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We discuss the approximate controllability of semilinear fractional Sobolev-type differential system under the assumption that the
corresponding linear system is approximately controllable. Using Schauder fixed point theorem, fractional calculus and methods
of controllability theory, a new set of sufficient conditions for approximate controllability of fractional Sobolev-type differential
equations, are formulated and proved. We show that our result has no analogue for the concept of complete controllability. The
results of the paper are generalization and continuation of the recent results on this issue.

1. Introduction

Many social, physical, biological, and engineering problems
can be described by fractional partial differential equations.
In fact, fractional differential equations are considered as an
alternative model to nonlinear differential equations. In the
last two decades, fractional differential equations (see Samko
et al. [1] and the references therein) have attracted many
scientists, and notable contributions have been made to both
theory and applications of fractional differential equations.

Recently, the existence of mild solutions and stability
and (approximate) controllability of (fractional) semilinear
evolution system in Banach spaces have been reported by
many researchers; see [2–36]. We refer the reader to El-
Borai [3, 4], Balachandran and Park [5], Zhou and Jiao [6, 7]
Hernández et al. [8], Wang and Zhou [9], Sakthivel et al. [12,
13], Debbouche and Baleanu [14], Wang et al. [15–21], Kumar
and Sukavanam [22], Li and Yong [37], Dauer and Mahmu-
dov [28], Mahmudov [27, 29], and the references therein.
Complete controllability of evolution systems of Sobolev type
in Banach spaces has been studied by Balachandran and
Dauer [23], Ahmed [24], and Feckan et al. [2]. However, the
approximate controllability of fractional evolution equations
of Sobolev type has not been studied.

Motivated by the above-mentioned papers, we study the
approximate controllability of a class of fractional evolution
equations of Sobolev type:

𝑐

𝐷
𝛼

𝑡
(𝐸𝑥 (𝑡)) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑏] ,

𝑥 (0) = 𝑥
0
,

(1)

where 𝐴 : 𝐷 (𝐴) ⊂ 𝑋 → 𝑋 and 𝐸 : 𝐷 (𝐸) ⊂ 𝑋 →

𝑋 are linear operators from a Banach space 𝑋 to 𝑋. The
control function 𝑢 takes values in a Hilbert space 𝑈 and 𝑢 ∈

𝐿
2

([0, 𝑏], 𝑈). 𝐵 : 𝑈 → 𝑋 is a linear bounded operator. The
function 𝑓 ∈ 𝐶 ([0, 𝑏] × 𝑋,𝑋) will be specified in the sequel.
The fractional derivative 𝑐𝐷𝛼

𝑡
, 0 < 𝛼 < 1, is understood in

the Caputo sense.
Our aim in this paper is to provide a sufficient condition

for the approximate controllability for a class of fractional
evolution equations of Sobolev type. It is assumed that
𝐸
−1 is compact, and, consequently, the associated linear

control system (35) is not exactly controllable. Therefore, our
approximate controllability results have no analogue for the
concept of complete controllability. In Section 5, we give an
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example of the system which is not completely controllable,
but approximately controllable.

2. Preliminaries

Throughout this paper, unless otherwise specified, the fol-
lowing notations will be used. Let 𝑋 be a separable reflexive
Banach space and let 𝑋∗ stand for its dual space with respect
to the continuous pairing ⟨⋅, ⋅⟩. We may assume, without loss
of generality, that 𝑋 and 𝑋

∗ are smooth and strictly convex,
by virtue of a renorming theorem (see, e.g., [37, 38]). In
particular, this implies that the duality mapping 𝐽 of 𝑋 into
𝑋
∗ given by the relations

‖𝐽 (𝑧)‖
∗

= ‖𝑧‖ , ⟨𝐽 (𝑧) , 𝑧⟩ = ‖𝑧‖
2

, ∀𝑧 ∈ 𝑋 (2)

is bijective, homogeneous, demicontinuous, that is, contin-
uous from 𝑋 with a strong topology, into 𝑋

∗ with weak
topology, and strictly monotonic. Moreover, 𝐽−1 : 𝑋

∗

→ 𝑋

is also duality mapping.
The operators 𝐴 : 𝐷 (𝐴) ⊂ 𝑋 → 𝑋 and 𝐸 : 𝐷 (𝐸) ⊂

𝑋 → 𝑋 satisfy the following hypotheses:

(S1) 𝐴 and 𝐸 are linear operators, and 𝐴 is closed;

(S2) 𝐷(𝐸) ⊂ 𝐷(𝐴) and 𝐸 is bijective;

(S3) 𝐸
−1

: 𝑋 → 𝐷(𝐸) is compact.

The hypotheses (S1)–(S3) and the closed graph theorem
imply the boundedness of the linear operator 𝐴𝐸

−1

: 𝑋 →

𝑋. Consequently, −𝐴𝐸
−1 generates a semigroup {𝑆(𝑡); 𝑡 ≥ 0}

in 𝑋. Assume that max
0≤𝑡≤𝑏

‖𝑆(𝑡)‖ =: 𝑀.
Let us recall the following known definitions in fractional

calculus. For more details, see [1].

Definition 1. The fractional integral of order 𝛼 > 0 with the
lower limit 0 for a function 𝑓 is defined as

𝐼
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

𝑓(𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 > 0, 𝛼 > 0, (3)

provided the right-hand side is pointwise defined on [0,∞),
where Γ is the gamma function.

Definition 2. The Caputo derivative of order 𝛼 for a function
𝑓 can be written as

𝑐

𝐷
𝛼

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
(𝑛)

(𝑠)

(𝑡 − 𝑠)
1+𝛼−𝑛

𝑑𝑠

= 𝐼
𝑛−𝛼

𝑓
(𝑛)

(𝑡) , 𝑡 > 0, 𝑛 − 1 ≤ 𝛼 < 𝑛.

(4)

If𝑓 is an abstract functionwith values in𝑋, then integrals
which appear in the above definitions are taken in Bochner’s
sense.

For 𝑥 ∈ 𝑋 and 0 < 𝛼 < 1, we define two families {S
𝐸
(𝑡) :

𝑡 ≥ 0} and {T
𝐸
(𝑡) : 𝑡 ≥ 0} of operators by

S
𝛼
(𝑡) = ∫

∞

0

Ψ
𝛼
(𝜃) 𝑆 (𝑡

𝛼

𝜃) 𝑑𝜃,T
𝛼
(𝑡)

= 𝛼∫

∞

0

𝜃Ψ
𝛼
(𝜃) 𝑆 (𝑡

𝛼

𝜃) 𝑑𝜃,

S
𝐸
(𝑡) = 𝐸

−1

S
𝛼
(𝑡) , T

𝐸
(𝑡) = 𝐸

−1

T
𝛼
(𝑡) ,

(5)

where

Ψ
𝛼
(𝜃) =

1

𝜋𝛼

∞

∑

𝑛=1

(−1)
𝑛−1

Γ (𝑛𝛼 + 1)

𝑛!
sin (𝑛𝜋𝛼) , 𝜃 ∈ (0,∞) ,

(6)

is the function of Wright type defined on (0,∞), which
satisfies

Ψ
𝛼
(𝜃) ≥ 0, ∫

∞

0

Ψ
𝛼
(𝜃) 𝑑𝜃 = 1,

∫

∞

0

𝜃
𝜁

Ψ
𝛼
(𝜃) 𝑑𝜃 =

Γ (1 + 𝜁)

Γ (1 + 𝛼𝜁)
, 𝜁 ∈ (−1,∞) .

(7)

Lemma 3 (see [2]). The operatorsS
𝐸
andT

𝐸
have the follow-

ing properties.

(i) For any fixed 𝑡 ≥ 0, 𝑆
𝐸
(𝑡) and 𝑇

𝐸
(𝑡) are linear and

bounded operators, and
S𝐸 (𝑡) 𝑥

 ≤ 𝑀

𝐸
−1


‖𝑥‖ ,

T𝐸 (𝑡) 𝑥
 ≤

𝑀

𝐸
−1



Γ (𝛼)
‖𝑥‖ .

(8)

(ii) {S
𝐸
(𝑡) : 𝑡 ≥ 0} and {T

𝐸
(𝑡) : 𝑡 ≥ 0} are compact.

In this paper, we adopt the following definition of mild
solution of (1).

Definition 4. A solution 𝑥(⋅; 𝑢) ∈ 𝐶([0, 𝑏], 𝑋) is said to be a
mild solution of (1) if for any 𝑢 ∈ 𝐿

2

([0, 𝑏], 𝑈), the integral
equation

𝑥 (𝑡) = S
𝐸
(𝑡) 𝐸𝑥

0

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠) [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

(9)

is satisfied.

Let 𝑥(𝑏; 𝑢) be the state value of (9) at terminal time 𝑏

corresponding to the control 𝑢. Introduce the set R(𝑏) =

{𝑥(𝑏; 𝑢) : 𝑢 ∈ 𝐿
2
([0, 𝑏], 𝑈)}, which is called the reachable set

of system (9) at terminal time 𝑏; its closure in𝑋 is denoted by
R(𝑏).

Definition 5. System (1) is said to be approximately control-
lable on [0, 𝑏] if R(𝑏) = 𝑋; that is, given an arbitrary 𝜀 > 0,
it is possible to steer from the point 𝑥

0
to within a distance 𝜀

from all points in the state space 𝑋 at time 𝑏.
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To investigate the approximate controllability of system
(9), we assume the following conditions.

(H4) The function𝑓:[0, 𝑏]×𝑋 → 𝑋 satisfies the following:

(a) 𝑓(𝑡, ⋅) : 𝑋 → 𝑋 is continuous for each 𝑡 ∈ [0, 𝑏]

and for each 𝑥 ∈ 𝑋, 𝑓(⋅, 𝑥) : [0, 𝑏] → 𝑋 is
strongly measurable;

(b) there is a positive integrable function 𝑛 ∈

𝐿
1

([0, 𝑏], [0, +∞)) and a continuous nonde-
creasing function Λ

𝑓
: [0,∞) → (0,∞) such

that for every (𝑡, 𝑥) ∈ [0, 𝑏] × 𝑋, we have
𝑓 (𝑡, 𝑥)

 ≤ 𝑛 (𝑡) Λ
𝑓
(‖𝑥‖) ,

lim inf
𝑟→∞

Λ
𝑓
(𝑟)

𝑟
= 𝜎
𝑓

< ∞.

(10)

(H5) The following relationship holds:

(1 +
1

𝜀
𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1
)

𝑀

𝐸
−1



Γ (𝛼)

𝑏
𝛼

𝛼

× 𝜎
𝑓
sup
𝑠∈[0,𝑏]

𝑛 (𝑠) < 1,

(11)

here 𝑀
𝐵

:= ‖𝐵‖, 𝑀T := ‖T
𝐸
‖.

(H6) For every ℎ ∈ 𝑋, 𝑧
𝛼
(ℎ) = 𝜀(𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

(ℎ) converges
to zero as 𝜀 → 0

+ in strong topology, where

Γ
𝑏

0
:= ∫

𝑏

0

(𝑏 − 𝑠)
2(𝛼−1)

T
𝐸
(𝑏 − 𝑠) 𝐵𝐵

∗

T
∗

𝐸
(𝑏 − 𝑠) 𝑑𝑠,

(12)

and 𝑧
𝜀
(ℎ) is a solution of

𝜀𝑧
𝜀
+ Γ
𝑏

0
𝐽 (𝑧
𝜀
) = 𝜀ℎ. (13)

3. Existence Theorem

In order to formulate the controllability problem in the
form suitable for application of fixed point theorem, it is
assumed that the corresponding linear system is approxi-
mately controllable. Then it will be shown that system (1)
is approximately controllable if for all 𝜀 > 0, there exists a
continuous function 𝑥 ∈ 𝐶 ([0, 𝑏], 𝑋) such that

𝑢
𝜀
(𝑡, 𝑥) = (𝑏 − 𝑡)

𝛼−1

𝐵
∗

T
∗

𝐸
(𝑏 − 𝑡) 𝐽 ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥)) ,

0 ≤ 𝑡 < 𝑏,

𝑥 (𝑡) = S
𝐸
(𝑡) 𝐸𝑥

0

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠) [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠,

(14)

where
𝑝 (𝑥) = ℎ − S

𝐸
(𝑏) 𝐸𝑥

0

− ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(15)

Having noticed this fact, our goal, in this section, is to find
conditions for the solvability of (14). It will be shown that the
control in (14) drives system (1) from 𝑥

0
to

ℎ − 𝜀𝐽 ((𝜀𝐼 + Γ
𝑏

0
𝐽)
−1

𝑝 (𝑥)) , (16)

provided that system (14) has a solution.

Theorem 6. Assume that assumptions (S1)–(S3), (H4), (H5)
hold and 1/2 < 𝛼 ≤ 1. Then there exists a solution to (14).

Proof. The proof of Theorem 6 follows from Lemmas 7–9,
infinite dimensional analogue of Arzela-Ascoli theorem, and
the Schauder fixed point theorem.

For all 𝜀 > 0, consider the operator Φ
𝜀
: 𝐶 ([0, 𝑏], 𝑋) →

𝐶 ([0, 𝑏], 𝑋) defined as follows:

(Φ
𝜀
𝑥) (𝑡)

:= S
𝐸
(𝑡) 𝐸𝑥

0
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠)

× [𝐵𝑢
𝜀
(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠,

(17)

where

𝑢
𝜀
(𝑡, 𝑥) = (𝑏 − 𝑡)

𝛼−1

𝐵
∗

T
∗

𝐸
(𝑏 − 𝑡) 𝐽 ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥)) ,

𝑝 (𝑥) = ℎ − S
𝐸
(𝑏) 𝐸𝑥

0

− ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(18)

It will be shown that for all 𝜀 > 0, the operator Φ
𝜀

:

𝐶 ([0, 𝑏], 𝑋) → 𝐶 ([0, 𝑏], 𝑋) has a fixed point. To prove this
we will employ the Schauder fixed point theorem.

Lemma 7. Under assumptions (S1)–(S3), (H4), (H5), for any
𝜀 > 0 there exists a positive number 𝑟 := 𝑟(𝜀) such that
Φ
𝜀
(𝐵
𝑟
) ⊂ 𝐵
𝑟
.

Proof. Let 𝜀 > 0 be fixed. If it is not true, then for each 𝑟 > 0,
there exists a function 𝑧

𝑟
∈ 𝐵
𝑟
, but Φ

𝜀
(𝑧
𝑟
) ∉ 𝐵
𝑟
. So for some

𝑡 = 𝑡(𝑟) ∈ [0, 𝑏], one can show that

𝑟 ≤
(Φ𝜀𝑧𝑟) (𝑡)

 ≤
S𝐸 (𝑡) 𝐸𝑥

0



+



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



+



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠) 𝐵𝑢

𝜀
(𝑠, 𝑥) 𝑑𝑠



= : 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(19)
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Let us estimate 𝐼
𝑖
, 𝑖 = 1, 2, 3. By the assumption (H4), we

have

𝐼
1
≤

S𝐸 (𝑡) 𝐸𝑥
0

 ≤ 𝑀

𝐸
−1



𝐸𝑥
0

 , (20)

𝐼
2
≤ ∫

𝑡

0


(𝑡 − 𝑠)

𝛼−1

T
𝐸
(𝑡 − 𝑠) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠))


𝑑𝑠

≤

𝑀

𝐸
−1



Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

≤

𝑀

𝐸
−1



Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑛 (𝑠) Λ
𝑓
(‖𝑥 (𝑠)‖) 𝑑𝑠

≤

𝑀

𝐸
−1



Γ (𝛼)

𝑏
𝛼

𝛼
Λ
𝑓
(𝑟) sup
𝑠∈𝐽

𝑛 (𝑠) .

(21)

Combining the estimates (19)–(21) yields

𝐼
1
+ 𝐼
2
< 𝑀


𝐸
−1



𝐸𝑥
0



+

𝑀

𝐸
−1



Γ (𝛼)

𝑏
𝛼

𝛼
Λ
𝑓
(𝑟) sup
𝑠∈[0,𝑏]

𝑛 (𝑠) := Δ.

(22)

On the other hand,

𝐼
3
≤ ∫

𝑡

0


(𝑡 − 𝑠)

𝛼−1

T
𝐸
(𝑡 − 𝑠) 𝐵𝑢

𝜀
(𝑠, 𝑥)


𝑑𝑠

= ∫

𝑡

0


(𝑡 − 𝑠)

𝛼−1

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠)

×𝐵𝐵
∗

T
∗

𝐸
(𝑏 − 𝑡) 𝐽 ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥))

𝑑𝑠

≤ ∫

𝑡

0


(𝑡 − 𝑠)

𝛼−1

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠) 𝐵𝐵

∗

T
∗

𝐸
(𝑏 − 𝑡)


𝑑𝑠

×

𝐽 ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥))


≤ 𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1


𝐽 ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥))


= 𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1


(𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥)


≤
1

𝜀
𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1

𝑝 (𝑥)


≤
1

𝜀
𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1
Δ.

(23)

Thus,

𝑟 ≤
(Φ𝜀𝑧𝑟) (𝑡)

 ≤ Δ +
1

𝜀
𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1
Δ

= (1 +
1

𝜀
𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1
)Δ.

(24)

Dividing both sides by 𝑟 and taking 𝑟 → ∞, we obtain that

(1 +
1

𝜀
𝑀
2

𝐵
𝑀
2

T

𝑏
2𝛼−1

2𝛼 − 1
)

𝑀

𝐸
−1



Γ (𝛼)

𝑏
𝛼

𝛼
𝜎
𝑓
sup
𝑠∈[0,𝑏]

𝑛 (𝑠) ≥ 1, (25)

which is a contradiction by assumption (H5).Thus,Φ
𝜀
(𝐵
𝑟
) ⊂

𝐵
𝑟
for some 𝑟 > 0.

Lemma 8. Let assumptions (S1)–(S3), (H4), (H5) hold. Then
the set {Φ

𝜀
𝑧 : 𝑧 ∈ 𝐵

𝑟
} is an equicontinuous family of functions

on [0, 𝑏].

Proof. Let 0 < 𝜂 < 𝑡 < 𝑏 and 𝛿 > 0 such that

T𝐸 (𝑠1) − T
𝐸
(𝑠
2
)
 < 𝜂 (26)

for every 𝑠
1
, 𝑠
2
∈ [0, 𝑏] with |𝑠

1
− 𝑠
2
| < 𝛿. For 𝑧 ∈ 𝐵

𝑟
, 0 < |ℎ| <

𝛿, 𝑡 + ℎ ∈ [0, 𝑏], we have

(Φ𝜀𝑧) (𝑡 + ℎ) − (Φ
𝜀
𝑧) (𝑡)



≤



∫

𝑡

0

((𝑡 + ℎ − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

)

× T
𝐸
(𝑡 + ℎ − 𝑠) [𝐵𝑢

𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠



+



∫

𝑡+ℎ

𝑡

(𝑡 + ℎ − 𝑠)
𝛼−1

T
𝐸
(𝑡 + ℎ − 𝑠)

× [𝐵𝑢
𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠



+



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(T
𝐸
(𝑡 + ℎ − 𝑠) − T

𝐸
(𝑡 − 𝑠))

× [𝐵𝑢
𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠



.

(27)

Applying Lemma 3 and the Holder inequality, we obtain

(Φ𝜀𝑧) (𝑡 + ℎ) − (Φ
𝜀
𝑧) (𝑡)



≤

𝑀

𝐸
−1



Γ (𝛼)
Λ
𝑓
(𝑟)

× ∫

𝑡

0

((𝑡 + ℎ − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

) 𝑛 (𝑠) 𝑑𝑠

+

𝑀

𝐸
−1



Γ (𝛼)

1

𝜀
𝑀
𝐵
𝑀TΔ
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× ∫

𝑡

0

((𝑡 + ℎ − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

) (𝑏 − 𝑠)
𝛼−1

𝑑𝑠

+

𝑀

𝐸
−1



Γ (𝛼)
Λ
𝑓
(𝑟) ∫

𝑡+ℎ

𝑡

(𝑡 + ℎ − 𝑠)
𝛼−1

𝑛 (𝑠) 𝑑𝑠

+

𝑀

𝐸
−1



Γ (𝛼)

1

𝜀
𝑀
𝐵
𝑀TΔ

× ∫

𝑡+ℎ

𝑡

(𝑡 + ℎ − 𝑠)
𝛼−1

(𝑏 − 𝑠)
𝛼−1

𝑑𝑠

+
𝜂𝑇
𝛼

𝛼
Λ
𝑓
(𝑟) ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑛 (𝑠) 𝑑𝑠 +
𝜂𝑇
𝛼

𝛼

1

𝜀
𝑀
𝐵
𝑀TΔ

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝑏 − 𝑠)
𝛼−1

𝑑𝑠.

(28)

Therefore, for 𝜀 sufficiently small, the right-hand side of
(28) tends to zero as ℎ → 0. On the other hand, the
compactness of T

𝐸
(𝑡), 𝑡 > 0, implies the continuity in the

uniform operator topology. Thus, the set {Φ
𝜀
𝑧 : 𝑧 ∈ 𝐵

𝑟
} is

equicontinuous.

Lemma 9. Let assumptions (S1)–(S3), (H4), (H5) hold. Then
Φ
𝜀
maps 𝐵

𝑟
onto a precompact set in 𝐵

𝑟
.

Proof. Let 0 < 𝑡 ≤ 𝑏 be fixed and let 𝜆 be a real number
satisfying 0 < 𝜆 < 𝑡. For 𝛿 > 0, define an operator Φ

𝜆,𝛿

𝜀
on 𝐵
𝑟

by

(Φ
𝜆,𝛿

𝜀
𝑧) (𝑡)

= 𝛼∫

𝑡−𝜆

0

𝐸
−1

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

Ψ
𝛼
(𝜃) 𝑆 ((𝑡 − 𝑠)

𝛼

𝜃)

× [𝐵𝑢
𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠

= 𝛼𝐸
−1

𝑆 (𝜆
𝛼

𝛿)

× ∫

𝑡−𝜆

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

Ψ
𝛼
(𝜃) 𝑆 ((𝑡 − 𝑠)

𝛼

𝜃 − 𝜆
𝛼

𝛿)

× [𝐵𝑢
𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠.

(29)

Since 𝐸
−1 is a compact operator, the set {(Φ𝜆,𝛿

𝜀
𝑧)(𝑡) : 𝑧 ∈ 𝐵

𝑟
}

is precompact in 𝑋 for every 0 < 𝜆 < 𝑡, 𝛿 > 0. Moreover, for
each 𝑧 ∈ 𝐵

𝑟
, we have


(Φ
𝜀
𝑧) (𝑡) − (Φ

𝜆,𝛿

𝜀
𝑧) (𝑡)



≤ 𝛼



∫

𝑡

0

∫

𝛿

0

𝜃(𝑡 − 𝑠)
𝛼−1

Ψ
𝛼
(𝜃) 𝑆 ((𝑡 − 𝑠)

𝛼

𝜃)

× [𝐵𝑢
𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝜃 𝑑𝑠



+ 𝛼



∫

𝑡

𝑡−𝜆

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

Ψ
𝛼
(𝜃) 𝑆 ((𝑡 − 𝑠)

𝛼

𝜃)

× [𝐵𝑢
𝜀
(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝜃 𝑑𝑠



= : 𝐽
1
+ 𝐽
2
.

(30)

A similar argument, as before, is as follows:

𝐽
1
≤ 𝛼𝑀∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(
𝐵𝑢
𝜀
(𝑠, 𝑧)

 +
𝑓 (𝑠, 𝑧 (𝑠))

) 𝑑𝑠

× (∫

𝛿

0

𝜃Ψ
𝛼
(𝜃) 𝑑𝜃)

≤ 𝛼𝑀(
1

𝜀
𝑀
𝐵
𝑀TΔ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝑏 − 𝑠)
𝛼−1

𝑑𝑠

+Λ
𝑓
(𝑟) ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑛 (𝑠) 𝑑𝑠)(∫

𝛿

0

𝜃Ψ
𝛼
(𝜃) 𝑑𝜃) ,

(31)

𝐽
2
≤ 𝛼𝑀∫

𝑡

𝑡−𝜆

(𝑡 − 𝑠)
𝛼−1

(
𝐵𝑢
𝜀
(𝑠, 𝑧)

 +
𝑓 (𝑠, 𝑧 (𝑠))

) 𝑑𝑠

× (∫

∞

𝛿

𝜃𝜂
𝛼
(𝜃) 𝑑𝜃)

≤
𝛼𝑀

Γ (1 + 𝛼)
(
1

𝜀
𝑀
𝐵
𝑀TΔ∫

𝑡

𝑡−𝜆

(𝑡 − 𝑠)
𝛼−1

(𝑏 − 𝑠)
𝛼−1

𝑑𝑠

+Λ
𝑓
(𝑟) ∫

𝑡

𝑡−𝜆

(𝑡 − 𝑠)
𝛼−1

𝑛 (𝑠) 𝑑𝑠) ,

(32)

where we have used the equality

∫

∞

0

𝜃
𝛽

𝛼
Ψ
𝛼
(𝜃) 𝑑𝜃 =

Γ (1 + 𝛽)

Γ (1 + 𝛼𝛽)
. (33)

From (30)–(32), one can see that for each 𝑧 ∈ 𝐵
𝑟
,


(Φ
𝜀
𝑧) (𝑡) − (Φ

𝜆,𝛿

𝜀
𝑧) (𝑡)


→ 0 as 𝜆 → 0

+

, 𝛿 → 0
+

.

(34)

Therefore, there are relatively compact sets arbitrary close to
the set {(Φ

𝜀
𝑧)(𝑡) : 𝑧 ∈ 𝐵

𝑟
}; hence, the set {(Φ

𝜀
𝑧)(𝑡) : 𝑧 ∈ 𝐵

𝑟
}

is also precompact in 𝑋.

4. Main Results

Consider the following linear fractional differential system:

𝐷
𝛼

𝑡
𝐸𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑡 ∈ (0, 𝑏] , (35)

𝑥 (0) = 𝑥
0
. (36)
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It is convenient at this point to introduce the controllability
and resolvent operators associated with (35) as

𝐿
𝑏

0
= ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 : 𝐿

2

([0, 𝑏] , 𝑈) → 𝑋,

Γ
𝑏

0
= 𝐿
𝑏

0
(𝐿
𝑏

0
)
∗

= ∫

𝑏

0

(𝑏 − 𝑠)
2(𝛼−1)

T
𝐸
(𝑏 − 𝑠)

× 𝐵𝐵
∗

T
∗

𝐸
(𝑏 − 𝑠) 𝑑𝑠 : 𝑋 → 𝑋,

(37)

respectively, where 𝐵
∗ denotes the adjoint of 𝐵 and T∗

𝛼
(𝑡) is

the adjoint ofT
𝛼
(𝑡). It is straightforward that the operator 𝐿𝑏

0

is a linear bounded operator for 1/2 < 𝛼 ≤ 1.

Theorem 10 (see [27]). The following three conditions are
equivalent.

(i) Γ is positive; that is, ⟨𝑧∗, Γ𝑧∗⟩ > 0 for all nonzero 𝑧
∗

∈

𝑋
∗.

(ii) For all ℎ ∈ 𝑋, 𝐽(𝑧
𝜀
(ℎ)) converges to zero as 𝜀 → 0

+ in
the weak topology, where 𝑧

𝜀
(ℎ) = 𝜀(𝜀𝐼 + Γ𝐽)

−1

(ℎ) is a
solution of (13).

(iii) For all ℎ ∈ 𝑋, 𝑧
𝜀
(ℎ) = 𝜀(𝜀𝐼 + Γ𝐽)

−1

(ℎ) converges to zero
as 𝜀 → 0

+ in the strong topology.

Remark 11. It is known thatTheorem 10 (i) holds if and only if
Im 𝐿
𝑏

0
= 𝑋. In otherwords,Theorem 10 (i) holds if and only if

the corresponding linear system is approximately controllable
on [0, 𝑏]. Consequently, assumption (H6) is equivalent to the
approximate controllability of the linear system (35).

Theorem 12 (see [27]). Let 𝑝 : 𝑋 → 𝑋 be a nonlinear
operator. Assume that 𝑧

𝜀
is a solution of the following equation:

𝜀𝑧
𝜀
+ Γ
𝑇

0
𝐽 (𝑧
𝜀
) = 𝜀𝑝 (𝑧

𝜀
) ,

𝑝 (𝑧
𝜀
) − 𝑞

 → 0 as 𝜀 → 0
+

, 𝑞 ∈ 𝑋.

(38)

Then there exists a subsequence of the sequence {𝑧
𝜀
} strongly

converging to zero as 𝜀 → 0
+.

Weare now in a position to state and prove themain result
of the paper.

Theorem 13. Let 1/2 < 𝛼 ≤ 1. Suppose that conditions (S1)–
(S3), (H4)–(H5) are satisfied. Besides, assume additionally that
there exists 𝑁 ∈ 𝐿

∞

([0, 𝑏], [0, +∞)) such that

sup
𝑥∈𝑋

𝑓 (𝑡, 𝑥)
 ≤ 𝑁 (𝑡) , for a.e. 𝑡 ∈ [0, 𝑏] . (39)

Then system (1) is approximately controllable on [0, 𝑏].

Proof. Let 𝑥𝜀 be a fixed point ofΦ
𝜀
in 𝐵
𝑟(𝜀)

. Then 𝑥
𝜀 is a mild

solution of (1) on [0, 𝑏] under the control

𝑢
𝜀
(𝑡, 𝑥
𝜀

) = (𝑏 − 𝑡)
𝛼−1

𝐵
∗

T
∗

𝐸
(𝑏 − 𝑡) 𝐽 ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥
𝜀

)) ,

𝑝 (𝑥
𝜀

) = ℎ − S
𝐸
(𝑏) 𝑥
0

− ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥

𝜀

(𝑠)) 𝑑𝑠

(40)

and satisfies the following equality:

𝑥
𝜀

(𝑏) = S
𝐸
(𝑏) 𝑥
0
+ ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠)

× [𝐵𝑢
𝜀
(𝑠, 𝑥
𝜀

) + 𝑓 (𝑠, 𝑥
𝜀

(𝑠))] 𝑑𝑠

= S
𝐸
(𝑏) 𝑥
0
+ (−𝜀𝐼 + 𝜀𝐼 + Γ

𝑏

0
𝐽) ((𝜀𝐼 + Γ

𝑏

0
𝐽)
−1

𝑝 (𝑥
𝜀

))

+ ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥

𝜀

(𝑠)) 𝑑𝑠

= ℎ − 𝜀(𝜀𝐼 + Γ
𝑏

0
𝐽)
−1

𝑝 (𝑥
𝜀

) .

(41)

In other words, 𝑧
𝜀
= ℎ − 𝑥

𝜀

(𝑏) is a solution of

(𝜀𝐼 + Γ
𝑏

0
𝐽) (𝑧
𝜀
) = 𝜀𝑝 (𝑥

𝜀

) . (42)

By our assumption,

∫

𝑏

0

𝑓 (𝑠, 𝑥
𝜀

(𝑠))


2

𝑑𝑠 ≤ ∫

𝑇

0

𝑁
2

(𝑠) 𝑑𝑠. (43)

Consequently, the sequence {𝑓(⋅, 𝑥
𝜀

(⋅))} is bounded. Then
there is a subsequence still denoted by {𝑓(⋅, 𝑥

𝜀

(⋅))} andweakly
converges to, say, 𝑓(⋅) in 𝐿

2

([0, 𝑏], 𝑋). Then
𝑝 (𝑥
𝜀

) − 𝑞


=



∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) [𝑓 (𝑠, 𝑥

𝜀

(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



≤ sup
0≤𝑡≤𝑏



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

T
𝐸
(𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥
𝜀

(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



→ 0,

(44)

where

𝑞 = ℎ − S
𝐸
𝐸𝑥
0
− ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

T
𝐸
(𝑏 − 𝑠) 𝑓 (𝑠) 𝑑𝑠 (45)

as 𝜀 → 0
+ because of the compactness of an operator𝑓(⋅) →

∫
⋅

0

(⋅ − 𝑠)
𝛼−1

T
𝐸
(⋅ − 𝑠)𝑓(𝑠)𝑑𝑠 : 𝐿

2
([0, 𝑏], 𝑋) → 𝐶 ([0, 𝑏], 𝑋).

Then byTheorem 12 for any ℎ ∈ 𝑋,
𝑥
𝜀

(𝑏) − ℎ
 =

𝑧𝜀
 → 0 (46)

as 𝜀 → 0
+. This gives the approximate controllability. The

theorem is proved.
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Remark 14. Theorem 13 assumes that the operator 𝐸
−1 is

compact and, consequently, the associated linear control
system (35) is not exactly controllable.Therefore,Theorem 13
has no analogue for the concept of exact controllability.

Remark 15. In order to describe various real-world prob-
lems in physical and engineering sciences subject to abrupt
changes at certain instants during the evolution process,
fractional impulsive differential equations have been used
for the system model. Our result can be extended to study
the complete and approximate controllability of nonlinear
fractional impulsive differential equations of Sobolev type;
see [35, 36].

5. Applications

Example 16. Let 𝑋 = 𝑈 = 𝐿
2

[0, 𝜋]. Consider the following
fractional partial differential equation with control:

𝑐

𝐷
3/4

𝑡
(𝑥 (𝑡, 𝜃) − 𝑥

𝜃𝜃
(𝑡, 𝜃))

= 𝑥
𝜃𝜃

(𝑡, 𝜃) + 𝑔 (𝑡, 𝑥 (𝑡, 𝜃)) + 𝑢 (𝑡, 𝜃) ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0,

𝑥 (0, 𝜃) = 𝜙 (𝜃) , : 0 ≤ 𝑡 ≤ 𝑏, : 0 ≤ 𝜃 ≤ 𝜋.

(47)

Define 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 by 𝐴 := 𝑥
𝜃𝜃

and 𝐸 :

𝐷(𝐸) ⊂ 𝑋 → 𝑋 by 𝐸𝑥 := 𝑥 − 𝑥
𝜃𝜃
, where each domain,

𝐷(𝐴) and 𝐷(𝐸), is given by

{𝑥 ∈ 𝑋 : 𝑥, 𝑥
𝜃
are absolutely continuous,

𝑥
𝜃𝜃

∈ 𝑋, 𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0} .

(48)

𝐴 and 𝐸 can be written as follows:

𝐴𝑥 :=

∞

∑

𝑛=1

− 𝑛
2

⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
, 𝑥 ∈ 𝐷(𝐴) ,

𝐸𝑥 =

∞

∑

𝑛=1

(1 + 𝑛
2

) ⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
, 𝑥 ∈ 𝐷(𝐸) ,

(49)

respectively, where 𝑒
𝑛
(𝜃) := √2/𝜋 sin 𝑛𝜃, 𝑛 = 1, 2, . . ., is the

orthonormal set of eigenvalues of𝐴.Moreover, for any𝑥 ∈ 𝑋,
we have

𝐸
−1

𝑥 =

∞

∑

𝑛=1

1

1 + 𝑛2
⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
,

𝐴𝐸
−1

𝑥 =

∞

∑

𝑛=1

−𝑛
2

1 + 𝑛2
⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
,

𝑆 (𝑡) 𝑥 =

∞

∑

𝑛=1

exp(
−𝑛
2

1 + 𝑛2
𝑡) ⟨𝑥, 𝑒

𝑛
⟩ 𝑒
𝑛
,

T
𝐸
(𝑡) =

3

4
∫

∞

0

𝐸
−1

𝜃𝜉
3/4

(𝜃) 𝑆 (𝑡
3/4

𝜃) 𝑑𝜃,

T
𝐸
(𝑡) 𝑥 =

3

4

∞

∑

𝑛=1

1

1 + 𝑛2

× ∫

∞

0

𝜃𝜉
3/4

(𝜃) exp(
−𝑛
2

1 + 𝑛2
𝑡
3/4

𝜃)𝑑𝜃

× ⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛

= −

∞

∑

𝑛=1

1

𝑛2
𝑡
1/4

× ∫

∞

0

𝜉
3/4

(𝜃)
𝑑

𝑑𝑡
exp(

−𝑛
2

1 + 𝑛2
𝑡
3/4

𝜃)𝑑𝜃

× ⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
,

Γ
𝑏

0
= ∫

𝑏

0

(𝑏 − 𝑠)
2(𝛼−1)

T (𝑏 − 𝑠)T (𝑏 − 𝑠) 𝑑𝑠

= ∫

𝑏

0

𝑠
2(𝛼−1)

T (𝑠)T (𝑠) 𝑑𝑠

= ∫

𝑏

0

𝑠
2(𝛼−1)

3

4
∫

∞

0

𝐸
−1

𝜃𝜉
3/4

(𝜃) 𝑆 (𝑠
3/4

𝜃) 𝑑𝜃

×
3

4
∫

∞

0

𝐸
−1

𝜃𝜉
3/4

(𝜃) 𝑆 (𝑠
3/4

𝜃) 𝑑𝜃 𝑑𝑠.

(50)

It is clear that 𝐸−1 is compact. The linear system correspond-
ing to (47) is completely controllable if and only if there exists
𝛾 > 0 such that ⟨Γ𝑏

0
𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖

2 for all 𝑥 ∈ 𝑋. Assume

⟨Γ
𝑏

0
𝑥, 𝑥⟩

=
9

16

∞

∑

𝑛=1

1

(1 + 𝑛2)
2

× ∫

𝑏

0

𝑠
2(𝛼−1)

(∫

∞

0

𝜃𝜉
3/4

(𝜃) exp(
−𝑛
2

1 + 𝑛2
𝑠
3/4

𝜃)𝑑𝜃)

2

𝑑𝑠

× ⟨𝑥, 𝑒
𝑛
⟩
2

⩾ 𝛾

∞

∑

𝑛=1

⟨𝑥, 𝑒
𝑛
⟩
2

.

(51)

Then
9

16

1

(1 + 𝑛2)
2

× ∫

𝑏

0

𝑠
2(𝛼−1)

(∫

∞

0

𝜃𝜉
3/4

(𝜃) exp(
−𝑛
2

1 + 𝑛2
𝑠
3/4

𝜃)𝑑𝜃)

2

𝑑𝑠

⩾ 𝛾,

𝛾 ≤
9

16

1

(1 + 𝑛2)
2

× ∫

𝑏

0

𝑠
−1/2

(∫

∞

0

𝜃𝜉
3/4

(𝜃) exp(
−𝑛
2

1 + 𝑛2
𝑠
3/4

𝜃)𝑑𝜃)

2

𝑑𝑠
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≤
9

16

1

(1 + 𝑛2)
2

× ∫

𝑏

0

𝑠
−1/2

(∫

∞

0

𝜃𝜉
3/4

(𝜃) 𝑑𝜃)

2

𝑑𝑠 → 0,

as 𝑛 → ∞, ⇒ 𝛾 = 0 (contradiction) ,
(52)

and no such 𝛾 > 0 exists which satisfies (51), and hence
the linear system corresponding to (47) is never completely
controllable. We show that the associated linear system is
approximately controllable on [0, 𝑏]. We need to show that
(𝑏 − 𝑠)

𝛼−1

𝐵
∗T∗
𝐸
(𝑏 − 𝑠)𝑥 = 0, 0 ≤ 𝑠 < 𝑏 ⇒ 𝑥 = 0. Indeed,

(𝑏 − 𝑠)
𝛼−1

𝐵
∗

T
∗

𝐸
(𝑏 − 𝑠) 𝑥

= (𝑏 − 𝑠)
𝛼−1

3

4
∫

∞

0

𝜃𝜉
3/4

(𝜃)

∞

∑

𝑛=1

1

1 + 𝑛2
exp(

−𝑛
2

1 + 𝑛2
𝑠
3/4

𝜃)

× ⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
= 0,

3

4
∫

∞

0

𝜃𝜉
3/4

(𝜃)

∞

∑

𝑛=1

1

1 + 𝑛2
exp(

−𝑛
2

1 + 𝑛2
𝑠
3/4

𝜃) ⟨𝑥, 𝑒
𝑛
⟩ 𝑒
𝑛
= 0,

⟨𝑥, 𝑒
𝑛
⟩ = 0 ⇒ 𝑥 = 0.

(53)

Next, we suppose
(H6) 𝑔 : [0, 𝑏] × 𝑅 → 𝑅. For each 𝑥 ∈ 𝑅, 𝑔(⋅, 𝑥)

is measurable and for each 𝑡 ∈ [0, 𝑏], 𝑔(𝑡, ⋅) is continuous.
Moreover, sup

𝑥∈𝑅
‖𝑔(𝑡, 𝑥)‖ ≤ 𝑁(𝑡), for a.e. 𝑡 ∈ [0, 𝑏].

Define 𝑓 : [0, 𝑏] × 𝑋 → 𝑋 by 𝑓(𝑡, 𝑥)(𝜃) = 𝑔(𝑡, 𝑥(𝑡, 𝜃)).
Now, system (47) can be written in the abstract form (1).
Clearly, all the assumptions in Theorem 13 are satisfied if
(H6) holds. Then system (47) is approximately controllable
on [0, 𝑏].
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