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We consider the subharmonics with minimal periods for convex discrete Hamiltonian systems. By using variational methods and
dual functional, we obtain that the systemhas a𝑝𝑇-periodic solution for each positive integer𝑝, and solution of systemhasminimal
period 𝑝𝑇 as H subquadratic growth both at 0 and infinity.

1. Introduction

Consider Hamiltonian systems

𝐽�̇� (𝑡) + ∇𝐻 (𝑡, 𝑢 (𝑡)) = 0, 𝑢 (0) = 𝑢 (𝑝𝑇) , (1)

where 𝑢(𝑡) ∈ R2𝑁, 𝑡 ∈ R, ∇𝐻 stands for the gradient of 𝐻
with respect to the second variable, and 𝐽 = ( 0 −𝐼𝑁

𝐼𝑁 0
) is the

symplectic matrix with 𝐼
𝑁
the identity inR𝑁. Moreover,𝐻 is

𝑇-periodic in the variable 𝑡, 𝑝 ∈ N \ {0}.
Classically, solutions for systems (1) are called sub-

harmonics. The first result concerning the subharmonics
problem traced back to Birkhoff and Lewis in 1933 (refer
to [1]), in which there exists a sequence of subharmonics
with arbitrarily large minimal period, using perturbation
techniques. More results can be found in [1–5], where 𝐻 is
convexwith subquadratic growth both at 0 and infinity. Using
𝑍
𝑝
index theory and Clarke duality, Xu and Guo [1, 5] proved

that the number of solutions for systems (1) with minimal
period 𝑝𝑇 tends towards infinity as 𝑝 → ∞.

For periodic and subharmonic solutions for discrete
Hamiltonian systems, Guo and Yu [6, 7] obtained some
existence results by means of critical point theory, where they
introduced the action functional

𝐹 (𝑢) = −
1

2

𝑝𝑇

∑

𝑛=1

(𝐽Δ𝐿𝑢 (𝑛 − 1) , 𝑢 (𝑛)) −

𝑝𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛)) . (2)

Using Clarke duality, periodic solution of convex discrete
Hamiltonian systems with forcing terms has been investi-
gated in [8]. Clarke duality was introduced in 1978 by Clarke
[9], and developed by Clarke, Ekeland, and others, see [10–
12]. This approach is different from the direct method of
variations; some scholars applied it to consider the periodic
solutions, subharmonic solutions with prescribed minimal
period of Hamiltonian systems; one can refer to [3, 5,
12–14] and references therein. The dynamical behavior of
differential and difference equations was studied by using
various methods; see [15–19]. We refer the reader to Agarwal
[20] for a broad introduction to difference equations.

Motivated by the works of Mawhin and Willem [12] and
Xu and Guo [21], we use variational methods and Clarke
duality to consider the subharmonics with minimal periods
for discrete Hamiltonian systems

𝐽Δ𝑢 (𝑛) + ∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) = 0, 𝑢 (𝑛) = 𝑢 (𝑛 + 𝑝𝑇) , (3)

where 𝑢(𝑛) = ( 𝑢1(𝑛)
𝑢2(𝑛)

), 𝐿𝑢(𝑛) = ( 𝑢1(𝑛+1)
𝑢2(𝑛)

), 𝑢
𝑖
(𝑛) ∈ R𝑁 (𝑖 =

1, 2) with 𝑁 a given positive integer, and Δ𝑢(𝑛) = 𝑢(𝑛 +

1) − 𝑢(𝑛) is the forward difference operator. 𝑝, 𝑇 ∈ N \

{0}. Moreover, hamiltonian function𝐻 satisfies the following
assumption:

(A1) 𝐻 : Z × R2𝑁 → R is continuous differentiable on
R2𝑁,𝐻(𝑛, ⋅) convex for each 𝑛 ∈ Z and𝐻(𝑛 + 𝑇, 𝑢) =
𝐻(𝑛, 𝑢) for each 𝑢 ∈ R2𝑁;



2 Abstract and Applied Analysis

(A2) there exist constants 𝑎
1
> 0, 𝑎

2
> 0, 1 < 𝜃 < 2, such

that
𝑎
1

𝜃
|𝑢|
𝜃
≤ 𝐻 (𝑛, 𝑢) ≤

𝑎
2

𝜃
|𝑢|
𝜃
, 𝑢 ∈ R

2𝑁
, (4)

which implies 𝐻 subquadratic growth both at 0 and
infinity.

Theorem 1. Assume (A1) holds. 𝐻(𝑛, 𝑢) → +∞, 𝐻(𝑛, 𝑢)/
|𝑢|
2
→ 0, as |𝑢| → ∞ uniformly in 𝑛 ∈ Z. Then there

exists a 𝑝𝑇-periodic solution 𝑢
𝑝
of (3), such that ‖𝑢

𝑝
‖
∞
≜

max
𝑛∈𝑍[1,𝑝𝑇]

{|𝑢
𝑝
(𝑛)|} → ∞, and the minimal period 𝑇

𝑝
of

𝑢
𝑝
tends to +∞ as 𝑝 → ∞.

Theorem 2. Under the assumptions (A1) and (A2), if

𝑎
2

𝑎
1

≤

{{{{

{{{{

{

(
1

4
sin 𝜋

𝑝𝑇
)

𝜃/2

, when 𝑝𝑇 is even,

(
1

2
sin 𝜋

2𝑝𝑇
)

𝜃/2

, when 𝑝𝑇 is odd
(5)

for given integer 𝑝 > 1, then the solution of (3) has minimal
period 𝑝𝑇.

2. Clarke Duality and Eigenvalue Problem

First we introduce a space 𝐸
𝑝𝑇

with dimension 2𝑁𝑝𝑇 as
follows:

𝐸
𝑝𝑇
= {𝑢 = {𝑢 (𝑛)} ∈ 𝑆 | 𝑢 (𝑛 + 𝑝𝑇)

= 𝑢 (𝑛) , 𝑝 ∈ N \ {0} , 𝑛 ∈ Z} ,
(6)

where

𝑆 = {𝑢 = {𝑢 (𝑛)} | 𝑢 (𝑛) = (
𝑢
1
(𝑛)

𝑢
2
(𝑛)
) ∈ R

2𝑁
,

𝑢
𝑗
(𝑛) ∈ R

𝑁
, 𝑗 = 1, 2, 𝑛 ∈ Z} .

(7)

Equipped with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖ in 𝐸
𝑝𝑇

as

⟨𝑢, V⟩ =

𝑝𝑇

∑

𝑛=1

(𝑢 (𝑛) , V (𝑛)) ,

‖𝑢‖ = (

𝑝𝑇

∑

𝑛=1

|𝑢 (𝑛)|
2
)

1/2

, ∀𝑢, V ∈ 𝐸
𝑝𝑇
,

(8)

where (⋅, ⋅) and | ⋅ | denote the usual scalar product and
corresponding norm in R2𝑁, respectively. It is easy to see
that (𝐸

𝑝𝑇
, ⟨⋅, ⋅⟩) is a Hilbert space with 2𝑁𝑝𝑇 dimension,

which can be identified with R2𝑁𝑝𝑇. Then for any 𝑢 ∈ 𝐸
𝑝𝑇
,

it can be written as 𝑢 = (𝑢𝑇(1), 𝑢𝑇(2), . . . , 𝑢𝑇(𝑝𝑇))𝑇, where
𝑢(𝑗) = (

𝑢1(𝑗)

𝑢2(𝑗)
) ∈ R2𝑁, 𝑗 ∈ 𝑍[1, 𝑝𝑇], the discrete interval

{1, 2, . . . , 𝑝𝑇} is denoted by 𝑍[1, 𝑝𝑇], and ⋅𝑇 denotes the
transpose of a vector or a matrix.

Denote the subspace 𝑌 = {𝑢 ∈ 𝐸
𝑝𝑇
| 𝑢(1) = 𝑢(2) = ⋅ ⋅ ⋅ =

𝑢(𝑝𝑇) ∈ R2𝑁}. Let 𝑌 be the direct orthogonal complement of

𝐸
𝑝𝑇

to 𝑌. Thus 𝐸
𝑝𝑇

can be split as 𝐸
𝑝𝑇
= 𝑌⊕𝑌, and for any

𝑢 ∈ 𝐸
𝑝𝑇
, it can be expressed in the form 𝑢 = �̃� + 𝑢, where

�̃� ∈ 𝑌, 𝑢 ∈ 𝑌.
Next we recall Clarke duality and some lemmas.
The Legendre transform (see [12])𝐻∗(𝑡, ⋅) of𝐻(𝑡, ⋅) with

respect to the second variable is defined by

𝐻
∗
(𝑡, V) = sup

𝑢∈𝑅
2𝑁

{(V, 𝑢) − 𝐻 (𝑡, 𝑢)} , (9)

where (⋅, ⋅) denotes the inner product inR2𝑁. It follows from
(A1) and (A2) that

(B1) 𝐻∗(𝑛, ⋅) is continuous differentiable on R2𝑁,
(B2) for 𝜏 = 𝜃/(𝜃 − 1), V ∈ R2𝑁, 𝑛 ∈ Z, one has

1

𝜏
(
1

𝑎
2

)

𝜏−1

|V|
𝜏
≤ 𝐻

∗
(𝑛, V) ≤

1

𝜏
(
1

𝑎
1

)

𝜏−1

|V|
𝜏
. (10)

Associated with variational functional (2), the dual action
functional is defined by

𝜒 (V) =

𝑝𝑇

∑

𝑛=1

1

2
(𝐿 (𝐽ΔV (𝑛 − 1)) , V (𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV (𝑛)) , V ∈ 𝐸

𝑝𝑇
.

(11)

Indeed, by (11), we have 𝜒(V + 𝑢) = 𝜒(V) for any 𝑢 ∈ 𝑌
and V ∈ 𝑌. Therefore, 𝜒 can be restricted in subspace 𝑌
of 𝐸

𝑝𝑇
. Moreover, in terms of Lemma 2.6 in [8] and the

following lemma, the critical points of (11) correspond to the
subharmonic solutions of (3).

Lemma 3 (see [8, Theorem 1]). Assume that
(H1) 𝐻(𝑛, ⋅) ∈ 𝐶1(R2𝑁,R), 𝐻(𝑛, ⋅) is convex in the second

variable for 𝑛 ∈ Z,
(H2) there exists 𝛽 : Z → R2𝑁 such that for all (𝑛, 𝑢) ∈

Z ×R2𝑁,𝐻(𝑛, 𝑢) ≥ (𝛽(𝑛), 𝑢), and 𝛽(𝑛 + 𝑇) = 𝛽(𝑛),
(H3) there exist𝛼 ∈ (0, 2 sin(𝜋/𝑝𝑇)) and 𝛾 : Z → R+, such

that for any (𝑛, 𝑢) ∈ Z × R2𝑁, 𝐻(𝑛, 𝑢) ≤ (𝛼/2)|𝑢|2 +
𝛾(𝑛), and 𝛾(𝑛 + 𝑇) = 𝛾(𝑛),

(H4) for each 𝑢 ∈ R2𝑁, ∑𝑝𝑇
𝑛=1
𝐻(𝑛, 𝑢) → +∞ as |𝑢| → ∞.

Then system (3) has at least one periodic solution 𝑢, such
that V = −𝐽[𝑢 − (1/𝑝𝑇)∑𝑝𝑇

𝑛=1
𝑢(𝑛)]minimizes the dual action

𝜒(V) = ∑
𝑝𝑇

𝑛=1
(1/2)(𝐿𝐽ΔV(𝑛 − 1), V(𝑛)) + ∑

𝑝𝑇

𝑛=1
𝐻
∗
(𝑛, ΔV(𝑛)).

The following lemmas will be useful in our proofs, where
Lemma 4 can be proved by means of Euler formula 𝑒𝑖𝜃 =
cos 𝜃 + 𝑖 sin 𝜃, and Lemma 5 is a Hölder inequality.

Lemma 4. For any 𝑘 ∈ Z, ∑𝑝𝑇
𝑛=1

sin((2𝑘𝜋/𝑝𝑇)𝑛) =

∑
𝑝𝑇

𝑛=1
cos((2𝑘𝜋/𝑝𝑇)𝑛) = 0.

Lemma 5. For any 𝑢
𝑗
> 0, V

𝑗
> 0, 𝑘 ∈ Z, one has∑𝑘

𝑗=1
𝑢
𝑗
V
𝑗
≤

(∑
𝑘

𝑗=1
𝑢
𝑝

𝑗
)
1/𝑝

(∑
𝑘

𝑗=1
V
𝑞

𝑗
)
1/𝑞

, where 𝑝 > 1, 𝑞 > 1 and 1/𝑝 + 1/𝑞 =
1.
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Lemma 6 (see [12, proposition 2.2]). Let𝐻 : R𝑚 → R be of
𝐶
1 and convex functional, −𝛽 ≤ 𝐻(𝑢) ≤ 𝛼𝑞−1|𝑢|𝑞 + 𝛾, where
𝑢 ∈ R𝑚, 𝛼 > 0, 𝑞 > 1, 𝛽 ≥ 0, 𝛾 ≥ 0. Then 𝛼−𝑝/𝑞𝑝−1|∇𝐻(𝑢)|𝑝 ≤
(∇𝐻(𝑢), 𝑢) + 𝛽 + 𝛾, where 1/𝑝 + 1/𝑞 = 1.

In order to know the form of 𝑢 ∈ 𝐸
𝑝𝑇
, we consider

eigenvalue problem

𝐿𝐽Δ𝑢 (𝑛 − 1) = 𝜆𝑢 (𝑛) , 𝑢 (𝑛 + 𝑝𝑇) = 𝑢 (𝑛) , (12)

where 𝑢(𝑛) = ( 𝑢1(𝑛)
𝑢2(𝑛)

), 𝐿𝑢(𝑛 − 1) = ( 𝑢1(𝑛)
𝑢2(𝑛−1)

) ∈ R2𝑁, 𝑛 ∈ Z,
𝜆 ∈ R. We can rewrite (12) as the following form:

𝑢
1
(𝑛 + 1) = (1 − 𝜆

2
) 𝑢
1
(𝑛) + 𝜆𝑢

2
(𝑛) ,

𝑢
2
(𝑛 + 1) = −𝜆𝑢

1
(𝑛) + 𝑢

2
(𝑛) ,

𝑢
1
(𝑛 + 𝑝𝑇) = 𝑢

1
(𝑛) , 𝑢

2
(𝑛 + 𝑝𝑇) = 𝑢

2
(𝑛) .

(13)

Denoting

𝑀(𝜆) = (
(1 − 𝜆

2
) 𝐼
𝑁
𝜆𝐼
𝑁

−𝜆𝐼
𝑁

𝐼
𝑁

) , (14)

then problem (12) is equivalent to

𝑢 (𝑛 + 1) = 𝑀 (𝜆) 𝑢 (𝑛) , 𝑢 (𝑛 + 𝑝𝑇) = 𝑢 (𝑛) . (15)

Letting 𝑢(𝑛) = 𝜇𝑛𝑐 be the solution of (15), for some 𝑐 ∈ C2𝑁,
we have 𝜇𝑐 = 𝑀(𝜆)𝑐 and 𝜇𝑝𝑇 = 1. Consider the polynomial
|𝑀(𝜆) − 𝜇𝐼

2𝑁
| = 0 and condition 𝜇𝑝𝑇 = 1; it follows that

𝜇 = 𝑒
2𝑘𝜋𝑖/𝑝𝑇

, 𝜆 = 2 sin 𝑘𝜋
𝑝𝑇
,

𝑘 ∈ 𝑍 [−𝑝𝑇 + 1, 𝑝𝑇 − 1] .

(16)

In the following we denote by 𝜇
𝑘
= 𝑒

2𝑘𝜋𝑖/𝑝𝑇, 𝜆
𝑘
=

2 sin(𝑘𝜋/𝑝𝑇), 𝑘 ∈ 𝑍[−𝑝𝑇 + 1, 𝑝𝑇 − 1], and 𝜌 ∈ R𝑁. By
(𝑀(𝜆

𝑘
) − 𝜇

𝑘
𝐼
2𝑁
)𝑐 = 0, it follows that

𝑐
𝑘
= (

𝜌

𝑖𝑒
(−𝑘𝜋𝑖/𝑝𝑇)

𝜌
) . (17)

Thus

𝑢
𝑘
(𝑛) = 𝜇

𝑛

𝑘
𝑐
𝑘
= 𝑒
2𝑘𝜋𝑛𝑖/𝑝𝑇

(
𝜌

𝑖𝑒
(−𝑘𝜋𝑖/𝑝𝑇)

𝜌
)

= (

cos(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

− sin(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝜌

)

+ 𝑖(

sin(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

cos(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝜌

) .

(18)

Let

𝜉
𝑘
(𝑛) = (

cos(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

− sin(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
))𝜌

) ,

𝜂
𝑘
= (

sin(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

cos(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝜌

) .

(19)

Obviously, 𝜉
𝑘
(𝑛) and 𝜂

𝑘
(𝑛) satisfy (15). Moreover 𝐿𝐽Δ𝜉

𝑘
(𝑛 −

1) = 𝜆
𝑘
𝜉
𝑘
(𝑛), 𝐿𝐽Δ𝜂

𝑘
(𝑛 − 1) = 𝜆

𝑘
𝜂
𝑘
(𝑛), 𝜉

2𝑝𝑇+𝑘
(𝑛) = 𝜉

𝑘
(𝑛),

𝜂
2𝑝𝑇+𝑘

(𝑛) = 𝜂
𝑘
(𝑛), 𝜉

𝑝𝑇−𝑘
(𝑛) = 𝜉

𝑘
(𝑛), 𝜂

𝑝𝑇−𝑘
(𝑛) = −𝜂

𝑘
(𝑛).

For 𝑘 ̸= 𝑝𝑇/2, subspace 𝑌
𝑘
is defined by

𝑌
𝑘

=

{{{{{{{{

{{{{{{{{

{

span {𝜉
𝑘 (𝑛) , 𝜂𝑘+(𝑝𝑇/2) (𝑛)} , 𝑘 ∈ 𝑍[−

𝑝𝑇

2
+ 1,

𝑝𝑇

2
− 1] \ {0} ,

𝑛 ∈ Z, if 𝑝𝑇 is even,

span {𝜉
𝑘 (𝑛) , 𝜂𝑘+((𝑝𝑇+1)/2) (𝑛)} , 𝑘 ∈ 𝑍[[−

𝑝𝑇

2
] , [

𝑝𝑇

2
]] \ {0} ,

𝑛 ∈ Z, if 𝑝𝑇 is odd,

(20)

where [⋅] denotes the greatest-integer function and

𝑌
𝑝𝑇/2

= span {𝜉
𝑝𝑇/2

(𝑛) , 𝑛 ∈ Z} ,

𝑌
−𝑝𝑇/2

= span {𝜉
−𝑝𝑇/2

(𝑛) , 𝑛 ∈ Z} .

(21)

Therefore,

𝑌 = ⊕𝑌
𝑘
, 𝑘 ∈ 𝑍 [−

𝑝𝑇

2
,
𝑝𝑇

2
] \ {0} , if 𝑝𝑇 is even,

𝑌 = ⊕𝑌
𝑘
, 𝑘 ∈ 𝑍 [[−

𝑝𝑇

2
] , [

𝑝𝑇

2
]] \ {0} , if 𝑝𝑇 is odd.

(22)

Moreover, for any 𝑢 = {𝑢(𝑛)} ∈ 𝐸
𝑝𝑇
, we may express 𝑢(𝑛) as

𝑢 (𝑛)

=

𝑝𝑇−1

∑

𝑘=−𝑝𝑇+1

[
[
[

[

(

cos(2𝑘𝜋
𝑝𝑇
𝑛) 𝑎

𝑘

− sin(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝑎

𝑘

)

+(

sin(2𝑘𝜋
𝑝𝑇
𝑛) 𝑏
𝑘

cos(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝑏

𝑘

)
]
]
]

]

,

(23)

where 𝑎
𝑘
, 𝑏
𝑘
∈ R𝑁.

Since (Δ𝑢(𝑛), Δ𝑢(𝑛)) = −(Δ2𝑢(𝑛 − 1), 𝑢(𝑛)), we consider
eigenvalue problem

−Δ
2
𝑢 (𝑛 − 1) = 𝜆𝑢 (𝑛) , 𝑢 (𝑛 + 𝑝𝑇) = 𝑢 (𝑛) , 𝑢 (𝑛) ∈ R

𝑁
,

(24)
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where Δ2𝑢(𝑛 − 1) = Δ𝑢(𝑛) − Δ𝑢(𝑛 − 1) = 𝑢(𝑛 + 1) −
2𝑢(𝑛) + 𝑢(𝑛 − 1). The second order difference equation (24)
has complexity solution 𝑢(𝑛) = 𝑒

𝑖𝑛𝜃
𝑐 for 𝑐 ∈ C𝑁, where

𝜃 = 2𝑘𝜋/𝑝𝑇. Moreover, 𝜆 = 2 − 𝑒−𝑖𝜃 − 𝑒𝑖𝜃 = 2(1 − cos 𝜃) =
4sin2(𝜃/2); that is, 𝜆 = 4sin2(𝑘𝜋/𝑝𝑇), 𝑘 ∈ 𝑍[0, 𝑝𝑇 − 1].

By the previous, it follows Lemma 7.

Lemma 7. For any 𝑢 ∈ 𝐸
𝑝𝑇
, one has −𝜆max‖𝑢‖

2
≤

∑
𝑝𝑇

𝑛=1
(𝐿𝐽Δ𝑢(𝑛−1), 𝑢(𝑛)) ≤ 𝜆max‖𝑢‖

2, and 0 ≤ ∑𝑝𝑇
𝑛=1
|Δ𝑢(𝑛)|

2
≤

𝜆
2

max‖𝑢‖
2, where

𝜆max = max
𝑘∈[0,𝑝𝑇−1]

{2 sin 𝑘𝜋
𝑝𝑇
}

=
{

{

{

2, if 𝑝𝑇 is even,
2 cos 𝜋

2𝑝𝑇
, if 𝑝𝑇 is odd.

(25)

Moreover, if 𝑢 ∈ 𝑌, then 4sin2(𝜋/𝑝𝑇)‖𝑢‖2 ≤ ∑𝑝𝑇
𝑛=1
|Δ𝑢(𝑛)|

2
≤

𝜆
2

max‖𝑢‖
2.

3. Proofs of Main Results

Lemma 8. Consider
𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

≥ −(2 sin 𝜋

𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
, ∀𝑢 ∈ 𝐸

𝑝𝑇
.

(26)

Proof. Letting �̃�(𝑛) = 𝑢(𝑛) − (1/𝑝𝑇)∑𝑝𝑇
𝑛=1
𝑢(𝑛), then �̃� ∈ 𝑌.

By Lemmas 5 and 7, we have
𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

=

𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , �̃� (𝑛))

≥ −(

𝑝𝑇

∑

𝑛=1

|𝐿𝐽Δ𝑢 (𝑛 − 1)|
2
)

1/2

⋅ (

𝑝𝑇

∑

𝑛=1

|�̃� (𝑛)|
2
)

1/2

≥ −(

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
)

1/2

⋅ (2 sin 𝜋

𝑝𝑇
)

−1

(

𝑝𝑇

∑

𝑛=1

|Δ�̃� (𝑛)|
2
)

1/2

= −(2 sin 𝜋

𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
.

(27)

Lemma 9. If there exist 𝛼 ∈ (0, sin(𝜋/𝑝𝑇)), 𝛽 ≥ 0 and 𝛿 > 0,
such that

𝛿 |𝑢| − 𝛽 ≤ 𝐻 (𝑛, 𝑢) ≤
𝛼

2
|𝑢|
2
+ 𝛾 (28)

for all 𝑛 ∈ [1, 𝑝𝑇] and 𝑢 ∈ R2𝑁, then each solution of (3)
satisfies the inequalities

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
≤
2𝛼 (𝛽 + 𝛾) 𝑝𝑇 sin (𝜋/𝑝𝑇)

sin (𝜋/𝑝𝑇) − 𝛼
,

𝑝𝑇

∑

𝑛=1

|𝐿𝑢 (𝑛)| ≤
(𝛽 + 𝛾) 𝑝𝑇 sin (𝜋/𝑝𝑇)
𝛿 (sin (𝜋/𝑝𝑇) − 𝛼)

.

(29)

Proof. Let 𝑢 be the solution of (3). By Lemma 6, we have

1

2𝛼
|∇𝐻 (𝑛, 𝐿𝑢 (𝑛))|

2
≤ (∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) , 𝐿𝑢 (𝑛)) + 𝛽 + 𝛾

= − (𝐽Δ𝑢 (𝑛) , 𝐿𝑢 (𝑛)) + 𝛽 + 𝛾.

(30)

Obviously, |𝐽Δ𝑢(𝑛)|2 = (−∇𝐻(𝑛, 𝐿𝑢(𝑛)), 𝐽Δ𝑢(𝑛)) = |∇𝐻(𝑛,
𝐿𝑢(𝑛))|

2 by (3), and it follows that (1/2𝛼)∑𝑝𝑇
𝑛=1
|𝐽Δ𝑢(𝑛)|

2
+

∑
𝑝𝑇

𝑛=1
(𝐽Δ𝑢(𝑛), 𝐿𝑢(𝑛)) ≤ (𝛽 + 𝛾)𝑝𝑇; that is,

1

2𝛼

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
+

𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

≤ (𝛽 + 𝛾) 𝑝𝑇.

(31)

By means of Lemma 8, we have

[
1

2𝛼
− (2 sin 𝜋

𝑝𝑇
)

−1

]

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
≤ (𝛽 + 𝛾) 𝑝𝑇, (32)

which gives first conclusion.
Now,𝐻(𝑛, 0) ≤ 𝛾 in view of (28); therefore by convex and

Lemma 8, we have

𝛿

𝑝𝑇

∑

𝑛=1

|𝐿𝑢 (𝑛)| − 𝛽𝑝𝑇

≤

𝑝𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛))

≤

𝑝𝑇

∑

𝑛=1

[𝐻 (𝑛, 0) + (∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) , 𝐿𝑢 (𝑛))]
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≤ 𝛾𝑝𝑇 −

𝑝𝑇

∑

𝑛=1

(𝐽Δ𝑢 (𝑛) , 𝐿𝑢 (𝑛))

= 𝛾𝑝𝑇 −

𝑝𝑇

∑

𝑛=1

(𝐽𝐿Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

≤ 𝛾𝑝𝑇 + (2 sin 𝜋

𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2

≤ 𝛾𝑝𝑇 +
𝛼 (𝛽 + 𝛾) 𝑝𝑇

sin (𝜋/𝑝𝑇) − 𝛼
,

(33)

which gives the second conclusion. The proof is completed.

Proof of Theorem 1. Let 𝑐
1
= max

𝑛∈Z|𝐻(𝑛, 0)|. By assumption
inTheorem 1, there exists𝑅 > 0, such that𝐻(𝑛, 𝑢) ≥ 1+𝑐

1
, for

𝑛 ∈ Z and |𝑢| ≥ 𝑅. Moreover, there exist 𝛼 ∈ (0, 2 sin(𝜋/𝑝𝑇)),
𝛾 > 0 such that

𝐻(𝑛, 𝑢) ≤
𝛼

2
|𝑢|
2
+ 𝛾, ∀ (𝑛, 𝑢) ∈ Z ×R

2𝑁
. (34)

Thus, by convex of 𝐻, for all (𝑛, 𝑢) ∈ Z × R2𝑁 with |𝑢| ≥ 𝑅,
we have

1 + 𝑐
1
≤ 𝐻(𝑛,

𝑅

|𝑢|
𝑢)

≤ 𝐻 (𝑛, 0) +
𝑅

|𝑢|
(𝐻 (𝑛, 𝑢) − 𝐻 (𝑛, 0))

≤
𝑅

|𝑢|
𝐻 (𝑛, 𝑢) + 𝑐

1
.

(35)

Therefore there exist 𝛽 > 0 and 𝛿 > 0, such that

𝐻(𝑛, 𝑢) ≥ 𝛿 |𝑢| − 𝛽, ∀ (𝑛, 𝑢) ∈ Z ×R
2𝑁
. (36)

Combining the previous argument, by Lemma 3, the system
(3) has a 𝑝𝑇-periodic solution 𝑢

𝑝
such that V

𝑝
= −𝐽[𝑢

𝑝
−

(1/𝑝𝑇)∑
𝑝𝑇

𝑛=1
𝑢
𝑝
(𝑛)] ∈ 𝑌minimizes the dual action

𝜒
𝑝
(V
𝑝
) =

𝑝𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV

𝑝
(𝑛 − 1) , V

𝑝
(𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV

𝑝
(𝑛)) on 𝐸

𝑝𝑇
.

(37)

It follows that Δ𝑢
𝑝
(𝑛) = 𝐽ΔV

𝑝
(𝑛) and 𝐽V

𝑝
(𝑛) = 𝑢

𝑝
(𝑛) −

(1/𝑝𝑇)∑
𝑝𝑇

𝑛=1
𝑢
𝑝
(𝑛).

We next prove that ‖𝑢
𝑝
‖
∞
→ ∞ as 𝑝 → ∞.

Suppose not, there exist 𝑐
2
> 0 and a subsequence {𝑝

𝑘
}

such that

𝑝
𝑘
→ ∞,


𝑢
𝑝𝑘

∞
≤ 𝑐
2

as 𝑘 → ∞. (38)

In terms of (3), it follows that ‖Δ𝑢
𝑝𝑘
‖
∞
≤ 𝑐
3
for some 𝑐

3
> 0,

and ‖V
𝑝𝑘
‖
∞
≤ 2𝑐
2
, ‖ΔV

𝑝𝑘
‖
∞
≤ 𝑐
3
. Consequently, by𝐻∗(𝑛, V) ≥

−𝐻(𝑛, 0) ≥ − 𝑐
1
, we have

𝑐
𝑝𝑘
= 𝜒
𝑝𝑘
(V
𝑝𝑘
)

=

𝑝𝑘𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV

𝑝𝑘
(𝑛 − 1) , V

𝑝𝑘
(𝑛))

+

𝑝𝑘𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV

𝑝𝑘
(𝑛))

≥ −
1

2

𝑝𝑘𝑇

∑

𝑛=1


𝐿𝐽ΔV

𝑝𝑘
(𝑛 − 1)




V
𝑝𝑘
(𝑛)

− 𝑐
1
𝑝
𝑘
𝑇

≥ − (√2𝑐
2
𝑐
3
+ 𝑐
1
) 𝑝
𝑘
𝑇,

(39)

where 𝑛 ∈ 𝑍[1, 𝑝
𝑘
𝑇] and


𝐿𝐽ΔV

𝑝𝑘
(𝑛 − 1)


= (

ΔV
2,𝑝𝑘
(𝑛)


2

+

ΔV
1,𝑝𝑘
(𝑛 − 1)



2

)
1/2

≤ √2

ΔV
𝑝𝑘

∞
≤ √2𝑐

3
.

(40)

By (36), if |V| ≤ 𝛿, we have (V, 𝑢)−𝐻(𝑛, 𝑢) ≤ (V, 𝑢)−𝛿|𝑢|+
𝛽 ≤ 𝛽, and 𝐻∗(𝑛, V) ≤ 𝛽. Letting 𝜌 ∈ R𝑁 and |𝜌| = 1, in
terms of (12), ℎ

𝑝
associated with 𝜆

−1
= −2 sin(𝜋/𝑝𝑇) is given

by

ℎ
𝑝
(𝑛) =

𝛿

4 sin (𝜋/𝑝𝑇)

⋅ (

(cos 2𝜋
𝑝𝑇
𝑛 − sin 2𝜋

𝑝𝑇
𝑛)𝜌

(sin 2𝜋
𝑝𝑇
(𝑛 −

1

2
) + cos 2𝜋

𝑝𝑇
(𝑛 −

1

2
)) 𝜌

)

(41)

which belongs to 𝐸
𝑝𝑇
, and


Δℎ
𝑝 (𝑛)


2

= (
𝛿

4 sin(𝜋/𝑝𝑇)
)

2

⋅



2 sin 𝜋
𝑝𝑇
(

(− sin 2𝜋
𝑝𝑇
(𝑛 +
1

2
) − cos 2𝜋

𝑝𝑇
(𝑛 +
1

2
))𝜌

(cos 2𝜋
𝑝𝑇
𝑛 − sin 2𝜋

𝑝𝑇
𝑛)𝜌

)



2

=
1

4
[2 + sin 2𝜋

𝑝𝑇
(2𝑛 + 1) − sin 2𝜋

𝑝𝑇
(2𝑛)] ⋅

𝜌


2
𝛿
2

≤ 𝛿
2
.

(42)
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Moreover, by Lemma 4 we have

𝑝𝑇

∑

𝑛=1


ℎ
𝑝
(𝑛)


2

=

𝑝𝑇

∑

𝑛=1

(
𝛿

4 sin(𝜋/𝑝𝑇)
)

2

⋅ (2 + sin 2𝜋
𝑝𝑇
(2𝑛 − 1) − sin 2𝜋

𝑝𝑇
(2𝑛))

𝜌

2

= (
𝛿

4 sin(𝜋/𝑝𝑇)
)

2

2
𝜌

2

𝑝𝑇 =
𝛿
2
𝑝𝑇

8sin2 (𝜋/𝑝𝑇)
.

(43)

Thus 𝑐
𝑝
= 𝜒

𝑝
(ℎ
𝑝
) ≤ ∑

𝑝𝑇

𝑛=1
(1/2)(𝐿𝐽Δℎ

𝑝
(𝑛 − 1), ℎ

𝑝
(𝑛)) +

𝛽𝑝𝑇 = ∑
𝑝𝑇

𝑛=1
(1/2)(−2 sin(𝜋/𝑝𝑇))|ℎ

𝑝
(𝑛)|
2
+ 𝛽𝑝𝑇 =

− 𝛿
2
𝑝𝑇/8 sin(𝜋/𝑝𝑇) + 𝛽𝑝𝑇. Combining (39), we have

8(√2𝑐
2
𝑐
3
+ 𝑐
1
+ 𝛽
1
) sin(𝜋/𝑝

𝑘
𝑇) ≥ 𝛿

2, which is impossible as 𝑘
large. So the claim lim

𝑝→∞
‖𝑢
𝑝
‖
∞
= ∞ is valid.

It remains only to prove that the minimal period 𝑇
𝑝
of 𝑢
𝑝

tends to +∞ as 𝑝 → ∞.
If not, there exists 𝑇 > 0 and a sequence {𝑝

𝑘
} such that

the minimal period 𝑇
𝑝𝑘

of 𝑢
𝑝𝑘

satisfies 1 ≤ 𝑇
𝑝𝑘
≤ 𝑇. By

assumption in Theorem 1, there exists 𝛼 ∈ (0, sin(𝜋/𝑇)) and
𝛾 > 0 such that

𝐻(𝑛, 𝑢) ≤
𝛼

2
|𝑢|
2
+ 𝛾, ∀ (𝑛, 𝑢) ∈ Z ×R

2𝑁
. (44)

By (36) and Lemma 9 with 𝑝𝑇 replaced by 𝑇
𝑝𝑘
, we get

𝑇𝑝
𝑘

∑

𝑛=1


Δ𝑢
𝑝𝑘
(𝑛)


2

≤
2𝛼 (𝛽 + 𝛾) 𝑇

𝑝𝑘
sin (𝜋/𝑇

𝑝𝑘
)

sin (𝜋/𝑇
𝑝𝑘
) − 𝛼

≤
2𝛼 (𝛽 + 𝛾) 𝑇 sin (𝜋/𝑇)

sin (𝜋/𝑇) − 𝛼
,

(45)

𝑇𝑝
𝑘

∑

𝑛=1


𝐿𝑢
𝑝𝑘
(𝑛)

≤
(𝛽 + 𝛾) 𝑇

𝑝𝑘
sin (𝜋/𝑇

𝑝𝑘
)

𝛿 (sin (𝜋/𝑇
𝑝𝑘
) − 𝛼)

≤
(𝛽 + 𝛾) 𝑇

𝑝𝑘
sin (𝜋/𝑇)

𝛿 (sin (𝜋/𝑇) − 𝛼)
.

(46)

Write 𝑢
𝑝𝑘
= �̃�
𝑝𝑘
+ 𝑢
𝑝𝑘
, where 𝑢

𝑝𝑘
= (1/𝑇

𝑝𝑘
) ∑
𝑇𝑝
𝑘

𝑛=1
𝑢
𝑝𝑘
(𝑛) =

(1/𝑇
𝑝𝑘
) ∑
𝑇𝑝
𝑘

𝑛=1
𝐿𝑢
𝑝𝑘
(𝑛) ∈ 𝑌. Inequality (46) implies that


𝑢
𝑝𝑘

∞
≜ max
𝑛∈𝑍[1,𝑇𝑝

𝑘
]

{

𝑢
𝑝𝑘


}

≤
1

𝑇
𝑝𝑘

𝑇𝑝
𝑘

∑

𝑛=1


𝐿𝑢
𝑝𝑘
(𝑛)

≤
(𝛽 + 𝛾) sin (𝜋/𝑇)
𝛿 (sin (𝜋/𝑇) − 𝛼)

.

(47)

By Lemma 7 and (45), it follows that


�̃�
𝑝𝑘



2

=

𝑇𝑝
𝑘

∑

𝑛=1


�̃�
𝑝𝑘
(𝑛)


2

≤ (2 sin 𝜋

𝑇
𝑝𝑘

)

−1𝑇𝑝
𝑘

∑

𝑛=1


Δ𝑢
𝑝𝑘
(𝑛)


2

≤ (2 sin(𝜋/𝑇))−1
2𝛼 (𝛽 + 𝛾) 𝑇 sin (𝜋/𝑇)

sin (𝜋/𝑇) − 𝛼

≤
𝛼 (𝛽 + 𝛾) 𝑇

sin (𝜋/𝑇) − 𝛼
,

(48)

which implies that {‖�̃�
𝑝𝑘
‖
∞
} is bounded, therefore

{‖𝑢
𝑝𝑘
‖
∞
} is bounded; a contradiction with the second

claim lim
𝑝→∞

‖𝑢
𝑝
‖
∞
= ∞. This completes the proof.

Proof of Theorem 2. Under the assumptions (A1) and (A2), all
conditions in Theorem 1 are satisfied. Then, for each integer
𝑝 > 1, there exists a 𝑝𝑇-periodic solution 𝑢 of (3) such that
V = −𝐽[𝑢 − (1/𝑝𝑇)∑

𝑝𝑇

𝑛=1
𝑢(𝑛)] ∈ 𝑌minimizes the dual action

𝜒 (V) =

𝑝𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV (𝑛)) on 𝐸

𝑝𝑇
.

(49)

If the critical point V of dual action functional 𝜒 has
minimal period 𝑝𝑇/𝑙 ∈ N \ {0}, where 𝑙 ∈ N \ {0}, then by
Lemma 7 with 𝑝𝑇 replaced by 𝑝𝑇/𝑙, we have the following
estimate:

4sin2 𝑙𝜋
𝑝𝑇

𝑝𝑇

∑

𝑛=1

|V (𝑛)|
2
≤

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
2
. (50)

By Lemma 5 and the previous inequality, we have

𝑝𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

≥ −(

𝑝𝑇

∑

𝑛=1

|𝐿𝐽ΔV (𝑛 − 1)|
2
)

1/2

⋅ (

𝑝𝑇

∑

𝑛=1

|V (𝑛)|
2
)

1/2

≥ −(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
2
)

1/2
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⋅ (2 sin 𝑙𝜋
𝑝𝑇
)

−1

(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
2
)

1/2

= −(2 sin 𝑙𝜋
𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
2

≥ −(2 sin 𝑙𝜋
𝑝𝑇
)

−1

(𝑝𝑇)
(1−2/𝜏)

(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
𝜏
)

2/𝜏

,

(51)

where 𝜏 = 𝜃/(𝜃 − 1) > 2 for 1 < 𝜃 < 2. It follows from
assumption (B2) that

𝐻
∗
(𝑛, ΔV (𝑛)) ≥

1

𝜏
(
1

𝑎
2

)

𝜏−1

|ΔV (𝑛)|
𝜏
, (52)

thus

𝜒 (V) ≥ −(2 sin 𝑙𝜋
𝑝𝑇
)

−1

(𝑝𝑇)
(𝜏−2)/𝜏

(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
𝜏
)

2/𝜏

+
1

𝜏
(
1

𝑎
2

)

𝜏−1 𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
𝜏

(53)

≥
(1/𝜏 − 1/2) 𝑝𝑇(𝑎

2

2
)
(𝜏−1)/(𝜏−2)

(sin (𝑙𝜋/𝑝𝑇))𝜏/(𝜏−2)
. (54)

One can obtain the previous inequality by minimizing in
(53) with respect to (∑𝑝𝑇

𝑛=1
|ΔV(𝑛)|𝜏)

1/𝜏

, and the minimum is
attained at (𝑝𝑇)1/𝜏(𝑎

2
)
(𝜏−1)/(𝜏−2)

/(sin(𝑙𝜋/𝑝𝑇))1/(𝜏−2).
On the other hand, let

V (𝑛) =
1

√𝑝𝑇
(

cos 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ 𝑎
𝑘

− sin 2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
) ⋅ 𝑎
𝑘

), (55)

where 𝑎
𝑘
∈ R𝑁, 𝑘 ∈ 𝑍[[−𝑝𝑇/2], [𝑝𝑇/2]] \ {0}. Then V ∈ 𝑌

𝑘
,

and

ΔV (𝑛) = −2 sin 𝑘𝜋
𝑝𝑇

1

√𝑝𝑇
(

sin 2𝑘𝜋
𝑝𝑇

(𝑛 +
1

2
) ⋅ 𝑎
𝑘

cos 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ 𝑎
𝑘

). (56)

Taking 𝑎
𝑘
= (𝑑, 0, . . . , 0)

𝑇
∈ R𝑁, where 𝑑 ∈ R, by Lemma 4,

it follows that

𝑝𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

=

𝑝𝑇

∑

𝑛=1

[−ΔV
2
(𝑛) V

1
(V) + ΔV

1
(𝑛 − 1) V

2
(𝑛)]

=

𝑝𝑇

∑

𝑛=1

1

𝑝𝑇
⋅ 2 sin 𝑘𝜋

𝑝𝑇

⋅ (cos2 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ |𝑑|

2
+ sin2 2𝑘𝜋

𝑝𝑇
(𝑛 −

1

2
) ⋅ |𝑑|

2
)

= 𝜆
𝑘
⋅ |𝑑|
2
,

(57)

where 𝜆
𝑘
= 2 sin(𝑘𝜋/𝑝𝑇) and

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
𝜏

=

𝑝𝑇

∑

𝑛=1

𝜆𝑘

𝜏

(𝑝𝑇)
−𝜏/2

⋅ (sin2 2𝑘𝜋
𝑝𝑇

(𝑛 +
1

2
) + cos2 2𝑘𝜋

𝑝𝑇
𝑛)

𝜏/2

|𝑑|
𝜏

≤ 𝜆
𝜏

max ⋅ (𝑝𝑇)
1−(𝜏/2)

⋅ 2
𝜏/2
|𝑑|
𝜏
.

(58)

Therefore, taking 𝑘 = −[𝑝𝑇/2], by eigenvalue problem (24)
and (B2), it follows that

𝜒 (V) =
1

2

𝑝𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV (𝑛))

≤ −
1

2
𝜆max ⋅ |𝑑|

2

+
1

𝜏
(
1

𝑎
1

)

𝜏−1 𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|
𝜏

≤ −
1

2
𝜆max ⋅ |𝑑|

2
+
1

𝜏
(
1

𝑎
1

)

𝜏−1

𝜆
𝜏

max

⋅ (𝑝𝑇)
1−(𝜏/2)

⋅ 2
𝜏/2
|𝑑|
𝜏
.

(59)

Let 𝑓(𝜌) equal the right-hand side of (59) where 𝜌 = |𝑑|.
It is easy to see that the absolute minimum of 𝑓 is attained at
𝜌min = (𝑎1)

(𝜏−1)/(𝜏−2)
(𝑝𝑇)

1/2
/[𝜆
(𝜏−1)/(𝜏−2)

max ⋅ 2
𝜏/2(𝜏−2)

] and given
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by 𝑓min = (1/𝜏 − 1/2)𝑝𝑇(𝑎
2

1
)
(𝜏−1)/(𝜏−2)

/(2𝜆max)
𝜏/(𝜏−2). Hence,

by (19), let

𝜉 (𝑛) = 𝜉
−[𝑝𝑇/2]

(𝑛)

= (

cos 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ 𝜌

− sin 2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
) ⋅ 𝜌

) ,

(60)

where 𝜌 ∈ R𝑁, 𝑘 = −[𝑝𝑇/2].
If 𝑝𝑇 is even, then 𝜉(𝑛) = (1, 1)𝑇 ⋅ (−1)𝑛𝜌. Set

𝑌
𝜌min
= {V ∈ 𝑌

−[𝑝𝑇/2]
: V (𝑛) = 𝜉 (𝑛) ,

𝜌 = (𝑑, 0, . . . , 0)
𝑇
∈ R
𝑁
, 𝑑 ∈ R} .

(61)

For V ∈ 𝑌
𝜌min

, we have

𝜒 (V) ≤ 𝑓min. (62)

Combining (54), (59), and (62), we have

(1/𝜏 − 1/2) 𝑝𝑇(𝑎
2

2
)
(𝜏−1)/(𝜏−2)

(sin(𝑙𝜋/𝑝𝑇))𝜏/(𝜏−2)

≤
(1/𝜏 − 1/2) 𝑝𝑇(𝑎

2

1
)
(𝜏−1)/(𝜏−2)

(2𝜆max)
𝜏/(𝜏−2)

.

(63)

By 𝜏 > 2, and 𝜃 = 𝜏/(𝜏 − 1), it follows that

sin (𝑙𝜋/𝑝𝑇)

(2𝜆max) ≤ (𝑎2/𝑎1)
2/𝜃
. (64)

For integer 𝑝 > 1, 𝑇 ≥ 1, 𝑙 ∈ N \ {0}, 𝑝𝑇/𝑙 ∈ N \ {0}, we have
0 < 𝑙𝜋/𝑝𝑇 ≤ 𝜋, 0 < 𝜋/𝑝𝑇 ≤ 𝜋/2.

If 𝑝𝑇 is even, then 𝜆max = 2. By assumption 𝑎
2
/𝑎
1
≤

((1/4) sin(𝜋/𝑝𝑇))𝜃/2 we have sin(𝑙𝜋/𝑝𝑇) ≤ sin(𝜋/𝑝𝑇), which
implies that 𝑙 = 1 or 𝑙 = 𝑝𝑇 − 1. If 𝑝𝑇 > 2, then 𝑝𝑇/𝑙 =
𝑝𝑇/(𝑝𝑇 − 1) ∉ N. So we have 𝑙 = 1.

If 𝑝𝑇 is odd, then 𝜆max = 2 cos(𝜋/2𝑝𝑇). By assumption
𝑎
2
/𝑎
1
≤ ((1/2) sin(𝜋/2𝑝𝑇))𝜃/2, we have sin(𝑙𝜋/𝑝𝑇) ≤

sin(𝜋/𝑝𝑇), so 𝑙 = 1. This completes the proof.
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