-
tional NDI input.

Definition 1. Let 𝜎NDI : Y → 𝑅 be a smooth function. Then
𝜎NDI = 0 is defined as the NDI surface if 𝜎NDI(𝑦) = 𝑦. That
is, if the sliding surface is identity, then the sliding surface is
defined as the NDI surface.

As the NDI input is represented as the equivalent input
of the identity sliding surface, it controls the output on the
NDI surface. Moreover, since the error between the desired
dynamics and output is forced to be zero by the NDI input,
the output is driven by the desired dynamics.

Theorem 2. The NDI law is well defined if and only if
𝐿
𝑔
ℎ(𝑥) ̸= 0, for all 𝑥 ∈ X.

Proof. Suppose that the NDI law is well defined; that is,
𝑢NDI exists uniquely. Then, it is clear that 𝐿

𝑔
ℎ(𝑥) ̸= 0 by

(7). Because if 𝐿
𝑔
ℎ(𝑥) = 0, then ̇𝑦des − 𝐿

𝑓
ℎ(𝑥) has to be

zero. However, it is impossible to achieve the system ̇𝑦des −

𝐿
𝑓
ℎ(𝑥) = 0 in real applications. Moreover, if ̇𝑦des − 𝐿

𝑓
ℎ(𝑥) =

0, then the NDI input exists trivially. Thus, it contradicts
the hypothesis of uniqueness. Hence, if the NDI law is well
defined, then 𝐿

𝑔
ℎ(𝑥) ̸= 0.

Conversely, suppose that 𝐿
𝑔
ℎ(𝑥) ̸= 0.Then, from (7), 𝑢NDI

exists. To prove its uniqueness, it is assumed that 𝑢NDI,1
and 𝑢NDI,2 are two distinct NDI inputs. From the manifold
invariant condition, ̇𝑦des−𝐿

𝑓
ℎ(𝑥)−𝐿

𝑔
ℎ(𝑥)𝑢NDI,1 = 0 = ̇𝑦des−

𝐿
𝑓
ℎ(𝑥)−𝐿

𝑔
ℎ(𝑥)𝑢NDI,2. Hence, [𝐿𝑔ℎ(𝑥)](𝑢NDI,1 −𝑢NDI,2) = 0.

Since 𝐿
𝑔
ℎ(𝑥) ̸= 0, then 𝑢NDI,1 = 𝑢NDI,2. This contradicts the

condition of 𝑢NDI,1 ̸= 𝑢NDI,2.Thus, if 𝐿
𝑔
ℎ(𝑥) ̸= 0, then the NDI

law is well defined.
Hence, the NDI law is well defined if and only if

𝐿
𝑔
ℎ(𝑥) ̸= 0, for all 𝑥 ∈ X.

The proposed robust nonlinear dynamic inversion law, 𝑢,
can be obtained by taking the extreme control values [17]:

𝑢 = {
𝑢
+

, if 𝑦 < 𝑦des,

𝑢
−

, if 𝑦 > 𝑦des,
(8)

where 𝑢
+

̸= 𝑢
−. The following is then satisfied:

lim
ℎ(𝑥)→𝑦

+

des

𝐿
𝑓+𝑔𝑢

+ℎ (𝑥) > ̇𝑦des,

lim
ℎ(𝑥)→𝑦

−

des

𝐿
𝑓+𝑔𝑢

−ℎ (𝑥) < ̇𝑦des.
(9)

Then, the point of the controlled vector fields 𝐿
𝑓+𝑔𝑢

+ℎ and
𝐿
𝑓+𝑔𝑢

−ℎ moves toward the NDI surface. Figure 3 illustrates
the robust nonlinear dynamics inversion regime on the NDI
surface.

Theorem 3. If 𝑢+ > 𝑢
−, then 𝐿

𝑔
ℎ(𝑥) > 0 and, conversely, if

𝑢
+

< 𝑢
−, then 𝐿

𝑔
ℎ(𝑥) < 0.

Proof. It is clear directly from (9). Since 𝐿
𝑓
ℎ(𝑥)+𝐿

𝑔
ℎ(𝑥)𝑢

+

>

̇𝑦des and 𝐿
𝑓
ℎ(𝑥)+𝐿

𝑔
ℎ(𝑥)𝑢

−

< ̇𝑦des, then 𝐿
𝑔
ℎ(𝑥)(𝑢

+

−𝑢
−

) > 0.
Hence, if 𝑢+ > 𝑢

−, then 𝐿
𝑔
ℎ(𝑥) > 0 and, conversely, if 𝑢+ <

𝑢
−, then 𝐿

𝑔
ℎ(𝑥) < 0.

Theorem 4. The RNDI law exists locally if and only if

min {𝑢
−

, 𝑢
+

} < 𝑢
𝑁𝐷𝐼

< max {𝑢
−

, 𝑢
+

} . (10)

Proof. Suppose that the NDI law exists and 𝑢
+

> 𝑢
−, that is,

𝑢
+

= max{𝑢−, 𝑢+} and 𝑢
−

= min{𝑢−, 𝑢+}. From (2) and (9),
𝐿
𝑓
ℎ(𝑥) + 𝐿

𝑔
ℎ(𝑥)𝑢

+

> ̇𝑦des ⇒ 𝐿
𝑔
ℎ(𝑥)𝑢

+

> ̇𝑦des − 𝐿
𝑓
ℎ(𝑥) =

𝐿
𝑔
ℎ(𝑥)𝑢NDI. Since 𝑢

+

> 𝑢
−, by Theorem 3, 𝐿

𝑔
ℎ(𝑥) > 0.

Hence, 𝑢+ > 𝑢NDI. Similarly, 𝐿
𝑓
ℎ(𝑥) + 𝐿

𝑔
ℎ(𝑥)𝑢

−

< ̇𝑦des ⇒

𝐿
𝑔
ℎ(𝑥)𝑢

−

< ̇𝑦des − 𝐿
𝑓
ℎ(𝑥) = 𝐿

𝑔
ℎ(𝑥)𝑢NDI. Since 𝑢

+

< 𝑢
−,

𝐿
𝑔
ℎ(𝑥) > 0. Hence, min{𝑢−, 𝑢+} = 𝑢

−

< 𝑢NDI(𝑥) < 𝑢
+

=

max{𝑢−, 𝑢+}.
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Figure 3: The nonlinear dynamic inversion regime on the NDI
surface.

Conversely, if 𝑢
+

< 𝑢
−, then 𝑢

−

= max{𝑢−, 𝑢+} and
𝑢
+

= min{𝑢−, 𝑢+}. From (9), 𝐿
𝑓
ℎ(𝑥) + 𝐿

𝑔
ℎ(𝑥)𝑢

−

< ̇𝑦des ⇒

𝐿
𝑔
ℎ(𝑥)𝑢

−

< ̇𝑦des − 𝐿
𝑓
ℎ(𝑥) = 𝐿

𝑔
ℎ(𝑥)𝑢NDI. Since 𝑢

−

> 𝑢
+, by

Theorem 3, 𝐿
𝑔
ℎ(𝑥) < 0. Hence, 𝑢− > 𝑢NDI ⇒ max{𝑢−, 𝑢+} >

𝑢NDI. Similarly, 𝐿
𝑓
ℎ(𝑥) + 𝐿

𝑔
ℎ(𝑥)𝑢

+

> ̇𝑦des ⇒ 𝐿
𝑔
ℎ(𝑥)𝑢

+

>

̇𝑦des − 𝐿
𝑓
ℎ(𝑥) = 𝐿

𝑔
ℎ(𝑥)𝑢NDI. Since 𝐿

𝑔
ℎ(𝑥) < 0, 𝑢+ < 𝑢NDI.

Thus, min{𝑢−, 𝑢+} < 𝑢NDI. Hence, min{𝑢−, 𝑢+} < 𝑢NDI <

max{𝑢−, 𝑢+}.
Conversely, suppose that 𝑢NDI is a smooth feedback

function satisfying (2) and (10). Then, we have

0 < 𝑢NDI − min {𝑢
−

, 𝑢
+

} < max {𝑢
−

, 𝑢
+

} − min {𝑢
−

, 𝑢
+

} .

(11)

Simply, set 𝑢− = min{𝑢−, 𝑢+} and 𝑢
+

= max{𝑢−, 𝑢+}.Then (11)
is converted as follows:

0 < 𝑢NDI − 𝑢
−

< 𝑢
+

− 𝑢
−

󳨐⇒ 0 < 𝑤NDI :=
𝑢NDI − 𝑢

−

𝑢+ − 𝑢−
< 1.

(12)

This leads to 0 < 1 − 𝑤NDI < 1. Moreover, the following
relationships are satisfied:

̇𝑦des − (𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢NDI)

= 𝑤NDI { ̇𝑦des − (𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢

+

)}

+ (1 − 𝑤NDI) { ̇𝑦des − (𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢

−

)} = 0.

(13)

From (13), ̇𝑦des − 𝐿
𝑓
ℎ(𝑥) − 𝐿

𝑔
ℎ(𝑥)𝑢

+ and ̇𝑦des − 𝐿
𝑓
ℎ(𝑥) −

𝐿
𝑔
ℎ(𝑥)𝑢

− have opposite signs. Since the orientation of NDI
is arbitrary, it is reasonable that 𝐿

𝑓
ℎ(𝑥) + 𝐿

𝑔
ℎ(𝑥)𝑢

−

< ̇𝑦des
and 𝐿

𝑓
ℎ(𝑥) + 𝐿

𝑔
ℎ(𝑥)𝑢

+

> ̇𝑦des. Thus, (9) is satisfied. Hence,
if the control law 𝑢NDI satisfies the condition of (10), then the
RNDI law exists.

Corollary 5. The RNDI law exists locally if the RNDI law is
designed as

𝑢
𝑅𝑁𝐷𝐼

= 𝑢
𝑁𝐷𝐼

+ 𝑘[𝐿
𝑔
ℎ (𝑥)]

−1

sgn (𝑦
𝑑𝑒𝑠

− ℎ (𝑥)) , 𝑘 > 0.

(14)

Proof. If 𝑦des −𝑦 > 0, then 𝑢RNDI = 𝑢NDI +𝑘[𝐿
𝑔
ℎ(𝑥)]
−1

≡ 𝑢
+.

If 𝑦des − 𝑦 < 0, then 𝑢RNDI = 𝑢NDI − 𝑘[𝐿
𝑔
ℎ(𝑥)]
−1

≡ 𝑢
−.

Thus, min{𝑢NDI−𝑘[𝐿
𝑔
ℎ(𝑥)]
−1, 𝑢NDI+𝑘[𝐿

𝑔
ℎ(𝑥)]
−1

} < 𝑢NDI <

max{𝑢NDI − 𝑘[𝐿
𝑔
ℎ(𝑥)]
−1, 𝑢NDI + 𝑘[𝐿

𝑔
ℎ(𝑥)]
−1

}. Hence, by
Theorem 4, the RNDI law exists locally.

Stability of the closed-loop system designed by the pro-
posed RNDI control law is proven by a Lyapunov stability
criterion.

Theorem 6. Consider the following system:

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) 𝑢 (𝑡) + 𝑑
𝑋
(𝑡) ,

𝑦 (𝑡) = ℎ (𝑥 (𝑡)) + 𝑑
𝑌
(𝑡) ,

(15)

where𝑑
𝑋
(𝑡) ∈ 𝑅

𝑛 and𝑑
𝑌
(𝑡) ∈ 𝑅 are bounded disturbances. For

𝜉(𝑡) ∈ 𝑅 such that 𝜉(𝑡) = (𝜕ℎ/𝜕𝑥)𝑑
𝑋
(𝑡) + ̇𝑑

𝑌
(𝑡), if |𝜉(𝑡)| < 𝑘

for the positive switching gain 𝑘; then the system (15) designed
by the proposed RNDI control law (14) is globally stable.

Proof. Suppose that 𝑦∗ = 𝑦des−𝑦. To prove the stability of the
closed-loop system designed by the proposed RNDI control
law, a Lyapunov stability criterion is considered. Choose a
Lyapunov candidate as

𝑉 (𝑦
∗

(𝑡)) =
1

2
𝑦
∗

(𝑡) 𝑦
∗

(𝑡) . (16)

Then, the derivative of 𝑉(𝑦
∗

(𝑡)) yields

𝑉̇ (𝑦
∗

(𝑡)) = 𝑦
∗

(𝑡) ̇𝑦
∗

(𝑡)

= 𝑦
∗

(𝑡) [ ̇𝑦des (𝑡) − ̇𝑦 (𝑡)]

= 𝑦
∗

(𝑡) [ ̇𝑦des (𝑡)

− {𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢RNDI

+(
𝜕ℎ

𝜕𝑥
)𝑑
𝑋
(𝑡) + ̇𝑑

𝑌
(𝑡)}]

= 𝑦
∗

(𝑡) [ ̇𝑦des (𝑡)

− {𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥)

× {𝑢NDI + 𝑘[𝐿
𝑔
ℎ (𝑥)]

−1

× sgn (𝑦
∗

(𝑡)) } + 𝜉 (𝑡)}]

= 𝑦
∗

(𝑡) [ ̇𝑦des (𝑡)

− {𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢NDI

+𝑘 sgn (𝑦
∗

(𝑡)) + 𝜉 (𝑡) }]

= 𝑦
∗

(𝑡) [−𝑘 sgn (𝑦
∗

(𝑡)) − 𝜉 (𝑡)]
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= [𝑦des (𝑡) − 𝑦 (𝑡)]

× [−𝑘 sgn (𝑦des (𝑡) − 𝑦 (𝑡)) − 𝜉 (𝑡)]

≤
󵄨󵄨󵄨󵄨𝜉 (𝑡)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦des (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

− 𝑘 (𝑦des (𝑡) − 𝑦 (𝑡)) sgn (𝑦des (𝑡) − 𝑦 (𝑡))

=
󵄨󵄨󵄨󵄨𝜉 (𝑡)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦des (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 − 𝑘

󵄨󵄨󵄨󵄨𝑦des (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝜉 (𝑡)

󵄨󵄨󵄨󵄨 − 𝑘)
󵄨󵄨󵄨󵄨𝑦des (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

< 0.

(17)

Hence, the system controlled by the proposed RNDI con-
troller is globally stable.

3. Simulation Results

In this section, the performance of the proposed robust non-
linear dynamic inversion technique is evaluated with applica-
tion to the synchronization of chaotic gyros.

3.1. Dynamics of Chaotic Gyros. The dynamic equation of
chaotic gyros with linear-plus-cubic damping mounted on a
vibrating platform (Figure 4) can be represented as follows
[10]:

̈𝜃 + 𝛼
2 (1 − cos 𝜃)2

sin3𝜃
− 𝛽 sin 𝜃

+ 𝑐
1

̇𝜃 + 𝑐
2

̇𝜃
3

= 𝑓 sin𝜔𝑡 sin 𝜃,

(18)

where 𝑐
1

̇𝜃 and 𝑐
2

̇𝜃
3 are linear and nonlinear damping terms,

respectively. Further, 𝛼2[(1− cos 𝜃)2/sin3𝜃]−𝛽 sin 𝜃 is a non-
linear resilience force and 𝑓 sin𝜔𝑡 is a parametric excitation.

By letting 𝑥
11

= 𝜃, 𝑥
12

= ̇𝜃, and 𝑔(𝜃) = −𝛼
2

[(1 −

cos 𝜃)2/sin3𝜃], the state equation of chaotic gyros can be
transformed into the following normal form:

𝑥̇
11

= 𝑥
12
,

𝑥̇
12

= 𝑔 (𝑥
11
) − 𝑐
1
𝑥
12

− 𝑐
2
𝑥
3

12
+ (𝛽 + 𝑓 sin𝜔𝑡) sin𝑥

11
,

𝑦
11

= 𝑥
11
.

(19)

It is well known that for particular values of 𝛼2 = 100, 𝛽 = 1,
𝑐
1

= 0.5, 𝑐
2

= 0.05, 𝜔 = 2, and 𝑓 = 35.5, the gyro system
exhibits chaotic behavior [11]. Figures 5 and 6 illustrate the
irregular motion of the states and the phase portrait under
the initial condition of [𝑥

11
(0), 𝑥
12
(0)] = [1, −1], respectively.

Let 𝑥
1

= [𝑥
11
, 𝑥
12
]
𝑇 and 𝑥

2
= [𝑥

21
, 𝑥
22
]
𝑇 denote the

states of the drive and response systems, respectively. Then,
the dynamic equations of the drive and response systems
with model mismatches and disturbances are represented as
follows.

𝜓

Z

z

Y

y

𝜂

X

x

l

C.G.

𝜁

𝜉

𝜙

𝜃

Mg

f sin 𝜔t

Figure 4: Schematic diagram of a symmetric gyroscope [10].

Drive system

𝑥̇
11

= 𝑥
12
,

𝑥̇
12

= 𝑔 (𝑥
11
) − 𝑐
1
𝑥
12

− 𝑐
2
𝑥
3

12
+ (𝛽 + 𝑓 sin𝜔𝑡) sin𝑥

11

+ Δ𝑓 (𝑥
11
, 𝑥
12
) + 𝑑
𝑥
1

(𝑡) ,

𝑦
11

= 𝑥
11
,

(20)

where Δ𝑓(𝑥
11
, 𝑥
12
) and 𝑑

𝑥
1

(𝑡) are assumed to be bounded
model mismatches and bounded disturbance, respectively.

Response system

𝑥̇
21

= 𝑥
22
,

𝑥̇
22

= 𝑔 (𝑥
21
) − 𝑐
1
𝑥
22

− 𝑐
2
𝑥
3

22
+ (𝛽 + 𝑓 sin𝜔𝑡) sin𝑥

21

+ Δ𝑓 (𝑥
21
, 𝑥
22
) + 𝑑
𝑥
2

(𝑡) + 𝑢 (𝑡) ,

𝑦
21

= 𝑥
21
,

(21)

where Δ𝑓(𝑥
21
, 𝑥
22
) and 𝑑

𝑥
2

(𝑡) also denote model mismatches
and disturbance, respectively, and are also assumed to be
bounded. 𝑢(𝑡) is the control input provided by the proposed
RNDI controller to synchronize the chaotic gyros.

If the errors between the states of the drive and response
systems are defined as 𝑒

𝑥
𝑖

= 𝑥
2𝑖

− 𝑥
1𝑖
and 𝑒
𝑦
𝑖

= 𝑦
2𝑖

− 𝑦
1𝑖
, then

the error dynamics can be represented as follows:

̇𝑒
𝑥
1

= 𝑒
𝑥
2

,

̇𝑒
𝑥
2

= 𝑔 (𝑥
11
, 𝑥
21
) − 𝑐
1
𝑒
𝑥
2

− 𝑐
2
(𝑥
3

22
− 𝑥
3

12
) ,

+ (𝛽 + 𝑓 sin𝜔𝑡) (sin𝑥
21

− sin𝑥
11
)

+ Δ𝑓 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑡) + 𝑢 (𝑡) ,

𝑒
𝑦
1

= 𝑦
21

− 𝑦
11
,

(22)
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Figure 5: Behaviors of the chaotic gyros: (a) trajectories of 𝜃 of the chaotic gyro, (b) trajectories of ̇𝜃 of the chaotic gyro.
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Figure 6: Phase portrait of the chaotic gyro.

where 𝑔(𝑥
11
, 𝑥
21
) = 𝑔(𝑥

21
) − 𝑔(𝑥

11
), Δ𝑓(𝑥

1
, 𝑥
2
) =

Δ𝑓(𝑥
21
, 𝑥
22
) − Δ𝑓(𝑥

11
, 𝑥
12
), and 𝑑(𝑡) = 𝑑

𝑥
2

(𝑡) − 𝑑
𝑥
1

(𝑡). Since
Δ𝑓(𝑥
11
, 𝑥
12
), Δ𝑓(𝑥

21
, 𝑥
22
), 𝑑
𝑥
1

(𝑡), and 𝑑
𝑥
2

(𝑡) are bounded,
Δ𝑓(𝑥
1
, 𝑥
2
) and 𝑑(𝑡) are also bounded. From (20) to (22), it

is clear that the synchronization problem of the two chaotic
systems is replaced with a stabilization problem of the error
dynamics.

To synchronize the chaotic gyros, the proposed RNDI
controller is adopted in the response system in 40 sec. It is
assumed that |𝑑

𝑥
1

(𝑡) + Δ𝑓(𝑥
11
, 𝑥
12
)| ≤ 0.5 and |𝑑

𝑥
2

(𝑡) +

Δ𝑓(𝑥
21
, 𝑥
22
)| ≤ 0.7. The initial conditions are 𝑥

11
(0) = 1,

𝑥
12
(0) = −1, and 𝑥

21
(0) = 1.6, 𝑥

22
(0) = 0.8.

3.2. Simulation Results. In this section, numerical simulation
results are provided in order to demonstrate the feasibility
and effectiveness of the proposed RNDI controller.

Figures 7 and 8 illustrate the state and error trajectories
of 𝜃 and ̇𝜃 of the unsynchronized chaotic gyros, respectively;
that is, no control action is performed in this case. The
behaviors of the unsynchronized chaotic gyros oscillate inde-
pendently due to the distinct initial conditions. Since there is
no control action for synchronization, the errors of 𝜃 and ̇𝜃

between the drive and response systems do not converge to
zero as shown in Figures 7(b) and 8(b). Actually, the behaviors
during 𝑡 = 5–17 sec seem to be synchronized in these figures.
However, these are not the result of synchronization but

are instead due to dynamic characteristics of the considered
systems.

Figures 9 and 10 show the synchronized results of chaotic
gyros under distinct initial conditions. In this case, the
control input generated by the proposed RNDI controller
forces the states of the response system to track those of
the drive system. It is assumed that the RNDI controller is
activated in 𝑡 = 40 sec to distinguish the dynamic behavior
during 𝑡 = 5–17 sec from the synchronized behavior. Once
the controller is activated in 𝑡 = 40 sec, 𝜃 and ̇𝜃 of the
response system can track those of the drive system as shown
in Figures 9(a) and 10(a). Moreover, the errors of 𝜃 and ̇𝜃

between the drive and response systems converge to zero
within a 1 sec (Figures 9(b) and 10(b)). Hence, the proposed
RNDI technique achieves the synchronization of chaotic
systems containing uncertainties of model mismatches and
disturbances under distinct initial conditions.

4. Conclusion

In this paper, a robust nonlinear dynamic inversion (RNDI)
method has been proposed to solve the synchronization
problem of chaotic gyros. The proposed RNDI improves
robustness of NDI. Simulation results with synchroniza-
tion of chaotic gyros using the proposed method show
that accurate control performance can be achieved even in



Journal of Applied Mathematics 7

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

𝜃 of the drive system
𝜃 of the response system

𝜃

(a)

0 10 20 30 40 50 60 70
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

Time (s)

Er
ro

r (
𝜃

)

(b)

Figure 7: Simulation results of 𝜃 and error trajectories of unsynchronized chaotic gyros: (a) trajectories of 𝜃 of drive and response systems,
(b) error behavior of 𝜃.
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Figure 8: Simulation results of ̇𝜃 and error trajectories of unsynchronized chaotic gyros: (a) trajectories of ̇𝜃 of drive and response systems,
(b) error behavior of ̇𝜃.
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Figure 9: Simulation results of 𝜃 and error trajectories of synchronized chaotic gyros: (a) trajectories of 𝜃 of drive and response systems, (b)
error behavior of 𝜃.
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Figure 10: Simulation results of ̇𝜃 and error trajectories of synchronized chaotic gyros: (a) trajectories of ̇𝜃 of drive and response systems, (b)
error behavior of ̇𝜃.

the presence of uncertainties without any additional outer-
loop controller.
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