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Rough sets provide an efficient tool for dealing with the vagueness and granularity in information systems. They are widely used
in attribute reduction in data mining. There are many optimization issues in attribute reduction. Matroids generalize the linear
independence in vector spaces and are widely used in optimization. Therefore, it is necessary to integrate rough sets and matroids.
In this paper, we applymatrices to amatroidal structure of rough sets through three sides, which are characteristics, operations, and
axioms. Firstly, a matroid is induced by an equivalence relation, and the matroid is a representable matroid whose representable
matrix is a matrix representation of the equivalence relation. Then some characteristics of the matroid are presented through the
representable matrix mainly. Secondly, contraction and restriction operations are applied to the matroid through the representable
matrix and approximation operators of rough sets. Finally, two axioms of circuit incidence matrices of 2-circuit matroids are
obtained, where 2-circuit matroids are proposed based on the characteristics of the matroid. In a word, these results show an
interesting view to investigate the combination between rough sets and matroids through matrices.

1. Introduction

Rough set theory was proposed by Pawlak [1, 2] in 1982 as
a tool to conceptualize, organize, and analyze various types
of data in data mining. It has been widely used to deal with
many practical problems, such as attribute reduction [3, 4],
feature selection [5–7], rule extraction [8–11], and knowledge
discovery [12–14]. Moreover, through extending equivalence
relations or partitions, rough set theory has been extended
to generalized rough sets based on relations [15, 16] and
covering-based rough sets [17, 18].

However, many important problems including attribute
reduction in rough sets are NP-hard. Therefore, the algo-
rithms to solve them are often greedy ones [19, 20]. Matroid
theory [21–23] is a generalization of linear algebra and
graph theory and provides well-established platforms for
greedy algorithms [24]. It has been used in diverse fields,
such as combinatorial optimization [25], algorithm design
[24], information coding [26], and cryptology [27]. Hence,
matroid theory may bring new chances for rough set theory.
Recently, matroid theory has been connected with other
theories, such as rough set theory [28–31] and lattice theory
[32, 33].

In this paper, we apply matrices to a matroidal structure
of rough sets through three sides, which are characteristics,
operations, and axioms. Firstly, a matroid is induced by an
equivalence relation on a universe through the circuit axiom,
and a matrix representation of the equivalence relation is
a representable matrix of the matroid. Then some charac-
teristics of the matroid, which are bases, the rank function,
and circuits, are presented through the representable matrix
of the matroid mainly. Secondly, contraction and restriction
operations are applied to the matroid through the repre-
sentable matrix and approximation operators of rough sets.
We present some relationships between some new matroids,
which are obtained by using contraction and restriction
operations. For example, we present a relationship between
these two matroids: one is the contraction of the matroid to
the complement of a single point set; the other one is a vector
matroid of a matrix obtained from the representable matrix
by deleting all the columnswhose labels are in the equivalence
class of this point. Finally, the matroid belongs to a type of
matroids, which is called 2-circuit matroid. Two axioms of
circuit incidence matrices of 2-circuit matroids are obtained.

The rest of this paper is organized as follows. Section 2
reviews some fundamental definitions about rough sets and
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matroids. In Section 3, we prove that the matroid induced
by an equivalence relation is a representable matroid, and
some characteristics of thematroid are presented through the
representablematrix of thematroidmainly.Then contraction
and restriction operations are applied to the matroid through
the representable matrix and approximation operators of
rough sets. In Section 4, the matroid belongs to a type of
matroids called 2-circuit matroid. Two axioms of circuit
incidencematrices of 2-circuit matroids are obtained. Finally,
Section 5 concludes this paper and indicates further works.

2. Basic Definitions

This section recalls some fundamental definitions related to
Pawlak’s rough sets and matroids.

2.1. Pawlak’s Rough Sets. Rough set theory provides a sys-
tematic approach to data preprocessing in data mining.
In information or decision systems, any attribute subset
is characterized by an equivalence relation. The following
definition shows that a universe together with an equivalence
relation on it forms an approximation space.

Definition 1 (approximation space [34, 35]). Let 𝑈 be a
nonempty and finite set called universe and 𝑅 an equivalence
relation on 𝑈. The ordered pair (𝑈, 𝑅) is called a Pawlak’s
approximation space.

In rough sets, a pair of approximation operators is used to
describe an object. In the following definition, we introduce
the pair of approximation operators.

Definition 2 (approximation operator [34, 35]). Let 𝑅 be an
equivalence relation on𝑈. A pair of approximation operators
𝑅
∗
, 𝑅∗ : 2𝑈 → 2

𝑈, is defined as follows: for all𝑋 ⊆ 𝑈,

𝑅
∗
(𝑋) = {𝑥 ∈ 𝑈 : 𝑅𝑁 (𝑥) ⊆ 𝑋} ,

𝑅
∗

(𝑋) = {𝑥 ∈ 𝑈 : 𝑅𝑁 (𝑥)⋂ 𝑋 ̸= 0} ,

(1)

where 𝑅𝑁(𝑥) = {𝑦 ∈ 𝑈 : 𝑥𝑅𝑦}. They are called the
lower and upper approximation operators with respect to 𝑅,
respectively.

In an approximation space, if a subset can be precisely
described by an equivalence relation, then it is called a precise
set; otherwise, it is called a rough set.

Definition 3 (𝑅-rough set [34, 35]). Let 𝑅 be an equivalence
relation on 𝑈. For all 𝑋 ⊆ 𝑈, if 𝑅

∗
(𝑋) = 𝑅

∗

(𝑋), then 𝑋 is
called a 𝑅-precise set; otherwise,𝑋 is called a 𝑅-rough set.

2.2. Matroids. Matroids draw heavily on both linear algebra
and graphs for their motivation and notation. They have a
variety of applications in combinatorial optimization, algo-
rithm design, information coding, and cryptology. In the
following definition, one of the most valuable definitions of
matroids is presented from the viewpoint of independent sets.

Definition 4 (matroid [21, 23]). A matroid 𝑀 is an ordered
pair (𝑈, I) where 𝑈 (the ground set) is a finite set and I (the
family of independent sets) is a family of subsets of 𝑈 with
the following properties:
(𝐼1) 0 ∈ I;
(𝐼2) if 𝐼 ∈ I and 𝐼󸀠 ⊆ 𝐼, then 𝐼󸀠 ∈ I;
(𝐼3) if 𝐼

1
, 𝐼
2
∈ I and |𝐼

1
| < |𝐼
2
|, then there exists 𝑒 ∈ 𝐼

2
− 𝐼
1

such that 𝐼
1
⋃{𝑒} ∈ I, where |𝐼| denotes the cardinality

of 𝐼.

We shall often write 𝑈(𝑀) for 𝑈 and I(𝑀) for I,
particularly when several matroids are being considered. A
type of matroids is provided to show that matroids generalize
the linear independence in vector spaces.

Proposition 5 (vector matroid [21, 23]). Let 𝑈 be the set of
column labels of a matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑛

over a field 𝐹 and I the
family of subsets𝑋 of𝑈 for which the columns labelled by𝑋 are
linearly independent in the vector space𝑉(𝑚, 𝐹). Then (𝑈, I) is
a matroid, and it is called the vector matroid of 𝐴, denoted by
𝑀[𝐴].

Note that, the field used in this paper is real number field
R. The transpose of a matrix 𝐴 is denoted by 𝐴⊤. In order
to show that linear algebra is an original source of matroid
theory, we present an example from the viewpoint of the
linear independence in vector spaces.

Example 6. Let 𝐴 =

𝑎
1
𝑎
2
𝑎
3
𝑎
4

(
1 0 0 −1

0 1 0 −1

0 0 1 0

) and 𝑈 = {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
} be the

set of all column labels of𝐴. We suppose that I = {𝑋 ⊆ 𝑈: the
columns labelled by 𝑋 are linearly independent in 𝑉(3,R)};
that is, I = {0, {𝑎

1
}, {𝑎
2
}, {𝑎
3
}, {𝑎
4
}, {𝑎
1
, 𝑎
2
}, {𝑎
1
, 𝑎
3
}, {𝑎
1
, 𝑎
4
},

{𝑎
2
, 𝑎
3
}, {𝑎
2
, 𝑎
4
}, {𝑎
3
, 𝑎
4
}, {𝑎
1
, 𝑎
2
, 𝑎
3
}, {𝑎
1
, 𝑎
3
, 𝑎
4
}, {𝑎
2
, 𝑎
3
, 𝑎
4
}}.

Then𝑀 = (𝑈, I) is a vector matroid, denoted by𝑀[𝐴].

A type of matroids named representable matroids is
defined through vector matroids.

Definition 7 (representable matroid [21, 23]). Let 𝑀 be a
matroid.𝑀 is called representablematroid if there exist a field
𝐹 and a matrix 𝐴 over 𝐹 such that𝑀 = 𝑀[𝐴]. 𝐴 is called a
representable matrix of𝑀.

If a subset of the ground set is not an independent set of a
matroid, then it is called a dependent set of thematroid. Based
on the dependent set, we introduce the circuit of a matroid.
For this purpose, some denotations are presented.

Definition 8 (see [21, 23]). Let A be a family of subsets of 𝑈.
One can denote the following:

Low(A) = {𝑋 ⊆ 𝑈 : ∃𝐴 ∈ A(𝑋 ⊆ 𝐴)};
Min(A) = {𝑋 ∈ A : ∀𝑌 ∈ A, 𝑌 ⊆ 𝑋 ⇒ 𝑋 = 𝑌};
Opp(A) = {𝑋 ⊆ 𝑈 : 𝑋 ∉ A}.

The dependent set of a matroid generalizes the linear
dependence in vector spaces and the cycle in graphs. Any
circuit of a matroid is a minimal dependent set.
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Definition 9 (circuit [21, 23]). Let 𝑀 = (𝑈, I) be a matroid.
A minimal dependent set in𝑀 is called a circuit of𝑀, and
we denote the family of all circuits of 𝑀 by C(𝑀); that is,
C(𝑀) = Min(Opp(I)).

Example 10 (continued from Example 6). C(𝑀) = Min({𝑋 ⊆

𝑈: the columns labelled by 𝑋 are linearly dependent in
𝑉(3,R)}); that is, C(𝑀) = {{𝑎

1
, 𝑎
2
, 𝑎
4
}}.

The following proposition shows that a matroid can be
defined from the viewpoint of circuits.

Proposition 11 (circuit axiom [21, 23]). Let C be a family of
subsets of 𝑈. Then there exists a matroid 𝑀 such that C =

C(𝑀) if and only if C satisfies the following three conditions:

(𝐶1) 0 ∉ C;
(𝐶2) if 𝐶

1
, 𝐶
2
∈ C and 𝐶

1
⊆ 𝐶
2
, then 𝐶

1
= 𝐶
2
;

(𝐶3) if 𝐶
1
, 𝐶
2
∈ C, 𝐶

1
̸= 𝐶
2
, and 𝑥 ∈ 𝐶

1
⋂𝐶
2
, then there

exists 𝐶
3
∈ C such that 𝐶

3
⊆ (𝐶
1
⋃𝐶
2
) − {𝑥}.

The following definition shows that a base of a matroid is
a maximal independent set.

Definition 12 (base [21, 23]). Let𝑀 = (𝑈, I) be a matroid. A
maximal independent set in𝑀 is called a base of𝑀, and we
denote the family of all bases of𝑀 by B(𝑀); that is, B(𝑀) =
Max(I).

The following proposition shows that a matroid can be
determined by its bases.

Proposition 13 (base axiom [21, 23]). Let B be a family of
subsets of 𝑈. Then there exists a matroid 𝑀 such that B =

B(𝑀) if and only if B satisfies the following two conditions:

(𝐵1) B ̸= 0;
(𝐵2) if 𝐵

1
, 𝐵
2
∈ B and 𝑥 ∈ 𝐵

1
− 𝐵
2
, then there exists an

element 𝑦 ∈ 𝐵
2
− 𝐵
1
such that (𝐵

1
− {𝑥}) ∪ {𝑦} ∈ B.

The rank of a matrix and the dimension of a vector
space are important concepts in linear algebra. The following
definition is a generalization of these two concepts.

Definition 14 (rank function [21, 23]). Let 𝑀 = (𝑈, I) be a
matroid. The rank function 𝑟

𝑀
of 𝑀 is defined as 𝑟

𝑀
(𝑋) =

max{|𝐼| : 𝐼 ⊆ 𝑋, 𝐼 ∈ I} for all𝑋 ⊆ 𝑈. 𝑟
𝑀
(𝑋) is called the rank

of𝑋 in𝑀.

3. Matrix and the Matroid Induced by
an Equivalence Relation

In this section, we prove that the matroid induced by an
equivalence relation is a representable matroid, and some
characteristics of the matroid are presented through a repre-
sentable matrix of the matroid mainly. Then contraction and
restriction operations are applied to the matroid through the
representable matrix and approximation operators of rough
sets.

3.1. Characteristics of the Matroid through Matrices. In this
subsection, a matroid is induced by an equivalence relation
on a universe, and a matrix representation of the equivalence
relation is a representable matrix of the matroid. Some
characteristics of the matroid are presented through the rep-
resentable matrix mainly. The following proposition shows
that the matroid can be induced through the circuit axiom.

Proposition 15 (see [29]). Let 𝑅 be an equivalence relation on
𝑈. One has that

{{𝑥, 𝑦} ⊆ 𝑈 : 𝑥 ̸= 𝑦, (𝑥, 𝑦) ∈ 𝑅} (2)

satisfies (𝐶1), (𝐶2), and (𝐶3) of Proposition 11. Then there
exists a matroid 𝑀 such that C(𝑀) = {{𝑥, 𝑦} ⊆ 𝑈 :

𝑥 ̸= 𝑦, (𝑥, 𝑦) ∈ 𝑅}, and we denote this matroid by𝑀(𝑅).

In order to find amatrix to prove that thematroid induced
by an equivalence relation is a representablematroid, amatrix
representation of an equivalence relation is presented in the
following definition.

Definition 16. Let 𝑅 be an equivalence relation on 𝑈 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and a partition 𝑈/𝑅 = {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
}. We

define a Boolean matrix 𝐴
𝑅
= (𝑎
𝑖𝑗
)
𝑚×𝑛

as follows:

𝑎
𝑖𝑗
= {

1, 𝑥
𝑗
∈ 𝑃
𝑖
,

0, 𝑥
𝑗
∉ 𝑃
𝑖
.

(3)

𝑥
𝑗
labels the 𝑗th column and 𝑃

𝑖
labels the 𝑖th row.𝐴

𝑅
is called

a matrix representation of 𝑅.

Note that 𝑎
𝑖𝑗
is 1 or 0 depending on whether 𝑥

𝑗
is or is

not in 𝑃
𝑖
. An equivalence relation on a universe may have

different matrix representations because of the randomness
of the order of a set.

Example 17. Let 𝑈 = {𝑎, 𝑏, 𝑐} and 𝑈/𝑅 = {{𝑎}, {𝑏, 𝑐}}. Then

𝐴
𝑅
=
{𝑎}

{𝑏,𝑐}

𝑎 𝑏 𝑐

(
1 0 0

0 1 1
), 𝐴󸀠
𝑅
=
{𝑏,𝑐}

{𝑎}

𝑎 𝑏 𝑐

(
0 1 1

1 0 0
), and 𝐴󸀠󸀠

𝑅
=
{𝑎}

{𝑏,𝑐}

𝑏 𝑎 𝑐

(
0 1 0

1 0 1
)

are some matrix representations of 𝑅.

On one hand, according to Definition 16, two matrix rep-
resentations of 𝑅 with different orders of column labels have
the same vectormatroid because the columns labelled by𝑋 ⊆

𝑈 in these twomatrices have the same linear dependence. On
the other hand, there is an important result in matroid theory
that amatrix and its row elementary transformedmatrix have
the same vectormatroid.Therefore, allmatrix representations
of 𝑅 induce the same vector matroid.

Example 18 (continued from Example 17). 𝑀[𝐴
𝑅
] = (𝑈,

I(𝑀[𝐴
𝑅
]), where I(𝑀[𝐴

𝑅
]) = Low({{𝑎, 𝑏}, {𝑎, 𝑐}});𝑀[𝐴󸀠

𝑅
] =

(𝑈, I(𝑀[𝐴󸀠
𝑅
])), where I(𝑀[𝐴󸀠

𝑅
]) = I(𝑀[𝐴

𝑅
]);𝑀[𝐴󸀠󸀠

𝑅
] = (𝑈,

I(𝑀[𝐴󸀠󸀠
𝑅
])), where I(𝑀[𝐴󸀠󸀠

𝑅
]) = I(𝑀[𝐴

𝑅
]). Therefore,

𝑀[𝐴
𝑅
] = 𝑀[𝐴

󸀠

𝑅
] = 𝑀[𝐴

󸀠󸀠

𝑅
].

The following proposition shows that the matroid
induced by an equivalence relation is a representablematroid,
and a matrix representation of the equivalence relation is a
representable matrix of the matroid.
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Proposition 19. Let 𝑅 be an equivalence relation on 𝑈 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝑈/𝑅 = {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
}. Then 𝑀(𝑅) =

𝑀[𝐴
𝑅
].

Proof. Let 𝐴
𝑅
=

𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛

(𝛼
1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑛
)

. Since 𝑀(𝑅) and 𝑀[𝐴
𝑅
]

have the same ground set, so we need to prove only that
C(𝑀(𝑅)) = C(𝑀[𝐴

𝑅
]). According to Proposition 5 and

Definition 9, C(𝑀[𝐴
𝑅
]) = Min({𝐶 ⊆ 𝑈: the columns

labelled by 𝐶 are linearly dependent in 𝑉(𝑚,R)}). According
to Definition 16, 𝛼

𝑖
̸= (0 ⋅ ⋅ ⋅ 0)

⊤. Hence, {𝑥
𝑖
} ∉ C(𝑀[𝐴

𝑅
]) for

all 𝑖 ∈ {1, 2, . . . , 𝑛}. For any {𝑥
𝑖
, 𝑥
𝑗
} ∈ C(𝑀(𝑅)), (𝑥

𝑖
, 𝑥
𝑗
) ∈

𝑅. According to Definition 16, the columns labelled by 𝑥
𝑖

and 𝑥
𝑗
are the same. Therefore, the columns labelled by

{𝑥
𝑖
, 𝑥
𝑗
} are linearly dependent in 𝑉(𝑚,R). Hence, {𝑥

𝑖
, 𝑥
𝑗
} ∈

C(𝑀[𝐴
𝑅
]); that is,C(𝑀(𝑅)) ⊆ C(𝑀[𝐴

𝑅
]). Conversely, if𝐶 ∈

C(𝑀[𝐴
𝑅
]) − C(𝑀(𝑅)), according to (𝐶2) of Proposition 11,

{𝑥, 𝑦} 󳠬 𝐶 for any {𝑥, 𝑦} ∈ C(𝑀(𝑅)). Therefore, for
any 𝑥

𝑖
, 𝑥
𝑗
∈ 𝐶 and 𝑥

𝑖
̸= 𝑥
𝑗
, (𝑥
𝑖
, 𝑥
𝑗
) ∉ 𝑅. According to

Definition 16, there is only a 1 in every column of 𝐴
𝑅
and

the columns labelled by 𝐶 are different. Hence, the columns
labelled by 𝐶 are linearly independent in 𝑉(𝑚,R), which
is contradictory with 𝐶 ∈ C(𝑀[𝐴

𝑅
]). Thus C(𝑀[𝐴

𝑅
]) ⊆

C(𝑀(𝑅)). This completes the proof.

Using the representable matrix of the matroid induced by
an equivalence relation, some characteristics of the matroid
will be obtained. For this purpose, the following definition
proposes a function from a power set of a set to a set of n-
dimensional 0-1 vectors.

Definition 20 (see [36]). If 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝑋 ⊆ 𝑈,

then the characteristic function of 𝑋 is defined as 𝜑(𝑋) =
(𝑎
1
, . . . , 𝑎

𝑖
, . . . , 𝑎

𝑛
), where

𝑎
𝑖
= {

1, 𝑥
𝑖
∈ 𝑋,

0, 𝑥
𝑖
∉ 𝑋.

(4)

As we know, 𝜑 is a bijection from 2
𝑈 to the set of all n-

dimensional 0-1 vectors. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑚×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑙

be
Booleanmatrices.Then𝐴⊙𝐵 = (𝑐

𝑖𝑗
)
𝑚×𝑙

, where 𝑐
𝑖𝑗
= ∨
𝑛

𝑠=1
(𝑎
𝑖𝑠
∧

𝑏
𝑠𝑗
) and ∨, ∧ denote maximum and minimum, respectively.

In this paper, ⊙ denotes Boolean product of matrices and “⋅”
denotes multiplication of matrices.

The following proposition presents the family of bases
of the matroid induced by an equivalence relation from the
viewpoint of a representable matrix of the matroid.

Proposition 21. Let 𝑅 be an equivalence relation on 𝑈. Then
B(𝑀(𝑅)) = Min({𝑋 ⊆ 𝑈 : 𝐴

𝑅
⊙ (𝜑(𝑋))

⊤

= 1V}), where 1V is
a column vector whose entries are all 1.

Proof. For any 𝑋 ⊆ 𝑈 and 𝐴
𝑅
⊙ (𝜑(𝑋))

⊤

= 1V, we have
𝑅𝑁(𝑥)⋂𝑋 ̸= 0 for any 𝑥 ∈ 𝑈. Therefore, Min({𝑋 ⊆ 𝑈 :

𝐴
𝑅
⊙ (𝜑(𝑋))

⊤

= 1V}) = Min({𝑋 ⊆ 𝑈 : ∀𝑥 ∈

𝑈, 𝑅𝑁(𝑥)⋂𝑋 ̸= 0}). According to Definition 8, Min({𝑋 ⊆

𝑈 : ∀𝑥 ∈ 𝑈, 𝑅𝑁(𝑥)⋂𝑋 ̸= 0}) = {𝑋 ⊆ 𝑈 : ∀𝑥 ∈

𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}. First of all, we should prove that {𝑋 ⊆

𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1} satisfies (𝐵1) and (𝐵2) of
Proposition 13.

(𝐵1) : It is straightforward that {𝑋 ⊆ 𝑈 : ∀𝑥 ∈

𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1} ̸= 0.
(𝐵2) : If 𝐵

1
, 𝐵
2
∈ {𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1} and

𝑠 ∈ 𝐵
1
− 𝐵
2
,

then there exists 𝑦 ∈ 𝐵
2
− 𝐵
1
and 𝑦 ∈ 𝑅𝑁(𝑠). Since

𝐵
1
⋂𝑅𝑁(𝑠) = {𝑠}, so ((𝐵

1
−{𝑠})⋃{𝑦})⋂𝑅𝑁(𝑠) = {𝑦}. For any

𝑧 ∈ 𝑈 − 𝑅𝑁(𝑠), |((𝐵
1
− {𝑠})⋃{𝑦})⋂𝑅𝑁(𝑧)| = 1. Therefore,

((𝐵
1
− {𝑠})⋃{𝑦}) ∈ {𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}.
Hence, {𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}

satisfies (𝐵1) and (𝐵2) of Proposition 13. Then we should
prove that the matroid whose family of bases is {𝑋 ⊆ 𝑈 :

∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1} is 𝑀(𝑅); that is, they have
the same family of circuits. Since Low({𝑋 ⊆ 𝑈 : ∀𝑥 ∈

𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}) = {𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| ≤

1}, so Min(Opp({𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| ≤ 1})) =

Min({𝑋 ⊆ 𝑈 : ∃𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| ≥ 2}) = {{𝑥, 𝑦} ⊆
𝑅𝑁(𝑥) : 𝑥 ̸= 𝑦} = C(𝑀(𝑅)). Hence, B(𝑀(𝑅)) = Min({𝑋 ⊆

𝑈 : 𝐴
𝑅
⊙ (𝜑(𝑋))

⊤

= 1V}). This completes the proof.

According to Proposition 21, a representable matrix of
the matroid induced by an equivalence relation and the
corresponding characteristic function can get the family of
bases of the matroid. In order to get the family of bases of the
matroid, we need to get only one representable matrix.

Example 22 (continued from Example 17). 𝐴
𝑅
⊙ (𝜑({𝑎}))

⊤ =
(
1 0 0

0 1 1
) ⊙ (1 0 0)

⊤ = ( 1 0 0
0 1 1

) ⊙ (
1

0

0

) = (
1

0
); 𝐴
𝑅
⊙ (𝜑({𝑏}))

⊤

=

𝐴
𝑅
⊙ (0 1 0)

⊤

= (
0

1
); 𝐴
𝑅
⊙ (𝜑({𝑐}))

⊤

= (
0

1
); 𝐴
𝑅
⊙

(𝜑({𝑎, 𝑏}))
⊤

= (
1

1
); 𝐴
𝑅
⊙ (𝜑({𝑎, 𝑐}))

⊤

= (
1

1
); 𝐴
𝑅
⊙

(𝜑({𝑏, 𝑐}))
⊤

= (
0

1
); 𝐴
𝑅
⊙ (𝜑({𝑎, 𝑏, 𝑐}))

⊤

= ( 1
1
). Hence,

B(𝑀(𝑅)) = Min({{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}}) = {{𝑎, 𝑏}, {𝑎, 𝑐}}.

The following proposition presents another method to
obtain the family of bases of the matroid induced by an
equivalence relation from the viewpoint of a representable
matrix.

Proposition 23. Let 𝑅 be an equivalence relation on 𝑈 =

{𝑥
1
, 𝑥
2
, . . . 𝑥
𝑛
}, 𝑈/𝑅 = {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
}, and 𝐴

𝑅
= (𝑎
𝑖𝑗
)
𝑚×𝑛

.
Then B(𝑀(𝑅)) = {{𝑥

𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

} : 𝑎
1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1}.

Proof. According to the proof of Proposition 21, B(𝑀(𝑅)) =
{𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}. We need to prove
only {{𝑥

𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

} : 𝑎
1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1} = {𝑋 ⊆ 𝑈 :

∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}. For all 𝑋 ∈ {{𝑥
𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

} :

𝑎
1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1}, suppose that 𝑋 = {𝑥
𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

}.
Since 𝑎

1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1, so 𝑎
𝑖𝑗
𝑖

= 1 for any 1 ≤ 𝑖 ≤ 𝑚.
Therefore, 𝑥

𝑗
𝑖

∈ 𝑃
𝑖
; that is, |𝑋⋂𝑅𝑁(𝑥)| = 1 for any 𝑥 ∈ 𝑈.

Hence, {{𝑥
𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

} : 𝑎
1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1} ⊆ {𝑋 ⊆ 𝑈 :

∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}. Conversely, for all 𝑋 ∈ {𝑋 ⊆

𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}, it is straightforward that
𝑋 ∈ {{𝑥

𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

} : 𝑎
1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1}. Therefore,
{𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1} ⊆{{𝑥

𝑗
1

, 𝑥
𝑗
2

, . . . , 𝑥
𝑗
𝑚

} :

𝑎
1𝑗
1

𝑎
2𝑗
2

⋅ ⋅ ⋅ 𝑎
𝑚𝑗
𝑚

= 1}. This completes the proof.

The following definition presents a matrix related to
circuits of a matroid.
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Definition 24 (circuit incidence matrix [21, 23]). Let
𝑀 be a matroid on 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} and C(𝑀) =

{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
}. A circuit incidence matrix of 𝑀 is

𝐴(C(𝑀)) = (𝑎
𝑖𝑗
)
𝑚×𝑛

, where

𝑎
𝑖𝑗
= {

1, 𝑥
𝑗
∈ 𝐶
𝑖
,

0, 𝑥
𝑗
∉ 𝐶
𝑖
.

(5)

According to Definition 24, circuits can be replaced by
bases of amatroid.Therefore, we can also get a base incidence
matrix. Let 𝑀 be a matroid on 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} and

B(𝑀) = {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
}. A base incidence matrix of 𝑀 is

𝐴(B(𝑀)) = (𝑎
𝑖𝑗
)
𝑚×𝑛

, where

𝑎
𝑖𝑗
= {

1, 𝑥
𝑗
∈ 𝐵
𝑖
,

0, 𝑥
𝑗
∉ 𝐵
𝑖
.

(6)

Note that the matroid induced by an equivalence relation
may have different base incidence matrices because of the
randomness of the order of a set. But these base incidence
matrices can induce a unique rank function of the matroid.

Proposition 25. Let 𝑅 be an equivalence relation on 𝑈 and
𝑋 ⊆ 𝑈. Then 𝑟

𝑀(𝑅)
(𝑋) = max

1≤𝑖≤𝑙
𝑏
𝑖
, where

(

(

𝑏
1

...
𝑏
𝑖

...
𝑏
𝑙

)

)

= 𝐴(B (𝑀 (𝑅))) ⋅ 𝜑(𝑋)
⊤

. (7)

Proof. It is straightforward that 𝑏
𝑖
= |𝐵
𝑖
⋂𝑋|, where 𝐵

𝑖
∈

B(𝑀(𝑅)). Suppose that 𝑏
𝑗
= max

1≤𝑖≤𝑙
𝑏
𝑖
. Since 𝐵

𝑗
∈ B(𝑀(𝑅)),

so𝐵
𝑗
⋂𝑋 ∈ I(𝑀(𝑅)). In fact, if there exists 𝐼

1
∈ I(𝑀(𝑅)) such

that |𝐼
1
⋂𝑋| > |𝐵

𝑗
⋂𝑋|, then there must be a 𝐵

𝑘
∈ B(𝑀(𝑅))

such that 𝐼
1
⊆ 𝐵
𝑘
. Therefore, 𝑏

𝑘
= |𝐵
𝑘
⋂𝑋| ≥ |𝐼

1
⋂𝑋| >

|𝐵
𝑗
⋂𝑋| = 𝑏

𝑗
, which is contradictory with 𝑏

𝑗
= max

1≤𝑖≤𝑙
𝑏
𝑖
.

Hence, 𝑟
𝑀(𝑅)

(𝑋) = max
1≤𝑖≤𝑙

𝑏
𝑖
. This completes the proof.

Example 26 (continued from Example 22). Let 𝑋
1
= {𝑎, 𝑏},

and 𝑋
2
= {𝑏, 𝑐}, 𝐴(B(𝑀(𝑅))) =

𝑎 𝑏 𝑐

(
1 1 0

1 0 1
). Since 𝐴(B(𝑀(𝑅))) ⋅

𝜑(𝑋
1
)
⊤

= (
1 1 0

1 0 1
) ⋅ (
1

1

0

) = ( 2
1
), so 𝑟

𝑀(𝑅)
(𝑋
1
) = 2; since

𝐴(B(𝑀(𝑅))) ⋅ 𝜑(𝑋
2
)
⊤

= (
1

1
), so 𝑟

𝑀(𝑅)
(𝑋
2
) = 1.

The rank function of the matroid induced by an equiva-
lence relation can also be obtained through the representable
matrix of the matroid.

Proposition 27. Let 𝑅 be an equivalence relation on 𝑈 and
𝑋 ⊆ 𝑈. Then 𝑟

𝑀(𝑅)
(𝑋) = 1V ⋅ (𝐴𝑅 ⊙ 𝜑(𝑋)

⊤

), where 1V is a row
vector whose entries are all 1.

Proof. Suppose that 𝑈/𝑅 = {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
}. The 𝑖th entry

of 𝐴
𝑅
⊙ 𝜑(𝑋) is 1 or 0 depending on whether or not

𝑃
𝑖
⋂𝑋 ̸= 0. It is straightforward that 1V ⋅ (𝐴𝑅 ⊙ 𝜑(𝑋)

⊤

) =

|{𝑅𝑁(𝑥) : 𝑥 ∈ 𝑈, 𝑅𝑁(𝑥)⋂𝑋 ̸= 0}|. We need to prove
only that 𝑟

𝑀(𝑅)
(𝑋) = |{𝑅𝑁(𝑥) : 𝑥 ∈ 𝑈, 𝑅𝑁(𝑥)⋂𝑋 ̸= 0}|.

According to Proposition 25, 𝑟
𝑀(𝑅)

(𝑋) = max{|𝐵⋂𝑋| :

𝐵 ∈ B(𝑀(𝑅))}. According to the proof of Proposition 21,
B(𝑀(𝑅)) = {𝑋 ⊆ 𝑈 : ∀𝑥 ∈ 𝑈, |𝑅𝑁(𝑥)⋂𝑋| = 1}.
Therefore, 𝑟

𝑀(𝑅)
(𝑋) = |{𝑅𝑁(𝑥) : 𝑥 ∈ 𝑈, 𝑅𝑁(𝑥)⋂𝑋 ̸= 0}|.

This completes the proof.

Example 28 (continued from Example 26). 𝑟
𝑀(𝑅)

(𝑋
1
) = 1V ⋅

(𝐴
𝑅
⊙ 𝜑(𝑋

1
)
⊤

) = (1 1) ⋅ ((
1 1 0

1 0 1
) ⊙ (
1

1

0

)) = (1 1) ⋅ (
1

1
) = 2.

Propositions 25 and 27 present two direct and simple
methods to calculate the rank function of the matroid
induced by an equivalence relation compared with the
traditional method in Definition 14. In fact, the rank func-
tion of the matroid can be used in attribute reduction of
information systems. Integrating these two methods with the
following theorem which presents an equivalent formulation
of attribute reduction of information systems, one can obtain
a reduct of an information system.

Theorem 29 (see [29]). Let 𝐼𝑆 = (𝑈, 𝐴) be an information
system. For all 𝐵 ⊆ 𝐴, 𝐵 is a reduct of 𝐼𝑆 if and only if it satisfies
the following two conditions:

(1) ∀𝑏 ∈ 𝐵, {𝑋 ⊆ 𝑈 : ∀𝑐 ∈ 𝐵 − {𝑏}, 𝑟
𝑀(𝑐)

(𝑋) = 1} ̸= {𝑋 ⊆

𝑈 : ∀𝑐 ∈ 𝐵, 𝑟
𝑀(𝑐)

(𝑋) = 1};
(2) {𝑋 ⊆ 𝑈 : ∀𝑏 ∈ 𝐵, 𝑟

𝑀(𝑏)
(𝑋) = 1} = {𝑋 ⊆ 𝑈 : ∀𝑎 ∈

𝐴, 𝑟
𝑀(𝑎)

(𝑋) = 1},

where 𝑀(𝑎) denotes the matroid induced by the equivalence
relation induced by attribute subset {𝑎}.

In order to present circuits of the matroid induced by an
equivalence relation from the viewpoint of matrices, a new
matrix is established through a matrix representation of an
equivalence relation and its transpose.

Lemma 30. Let 𝑅 be an equivalence relation on 𝑈 = {𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑛
}. Then𝐴⊤

𝑅
⋅ 𝐴
𝑅
= (𝑏
𝑖𝑗
)
𝑛×𝑛

is a relational matrix of 𝑅,
where

𝑏
𝑖𝑗
= {

1, (𝑥
𝑖
, 𝑥
𝑗
) ∈ 𝑅,

0, otherwise.
(8)

Note that the matrix representation of an equivalence
relation is the representable matrix of the matroid induced
by the equivalence relation. Therefore, the family of circuits
of the matroid can be obtained through the representable
matrix. Let e

𝑖
be a n-dimensional 0-1 vector in which only

the 𝑖th entry is 1; that is, e
𝑖
= (0, . . . , 0, 1, 0, . . . , 0).

Proposition 31. Let 𝑅 be an equivalence relation on 𝑈 and
𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then C(𝑀(𝑅)) = {{𝑥

𝑖
, 𝑥
𝑗
} : e
𝑖
⋅ (𝐴
⊤

𝑅
⋅

𝐴
𝑅
) ⋅ e⊤
𝑗
= 1 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛)}.

Proof. Weneed to prove only that {{𝑥
𝑖
, 𝑥
𝑗
} : e
𝑖
⋅(𝐴
⊤

𝑅
⋅𝐴
𝑅
)⋅e⊤
𝑗
=

1 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛)} = {{𝑥
𝑖
, 𝑥
𝑗
} ⊆ 𝑈 : 𝑥

𝑖
̸= 𝑥
𝑗
, (𝑥
𝑖
, 𝑥
𝑗
) ∈ 𝑅}. Let

𝐴
⊤

𝑅
⋅𝐴
𝑅
= (𝑏
𝑖𝑗
)
𝑛×𝑛

. For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, e
𝑖
⋅(𝐴
⊤

𝑅
⋅𝐴
𝑅
)⋅e⊤
𝑗
= 𝑏
𝑖𝑗
.

According to Lemma 30, 𝑏
𝑖𝑗
= 1 if and only if (𝑥

𝑖
, 𝑥
𝑗
) ∈ 𝑅.

Since 𝑅 is an equivalence relation, so 𝐴⊤
𝑅
⋅ 𝐴
𝑅
is a symmetric

matrix. Therefore, {{𝑥
𝑖
, 𝑥
𝑗
} : e
𝑖
⋅ (𝐴
Τ

𝑅
⋅ 𝐴
𝑅
) ⋅ e⊤
𝑗
= 1 (1 ≤ 𝑖 <
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𝑗 ≤ 𝑛)} = {{𝑥
𝑖
, 𝑥
𝑗
} : (𝑥
𝑖
, 𝑥
𝑗
) ∈ 𝑅 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛)} = {{𝑥

𝑖
, 𝑥
𝑗
} ⊆

𝑈 : 𝑥
𝑖
̸= 𝑥
𝑗
, (𝑥
𝑖
, 𝑥
𝑗
) ∈ 𝑅}. This completes the proof.

Example 32 (continued from Example 22). There is 𝐴⊤
𝑅
⋅ 𝐴
𝑅

= ( 1 00 1
0 1

) ⋅ (
1 0 0

0 1 1
) =

𝑎

𝑏

𝑐

𝑎 𝑏 𝑐

(
1 0 0

0 1 1

0 1 1

)
. Hence, C(𝑀(𝑅)) = {{𝑏, 𝑐}}.

3.2. Contraction and Restriction Operations through Matrices.
This subsection applies contraction and restriction opera-
tions to the matroid induced by an equivalence relation
through the representable matrix and approximation oper-
ators of rough sets. First of all, the concepts of these two
operations are presented in the following two propositions.
In fact, two newmatroids are obtained by applying restriction
and contraction operations to a matroid, respectively.

Proposition 33 (restriction and deletion [21, 23]). Let 𝑀 =

(𝑈, I) be a matroid and 𝑋 ⊆ 𝑈. Then (𝑋, I
𝑋
) is a matroid,

where I
𝑋
= {𝐼 ⊆ 𝑋 : 𝐼 ∈ I}. We call this matroid the restriction

of𝑀 to 𝑋 and denote it by𝑀 | 𝑋.𝑀 \ 𝑋 = (𝑈 − 𝑋, I
𝑈−𝑋

) is
called the deletion of 𝑈 − 𝑋 from𝑀.

Proposition 34 (contraction [21, 23]). Let 𝑀 = (𝑈, I) be a
matroid and 𝑋 ⊆ 𝑈 and 𝐵

𝑋
is a base of 𝑀 | 𝑋 (i.e., 𝐵

𝑋
∈

B(𝑀|𝑚𝑋)).Then (𝑈−𝑋, I󸀠) ismatroid, where I󸀠 = {𝐼 ⊆ 𝑈−𝑋 :

𝐼⋃𝐵
𝑋
∈ I}. We call this matroid the contraction of𝑀 to𝑈−𝑋

and denote it by𝑀/𝑋.

Note that the definition of𝑀/𝑋 has no relationship with
the selection of 𝐵

𝑋
∈ B(𝑀 | 𝑋). The following lemma

shows an interesting relationship between a single point set
and the equivalence class of this point through applying
contraction and restriction operations to thematroid induced
by an equivalence relation.

Lemma 35 (see [37]). Let 𝑅 be an equivalence relation on 𝑈.
For all 𝑥 ∈ 𝑈, I(𝑀(𝑅)/{𝑥}) = I(𝑀(𝑅)/𝑅𝑁(𝑥)) = I(𝑀(𝑅) \
𝑅𝑁(𝑥)).

Let 𝐴 be a matrix over 𝐹 and 𝑋 a subset of the set 𝑈 of
column labels of 𝐴. We shall denote by 𝐴 ⊖ 𝑋 the matrix
obtained from𝐴 by deleting all the columns whose labels are
in𝑋.

Inspired by Lemma 35, we obtain a relationship between
two matroids, which are the contraction of the matroid
induced by an equivalence relation to the complement of a
single point set and a vector matroid of a matrix obtained
from the representable matrix by deleting all the columns
whose labels are in the equivalence class of this point.

Proposition 36. Let 𝑅 be an equivalence relation on 𝑈. Then
I(𝑀(𝑅)/{𝑥}) = I(𝑀[𝐴

𝑅
⊖ 𝑅𝑁(𝑥)]).

Proof. According to Proposition 19 and Lemma 35, we need
to prove only that I(𝑀[𝐴

𝑅
] \ 𝑅𝑁(𝑥)) = I(𝑀[𝐴

𝑅
⊖ 𝑅𝑁(𝑥)]).

According to Proposition 33, I(𝑀[𝐴
𝑅
] \ 𝑅𝑁(𝑥)) = {𝐼 ⊆

𝑈(𝑀[𝐴
𝑅
]) − 𝑅𝑁(𝑥) : 𝐼 ∈ I(𝑀[𝐴

𝑅
])}. According to

Proposition 5, 𝐼 ∈ I(𝑀[𝐴
𝑅
] \ 𝑅𝑁(𝑥)) if and only if 𝐼 ⊆

𝑈(𝑀[𝐴
𝑅
])−𝑅𝑁(𝑥) and the columns labelled by 𝐼 are linearly

independent. 𝐼 ∈ I(𝑀[𝐴
𝑅
⊖ 𝑅𝑁(𝑥)]) if and only if 𝐼 ⊆

𝑈(𝑀[𝐴
𝑅
⊖𝑅𝑁(𝑥)]) and the columns labelled by 𝐼 are linearly

independent. Since𝑈(𝑀[𝐴
𝑅
]) is the set of all columns of𝐴

𝑅

and 𝑈(𝑀[𝐴
𝑅
⊖ 𝑅𝑁(𝑥)]) is the set of all columns of 𝐴

𝑅
⊖

𝑅𝑁(𝑥), so𝑈(𝑀[𝐴
𝑅
])−𝑅𝑁(𝑥) = 𝑈(𝑀[𝐴

𝑅
⊖𝑅𝑁(𝑥)]). Hence,

I(𝑀[𝐴
𝑅
] \ 𝑅𝑁(𝑥)) = I(𝑀[𝐴

𝑅
⊖𝑅𝑁(𝑥)]). This completes the

proof.

Note that the above proposition also shows a relationship
between a single point set and the equivalence class of this
point.

Example 37 (continued from Example 22). Since 𝑅𝑁(𝑏) =
{𝑏, 𝑐} and

𝐴
𝑅
⊖ 𝑅𝑁 (𝑏) =

𝑎 𝑏 𝑐

(
1 0 0

0 1 1
) ⊖ {𝑏, 𝑐} =

𝑎

(
1

0
),

(9)

so I(𝑀[𝐴
𝑅
⊖ 𝑅𝑁(𝑏)]) = {0, {𝑎}}. Since B(𝑀(𝑅)) = {{𝑎, 𝑏},

{𝑎, 𝑐}}, so I(𝑀(𝑅)) = Low(B(𝑀(𝑅))) = {0, {𝑎}, {𝑏}, {𝑐},

{𝑎, 𝑏}, {𝑎, 𝑐}},𝑀(𝑅) | {𝑏} = ({𝑏}, I
{𝑏}
), {𝑏} ∈ B(𝑀(𝑅) | {𝑏}),

where I
{𝑏}

= {0, {𝑏}} and B(𝑀(𝑅) | {𝑏}) = {{𝑏}}. Hence,
I(𝑀(𝑅)/{𝑏}) = {0, {𝑎}}. Therefore, I(𝑀(𝑅)/{𝑏}) = I(𝑀[𝐴

𝑅
⊖

𝑅𝑁(𝑏)]).

The following corollary presents an equivalent descrip-
tion of the above proposition from the viewpoint of upper
approximations.

Corollary 38. Let 𝑅 be an equivalence relation on 𝑈. Then
I(𝑀(𝑅)/{𝑥}) = I(𝑀[𝐴

𝑅
⊖ 𝑅
∗

({𝑥})]).

When we apply a sequence of operations to the matroid
induced by an equivalence relation like Lemma 35, the
following lemma is obtained.

Lemma 39 (see [37]). Let 𝑅 be an equivalence relation on 𝑈.
For all 𝑋 ⊆ 𝑈, I(𝑀(𝑅)/𝑋) = I(𝑀(𝑅)/𝑅∗(𝑋)) = I(𝑀(𝑅) \
𝑅
∗

(𝑋)).

Inspired byProposition 36,we obtain the similar relation-
ship between a subset and the upper approximation of this
subset through these two operations and the representable
matrix of the matroid induced by an equivalence relation.

Proposition 40. Let 𝑅 be an equivalence relation on 𝑈. Then
I(𝑀(𝑅)/𝑋) = I(𝑀[𝐴

𝑅
⊖ 𝑅
∗

(𝑋)]).

Proof. According to Proposition 19 and Lemma 39, we need
to prove only that I(𝑀[𝐴

𝑅
] \ 𝑅
∗

(𝑋)) = I(𝑀[𝐴
𝑅
⊖ 𝑅
∗

(𝑋)]).
According to Proposition 33, I(𝑀[𝐴

𝑅
] \ 𝑅
∗

(𝑋)) = {𝐼 ⊆

𝑈(𝑀[𝐴
𝑅
]) − 𝑅

∗

(𝑋) : 𝐼 ∈ I(𝑀[𝐴
𝑅
])}. According to

Proposition 5, 𝐼 ∈ I(𝑀[𝐴
𝑅
] \ 𝑅
∗

(𝑋)) if and only if 𝐼 ⊆

𝑈(𝑀[𝐴
𝑅
])−𝑅
∗

(𝑋) and the columns labelled by 𝐼 are linearly
independent. 𝐼 ∈ I(𝑀[𝐴

𝑅
⊖ 𝑅
∗

(𝑋)]) if and only if 𝐼 ⊆

𝑈(𝑀[𝐴
𝑅
⊖𝑅
∗

(𝑋)]) and the columns labelled by 𝐼 are linearly
independent. Since𝑈(𝑀[𝐴

𝑅
]) is the set of all columns of𝐴

𝑅

and 𝑈(𝑀[𝐴
𝑅
⊖ 𝑅
∗

(𝑋)]) is the set of all columns of 𝐴
𝑅
⊖

𝑅
∗

(𝑋), so𝑈(𝑀[𝐴
𝑅
]) −𝑅
∗

(𝑋) = 𝑈(𝑀[𝐴
𝑅
⊖𝑅
∗

(𝑋)]). Hence,
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I(𝑀[𝐴
𝑅
⊖ 𝑅
∗

(𝑋)]) = I(𝑀[𝐴
𝑅
] \ 𝑅
∗

(𝑋)). This completes the
proof.

Example 41 (continued from Example 22). Let 𝑋 = {𝑏, 𝑐}.
Since 𝑅∗(𝑋) = {𝑏, 𝑐} and

𝐴
𝑅
⊖ 𝑅
∗

(𝑋) =

𝑎 𝑏 𝑐

(
1 0 0

0 1 1
) ⊖ {𝑏, 𝑐} =

𝑎

(
1

0
),

(10)

so I(𝑀[𝐴
𝑅
⊖ 𝑅
∗

(𝑋)]) = {0, {𝑎}}. Since B(𝑀(𝑅)) = {{𝑎, 𝑏},

{𝑎, 𝑐}}, so I(𝑀(𝑅)) = {0, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}},𝑀(𝑅) | 𝑋 =

(𝑋, I
𝑋
), {𝑐} ∈ B(𝑀(𝑅) | 𝑋), where I

𝑋
= {0, {𝑏}, {𝑐}} and

B(𝑀(𝑅) | 𝑋) = {{𝑏}, {𝑐}}. Hence, I(𝑀(𝑅)/𝑋) = {0, {𝑎}}.
Therefore, I(𝑀(𝑅)/𝑋) = I(𝑀[𝐴

𝑅
⊖ 𝑅
∗

(𝑋)]).

4. Axioms of Circuit Incidence Matrices of
2-Circuit Matroids

This section presents two axioms of circuit incidence matri-
ces of 2-circuit matroids. Based on the characteristics of
the matroid induced by an equivalence relation, a type of
matroids is abstracted, which is called 2-circuit matroid.
Therefore, the study of 2-circuit matroid is a further study for
the matroid induced by an equivalence relation.

Definition 42 (2-circuit matroid [29]). Let 𝑀 = (𝑈, I) be a
matroid.𝑀 is called a 2-circuit matroid if |𝐶| = 2 for all 𝐶 ∈
C(𝑀).

Note that if C(𝑀) = 0, then 𝑀 is also a 2-circuit
matroid. In this section, we do not consider this case. The
following proposition shows that the matroid induced by an
equivalence relation is a 2-circuit matroid.

Proposition 43 (see [29]). Let𝑅 be an equivalence relation on
𝑈. Then𝑀(𝑅) is a 2-circuit matroid.

In order to obtain the axioms of circuit incidencematrices
of 2-circuit matroids, some fundamental signs are presented.
Let 𝛼 = (𝑎

1
, . . . , 𝑎

𝑛
) be a n-dimensional 0-1 vector. Then the

complement of 𝛼 is denoted by 𝛼 = (𝑏
1
, . . . , 𝑏

𝑛
), where

𝑏
𝑖
= {

1, 𝑎
𝑖
= 0;

0, 𝑎
𝑖
= 1.

(11)

According to Definition 20, 𝜑−1 is also a bijection, where
𝜑
−1 is called 𝜑 inverse. The following lemma shows some

properties of 𝜑−1.

Lemma 44 (see [36]). Let 𝛼 and 𝛽 be n-dimensional 0-1
vectors and𝜑 the characteristic function from 2𝑈 to the set of all
n-dimensional 0-1 vectors. Then the following conditions hold:

(1) 𝜑−1(𝛼 ∧ 𝛽) = 𝜑−1(𝛼)⋂𝜑−1(𝛽);
(2) 𝜑−1(𝛼 ∨ 𝛽) = 𝜑−1(𝛼)⋃𝜑−1(𝛽);
(3) 𝜑−1(𝛼) = 𝑈 − 𝜑−1(𝛼).

We shall denote 𝛼 ⊗ 𝛽 = 𝛼 ∧ 𝛽. Hence, 𝜑−1(𝛼 ⊗ 𝛽) =
𝜑
−1

(𝛼 ∧ 𝛽) = 𝜑
−1

(𝛼)⋂(𝑈 − 𝜑
−1

(𝛽)) = 𝜑
−1

(𝛼) − 𝜑
−1

(𝛽). The

vector whose entries are all 0 is denoted by 0. The following
theorem presents an axiom of circuit incidence matrices of
2-circuit matroids through row vectors.

Theorem 45. The matrix

𝐶
𝑚×𝑛

=(

(

𝛼
1

...
𝛼
𝑖

...
𝛼
𝑚

)

)

(12)

is a circuit incidence matrix of a 2-circuit matroid if and only
if the following conditions hold:

(1) 𝐶
𝑚×𝑛

is a 0-1 matrix where there are two 1 in any row
and any row is different;

(2) if 𝛼
𝑖
∧ 𝛼
𝑗
̸= 0 and 𝑖 ̸= 𝑗, then there exists 𝛼

𝑘
such that

𝛼
𝑘
= (𝛼
𝑖
∨ 𝛼
𝑗
) ⊗ (𝛼

𝑖
∧ 𝛼
𝑗
).

Proof. (⇒): (1) Since 𝐶
𝑚×𝑛

is a circuit incidence matrix of a
2-circuit matroid, so there are two 1 in any row of 𝐶

𝑚×𝑛
and

𝐶
𝑚×𝑛

is a 0-1 matrix. According to (𝐶2) of Proposition 11, any
row of 𝐶

𝑚×𝑛
is different.

(2) If 𝛼
𝑖
∧ 𝛼
𝑗
̸= 0 and 𝑖 ̸= 𝑗, then there exist 𝐶

𝑖
, 𝐶
𝑗
∈ C,

𝐶
𝑖
̸= 𝐶
𝑗
, and 𝑥 ∈ 𝐶

𝑖
⋂𝐶
𝑗
, where 𝐶

𝑖
= 𝜑
−1

(𝛼
𝑖
) and 𝐶

𝑗
=

𝜑
−1

(𝛼
𝑗
). According to (𝐶3) of Proposition 11, there exists𝐶

𝑘
∈

C such that𝐶
𝑘
⊆ (𝐶
𝑖
⋃𝐶
𝑗
)−{𝑥}. Since |𝐶

𝑖
| = |𝐶

𝑗
| = |𝐶

𝑘
| = 2,

so {𝑥} = 𝐶
𝑖
⋂𝐶
𝑗
and 𝐶

𝑘
= (𝐶
𝑖
⋃𝐶
𝑗
) − {𝑥}. Hence, there

exists 𝛼
𝑘
= 𝜑(𝐶

𝑘
) such that 𝜑−1(𝛼

𝑘
) = (𝜑

−1

(𝛼
𝑖
)⋃𝜑
−1

(𝛼
𝑗
)) −

(𝜑
−1

(𝛼
𝑖
)⋂𝜑
−1

(𝛼
𝑗
)) = 𝜑

−1

(𝛼
𝑖
∨ 𝛼
𝑗
) − 𝜑
−1

(𝛼
𝑖
∧ 𝛼
𝑗
) = 𝜑
−1

[(𝛼
𝑖
∨

𝛼
𝑗
) ⊗ (𝛼

𝑖
∧ 𝛼
𝑗
)]. Since 𝜑−1 is a bijection, so 𝛼

𝑘
= (𝛼
𝑖
∨ 𝛼
𝑗
) ⊗

(𝛼
𝑖
∧ 𝛼
𝑗
).

(⇐): We need to prove that {𝜑−1(𝛼
𝑖
) : 1 ≤ 𝑖 ≤ 𝑚}

satisfies (𝐶1), (𝐶2), and (𝐶3) of Proposition 11 and |𝜑−1(𝛼
𝑖
)| =

2 for any 1 ≤ 𝑖 ≤ 𝑚. Since 𝐶
𝑚×𝑛

is a 0-1 matrix where
there are two 1 in any row and any row is different, so it
is straightforward that {𝜑−1(𝛼

𝑖
) : 1 ≤ 𝑖 ≤ 𝑚} satisfies

(𝐶1) and (𝐶2), and |𝜑−1(𝛼
𝑖
)| = 2 for any 1 ≤ 𝑖 ≤ 𝑚.

Since 𝛼
𝑖
∧ 𝛼
𝑗
̸= 0 and 𝑖 ̸= 𝑗, so 𝜑−1(𝛼

𝑖
) ̸= 𝜑
−1

(𝛼
𝑗
) and 𝑥 ∈

𝜑
−1

(𝛼
𝑖
)⋂𝜑
−1

(𝛼
𝑗
). Since |𝜑−1(𝛼

𝑖
)| = 2 for any 1 ≤ 𝑖 ≤ 𝑚,

so 𝜑−1(𝛼
𝑖
)⋂𝜑
−1

(𝛼
𝑗
) = {𝑥}. Then there exists 𝜑−1(𝛼

𝑘
) such

that 𝜑−1(𝛼
𝑘
) = 𝜑

−1

[(𝛼
𝑖
∨ 𝛼
𝑗
) ⊗ (𝛼

𝑖
∧ 𝛼
𝑗
)] = 𝜑

−1

(𝛼
𝑖
∨ 𝛼
𝑗
) −

𝜑
−1

(𝛼
𝑖
∧ 𝛼
𝑗
) = (𝜑

−1

(𝛼
𝑖
)⋃𝜑
−1

(𝛼
𝑗
)) − (𝜑

−1

(𝛼
𝑖
)⋂𝜑
−1

(𝛼
𝑗
)) =

(𝜑
−1

(𝛼
𝑖
)⋃𝜑
−1

(𝛼
𝑗
)) − {𝑥}. Hence, {𝜑−1(𝛼

𝑖
) : 1 ≤ 𝑖 ≤ 𝑚}

satisfies (𝐶3) of Proposition 11.This completes the proof.

The following lemma shows how a matroid induces an
equivalence relation through circuits of the matroid.

Lemma 46 (see [21]). Let𝑀 = (𝑈, I) be a matroid. For any
𝑥, 𝑦 ∈ 𝑈, one can denote a relation 𝑅 such that 𝑥𝑅𝑦 if and only
if 𝑥 = 𝑦 or {𝑥, 𝑦} ∈ C(𝑀). Then 𝑅 is an equivalence relation.

The following theorem presents another axiom of circuit
incidence matrices of 2-circuit matroids through row vectors
and a special relation.
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Theorem 47. The matrix

𝐶
𝑚×𝑛

=(

(

𝛼
1

...
𝛼
𝑖

...
𝛼
𝑚

)

)

(13)

is a circuit incidence matrix of a 2-circuit matroid if and only
if the following conditions hold:

(1) 𝐶
𝑚×𝑛

is a 0-1 matrix where there are two 1 in any row
and any row is different;

(2) let 𝑥, 𝑦 ∈ 𝑈, 𝑥𝑅𝑦 if and only if 𝑥 = 𝑦 or {𝑥, 𝑦} ∈
{𝜑
−1

(𝛼
𝑖
) : 1 ≤ 𝑖 ≤ 𝑚}. Then 𝑅 is an equivalence

relation.

Proof. (⇒): According to the proof of Theorem 45, we need
to prove only the second condition. According to Lemma 46,
𝑅 is an equivalence relation.

(⇐): We need to prove that {𝜑−1(𝛼
𝑖
) : 1 ≤ 𝑖 ≤ 𝑚}

satisfies (𝐶1), (𝐶2), and (𝐶3) of Proposition 11 and |𝜑−1(𝛼
𝑖
)| =

2 for any 1 ≤ 𝑖 ≤ 𝑚. Since 𝐶
𝑚×𝑛

is a 0-1 matrix where
there are two 1 in any row and any row is different, so it
is straightforward that {𝜑−1(𝛼

𝑖
) : 1 ≤ 𝑖 ≤ 𝑚} satisfies

(𝐶1) and (𝐶2), and |𝜑−1(𝛼
𝑖
)| = 2 for any 1 ≤ 𝑖 ≤ 𝑚. Let

𝜑
−1

(𝛼
ℎ
), 𝜑
−1

(𝛼
𝑗
) ∈ {𝜑

−1

(𝛼
𝑖
) : 1 ≤ 𝑖 ≤ 𝑚}, 𝜑−1(𝛼

ℎ
) ̸= 𝜑
−1

(𝛼
𝑗
),

and 𝑥 ∈ 𝜑−1(𝛼
ℎ
)⋂𝜑
−1

(𝛼
𝑗
). Since |𝜑−1(𝛼

ℎ
)| = |𝜑

−1

(𝛼
𝑗
)| = 2,

so 𝜑−1(𝛼
ℎ
)⋂𝜑
−1

(𝛼
𝑗
) = {𝑥}. Suppose 𝜑−1(𝛼

ℎ
) = {𝑥, 𝑦} and

𝜑
−1

(𝛼
𝑗
) = {𝑥, 𝑧}, where 𝑥, 𝑦, 𝑧 ∈ 𝑈 and 𝑥 ̸= 𝑦 ̸= 𝑧. Therefore,

𝑥𝑅𝑦 and 𝑥𝑅𝑧. Since 𝑅 is an equivalence relation, so 𝑦𝑅𝑧.
Therefore, there exists 𝜑−1(𝛼

𝑘
) ∈ {𝜑

−1

(𝛼
𝑖
) : 1 ≤ 𝑖 ≤ 𝑚} such

that 𝜑−1(𝛼
𝑘
) = {𝑦, 𝑧}; that is, 𝜑−1(𝛼

𝑘
) = (𝜑

−1

(𝛼
ℎ
)⋃𝜑
−1

(𝛼
𝑗
))−

{𝑥}. Hence, {𝜑−1(𝛼
𝑖
) : 1 ≤ 𝑖 ≤ 𝑚} satisfies (𝐶3) of

Proposition 11. This completes the proof.

Note that Theorems 45 and 47 show us a new view to
define matroids through circuit incidence matrices. There is
not an axiom about circuit incidence matrices in matroid
theory and there are three conditions in the circuit axiom, but
there are only two conditions in the axiomof circuit incidence
matrices of 2-circuit matroids.

5. Conclusions

In this paper, we apply matrices to a matroidal structure
of rough sets. We prove that the matroid induced by an
equivalence relation on a universe is a representable matroid.
Some characteristics of thematroid are presented through the
representable matrix of the matroid mainly. We apply con-
traction and restriction operations to thematroid through the
representable matrix and approximation operators of rough
sets. Moreover, two axioms of circuit incidence matrices of
2-circuit matroids are obtained. We will do more works in
combining rough sets and matroids through matrices.
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