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We use the quadraturemethod to show the existence andmultiplicity of positive solutions of the boundary value problems involving
one-dimensional𝑝-Laplacian (|𝑢

󸀠
(𝑡)|
𝑝−2

𝑢
󸀠
(𝑡))
󸀠

+𝜆𝑓(𝑢(𝑡)) = 0, 𝑡 ∈ (0, 1), 𝑢(0) = 𝑢(1) = 0, where𝑝 ∈ (1, 2],𝜆 ∈ (0,∞) is a parameter,
𝑓 ∈ 𝐶

1
([0, 𝑟), [0,∞)) for some constant 𝑟 > 0, 𝑓(𝑠) > 0 in (0, 𝑟), and lim

𝑠→ 𝑟
− (𝑟 − 𝑠)

𝑝−1

𝑓(𝑠) = +∞.

1. Introduction and the Main Results

Let 𝑎 : [0, 1] → [0,∞) be continuous and 𝑎(𝑡) ̸≡ 0 on any
subset of [0, 1], and let 𝑓 : [0,∞) → R be a continuous
function. Wang [1] proved the existence of positive solutions
of nonlinear boundary value problems

𝑢
󸀠󸀠

(𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(1)

under the following assumptions:

𝑓
0
:= lim
𝑠→0

𝑓 (𝑠)

𝑠
= 0, 𝑓

∞
:= lim
𝑠→+∞

𝑓 (𝑠)

𝑠
= ∞. (2)

Since then, the existence andmultiplicity of positive solutions
of (1) and its generalized forms have been extensively studied
via the fixed point theorem in cones. For example, Ge [2]
showed a series of results on the existence and multiplicity
of solutions of nonlinear ordinary differential equation of
second order/higher order subjected with diverse boundary
conditions via topological degree and fixed point theorem in
cones; Wang [3] use fixed point theorem in cones to study
the existence of positive solutions for the one dimensional
p-Laplacian. For other recent results along this line, see [4–
11] and the bibliographies in [2]. For the special case 𝑎(𝑡) ≡

1, beautiful results have been obtained via the quadrature
method; see Fink et al. [12], Brown and Budin [13], Addou
and Wang [14], Cheng and Shao [15], Karátson and Simon
[16], and the references therein.

The nonlinearity 𝑓(𝑢) that appeared in the above pre-
viously papers is assumed to be well defined in [0,∞) or
(−∞,∞). Of course, natural question is what would happen
if 𝑓(𝑢) is only well defined in a finite interval [0, 𝑟), where
𝑟 is a positive constant; that is, what would happen if (2) is
replaced with the following limit 𝑓

𝑟
:

𝑓
𝑟
:= lim
𝑠→ 𝑟
−

𝑓 (𝑠)

𝑠𝑝−1
= +∞. (3)

It is worth remarking that the fixed point theorem in
cones method in [1–3] cannot be used to deal with the
existence of positive solutions of the problem

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(4)

under the restriction (3) any more since the appearance of
singularity of 𝑓 at 𝑟. The purpose of this paper is to use the
quadrature method to show the existence and multiplicity of
positive solutions of (4), in which 𝜆 ∈ (0,∞) is a parameter,
and 𝑓 satisfies the following assumptions:

(H1) 𝑓 ∈ 𝐶
1
([0, 𝑟), [0,∞));

(H2) 𝑓(𝑠) > 0 in (0, 𝑟);
(H3) lim

𝑠→ 𝑟
−(𝑟 − 𝑠)

𝑝−1
𝑓(𝑠) = +∞.

Let 𝑓
0
:= lim

𝑠→0
+(𝑓(𝑠)/𝑠

𝑝−1
), 𝐹(𝑠) = ∫

𝑠

0
𝑓(V)𝑑V.

The main result of the paper is the following.
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Theorem 1. Let 𝑝 ∈ (1, 2], and let (H1), (H2), and (H3) hold.
Then,

(i) if𝑓
0
= +∞, then there exist𝜆

∗
> 0, such that (4) has at

least two positive solutions for 𝜆 ∈ (0, 𝜆
∗
), has at least

one positive solution for 𝜆 = 𝜆
∗
, and has no positive

solution for 𝜆 > 𝜆
∗
;

(ii) if 𝑓
0
= 0, then (4) has at least one positive solution for

𝜆 ∈ (0,∞);
(iii) if 𝑓

0
∈ (0,∞), then (4), has at least one positive

solution for 𝜆 ∈ (0, 𝜋
𝑝

𝑝
/𝑓
0
), where

𝜋
𝑝
:= 2∫

(𝑝−1)
1/𝑝

0

1

(1 − 𝑠𝑝/(𝑝 − 1))
1/𝑝

𝑑𝑠. (5)

The proof of our main result is motivated by Laetsch [17]
inwhich the existence andmultiplicity of positive solutions of
(4) with 𝑝 = 2were studied via the quadrature method. Since
then, there are plenty of research papers on the study of exact
multiplicity of positive solutions of the 𝑝-Laplacian problem
with general 𝑝 > 1 and some more special nonlinearities;
see [18, 19] and the references therein. To find the exact
number of positive solutions, the nonlinearity 𝑓 needs to
satisfy some restrictive conditions, such as the monotonic
condition or convex condition . . .. Our conditions (H1)–(H3)
are not strong enough to guarantee the problemexact number
of positive solutions.

The rest of the paper is arranged as follows. In Section 2,
we state and prove some preliminary results. Finally in
Section 3, we give the proof of Theorem 1.

2. Preliminaries

To prove our main results, we will use the uniqueness results
due to Reichel and Walter [20] on the initial value problem

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑢 (𝑡)) = 0,

𝑢 (𝑎) = 𝑏, 𝑢
󸀠

(𝑎) = 𝑑,

(6)

where 𝑎 ∈ [0, 1], and 𝑏, 𝑑 ∈ R.

Lemma 2. Let (H1) and (H2) hold. Then,

(a) (6) with 𝑑 ̸= 0 has a unique local solution, and, the
extension 𝑢(𝑡) remains unique as long as 𝑢󸀠(𝑡) ̸= 0;

(b) (6) with 𝑏 ∈ (0, 𝑟) and 𝑑 = 0 has a unique local
solution.

(c) (6) with 𝑏 = 0 and 𝑑 = 0 has a unique local solution
𝑢 ≡ 0.

Proof. (a) It is an immediate consequence of Reichel and
Walter [20, Theorem 2].

(b) (H1) implies that f is local Lipschitz continuous.
Combining this with the fact that 𝑓(𝑏) ̸= 0 and using [20,
(iii) and (v) in the case (𝛽) of Theorem 4], it follows that (6)
with 𝑏 ∈ (0, 𝑟) and 𝑑 = 0 has a unique solution in some
neighborhood of 𝑎.

(c) Define

𝑓 (𝑠) = {
𝑓 (𝑠) , 0 ≤ 𝑠 < 𝑟,

−𝑓 (−𝑠) , 0 ≤ −𝑟 < 𝑠 < 0,
(7)

and consider the auxiliary problem

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑢 (𝑡)) = 0,

𝑢 (𝑎) = 𝑢
󸀠

(𝑎) = 0.

(8)

It follows from [20, (i) in the case (𝛿) of Theorem 4] that (8)
has a unique local solution 𝑢 ≡ 0 in some neighborhood of
𝑎, and consequently, (6) with 𝑏 = 𝑑 = 0 has a unique local
solution 𝑢 ≡ 0 in some neighborhood of 𝑎.

Lemma 3. Let (H1) and (H2) hold. Let (𝜆, 𝑢) be a solution of

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(9)

with ‖𝑢‖
∞

= 𝜌 < 𝑟. Let 𝑥
0
∈ (0, 1) be such that 𝑢(𝑥

0
) = ‖𝑢‖

∞
.

Then, 𝑢(𝑡) > 0 on (0, 1), 𝑢󸀠(𝑡) > 0 on (0, 𝑥
0
), and 𝑢

󸀠
(𝑡) < 0 on

(𝑥
0
, 1), and

𝑢 (𝑥
0
− 𝑡) = 𝑢 (𝑥

0
+ 𝑡) , 𝑡 ∈ [0,min {𝑥

0
, 1 − 𝑥

0
}] . (10)

Proof. Since 𝑓(𝑠) ≥ 0 for 𝑠 ∈ [0, 𝜌], it follows from (9) that

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

≤ 0, 𝑡 ∈ [0, 1] . (11)

This, together with the fact that 𝑢󸀠(𝑥
0
) = 0, implies that 𝑢 is

nondecreasing in [0, 𝑥
0
], and 𝑢 is nonincreasing in [𝑥

0
, 1].

We claim that

𝑢 (𝑡) > 0, 𝑡 ∈ (0, 1) . (12)

In fact, suppose on the contrary that there exists 𝜏 ∈

(0, 𝑥
0
) such that 𝑢(𝜏) = 0; then,

𝜏 = max {𝜏 ∈ (0, 𝑥
0
) | 𝑢 (𝜏) = 0} (13)

is well defined. Moreover,

𝑢 (𝑡) ≡ 0, 𝑡 ∈ (0, 𝜏] . (14)

By Lemma 2 (c),

𝑢 (𝑡) ≡ 0, 𝑡 ∈ (0, 𝜏 + 𝜂] (15)

for some 𝜂 > 0. However, this contradicts the definition of 𝜏,
see (13).Therefore, 𝑢(𝑡) > 0 in (0, 𝑥

0
]. Similarly, we may show

that 𝑢(𝑡) > 0 in [𝑥
0
, 1).

Notice that (H2), (12), and (9) yield that

𝑢
󸀠

(𝑡) > 0, 𝑡 ∈ (0, 𝑥
0
) ,

𝑢
󸀠

(𝑡) < 0, 𝑡 ∈ (𝑥
0
, 1) .

(16)
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Now, since𝑓 is independent of 𝑡, both 𝑢(𝑥
0
−𝑡) and 𝑢(𝑥

0
+

𝑡) satisfy the initial value problem

(
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑤
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑤 (𝑡)) = 0,

𝑤 (0) = 𝑢 (𝑥
0
) , 𝑤

󸀠

(0) = 0.

(17)

From (16) and Lemma 2(a), it follows that both 𝑢(𝑥
0
− 𝑡)

and 𝑢(𝑥
0
+ 𝑡) can be uniquely extended to [0,min{𝑥

0
, 1 −

𝑥
0
}]. Thus, we have from Lemma 2(b) that (17) has a unique

solution 𝑢 ≡ 0 on [0,min{𝑥
0
, 1 − 𝑥

0
}], and, accordingly, (10)

is true.

Lemma 4. Let (H1) and (H2) hold. Assume that (𝜆, 𝑢) is a
positive solution of the problem (9) with ‖𝑢‖

∞
= 𝜌 < 𝑟 and

𝜆 > 0. Let 𝑥
0
∈ (0, 1) be such that 𝑢(𝑥

0
) = ‖𝑢‖

∞
. Then,

(a) 𝑥
0
= 1/2;

(b) 𝑥
0
is the unique point on which 𝑢 attains its maximum;

(c) 𝑢
󸀠
(𝑡) > 0, 𝑡 ∈ (0, 1/2).

Proof. (a) Suppose on the contrary that 𝑥
0

̸= 1/2, and say that
𝑥
0
∈ (1/2, 1); then, 2𝑥

0
− 1 ∈ (0, 1), and

0 = 𝑢 (1) = 𝑢 (2𝑥
0
− 1) . (18)

However, this contradicts (12). Therefore, 𝑥
0
= 1/2.

Also (b) and (c) can be easily deduced from (16).

3. Proof of the Main Result

To prove Theorem 1, we need the following quadrature
method.

Lemma 5. For any 𝜌 < 𝑟, there exists a unique 𝜆 > 0 such that

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(19)

has a positive solution (𝜆, 𝑢) with ‖𝑢‖ = 𝜌. Moreover, 𝜌 →

𝜆(𝜌) is a continuous function on [0, 𝑟).

Proof. By Lemma 4, (𝜆, 𝑢) is a positive solution of (19), if and
only if (𝜆, 𝑢) is a positive solution of

(
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠

(𝑡))
󸀠

+ 𝜆𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) , (20)

𝑢 (0) = 𝑢
󸀠
(
1

2
) = 0. (21)

Suppose that (𝜆, 𝑢) is a solution of (20), with ‖𝑢‖ = 𝜌. Then,

(𝑢
󸀠

(𝑡))
𝑝

= 𝜆
𝑝

𝑝 − 1
[𝐹 (𝜌) − 𝐹 (𝑢 (𝑡))] , 𝑡 ∈ [0,

1

2
] , (22)

and so

𝑡(
𝑝

𝑝 − 1
𝜆)

1/𝑝

= ∫

𝑢(𝑡)

0

(𝐹 (𝜌) − 𝐹 (𝑠))
−1/𝑝

𝑑𝑠, 𝑡 ∈ [0,
1

2
] .

(23)

Putting 𝑡 = 1/2, we obtain

𝜆
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

(𝐹 (𝜌) − 𝐹 (𝑠))
−1/𝑝

𝑑𝑠. (24)

Hence, 𝜆 (if exists) is uniquely determined by 𝜌.
If 𝜌 < 𝑟, we define 𝜆(𝜌) by (24) and 𝑢(𝑡) by (23); it

is straightforward to verify that 𝑢 is twice differentiable, 𝑢
satisfies (21), 𝑢 > 0 in (0, 1), and 𝑢(1/2) = 𝜌. The continuity
of 𝜆(⋅) is implied by (24), and this completes the proof.

Lemma 6. Let (H3) hold, and let 𝑝 ∈ (1, 2). Then

lim
𝜌→𝑟

−

𝜆 (𝜌) = 0. (25)

Proof. By (H3), there are positive numbers 𝑅 < 𝑟 and 𝑘 such
that

𝑓 (𝑠) ≥
𝑘
𝑝

(𝑟 − 𝑠)
𝑝−1

, 𝑅 ≤ 𝑠 < 𝑟. (26)

Thus, if 𝑅 < 𝜌 < 𝑟, (24) implies that

{𝜆 (𝜌)}
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑝
)

1/𝑝

× [∫

𝑅

0

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠

+∫

𝜌

𝑅

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠]

= 2(
𝑝 − 1

𝑝
)

1/𝑝

× [

[

∫

𝑅

0

1

(∫
𝜌

𝑠
𝑓 (𝑤) 𝑑𝑤)

1/𝑝
𝑑𝑠

+∫

𝜌

𝑅

1

(∫
𝜌

𝑠
𝑓 (𝑤) 𝑑𝑤)

1/𝑝
𝑑𝑠]

]
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≤
2

𝑘
(
𝑝 − 1

𝑝
)

1/𝑝

(2 − 𝑝)
1/𝑝

×
{

{

{

∫

𝑅

0

1

[(𝑟 − 𝑠)
2−𝑝

− (𝑟 − 𝜌)
2−𝑝

]
1/𝑝

𝑑𝑠

+∫

𝜌

𝑅

1

[(𝑟 − 𝑠)
2−𝑝

− (𝑟 − 𝜌)
2−𝑝

]
1/𝑝

𝑑𝑠
}

}

}

by (26)

≤
2

𝑘
(
𝑝 − 1

𝑝
)

1/𝑝

(2 − 𝑝)
1/𝑝

× {𝑅[𝜉 (𝜌)]
−1/𝑝

+
1

2 − 𝑝
∫

𝜉(𝜌)

0

𝑥
−1/𝑝

× [𝑥 + (𝑟 − 𝜌)
2−𝑝

]
(𝑝−1)/(2−𝑝)

𝑑𝑥} 󳨀→ 0,

(27)

as 𝜌 → 𝑟
−, where

𝜉 (𝜌) := (𝑟 − 𝑅)
2−𝑝

− (𝑟 − 𝜌)
2−𝑝

,

𝑥 =: (𝑟 − 𝑠)
2−𝑝

− (𝑟 − 𝜌)
2−𝑝

.

(28)

If 𝜌 → 𝑟
−, then

𝜉 (𝜌) := (𝑟 − 𝑅)
2−𝑝

− (𝑟 − 𝜌)
2−𝑝

󳨀→ (𝑟 − 𝑅)
2−𝑝

,

1

2 − 𝑝
∫

𝜉(𝜌)

0

𝑥
−1/𝑝

[𝑥 + (𝑟 − 𝜌)
2−𝑝

]
(𝑝−1)/(2−𝑝)

𝑑𝑥

󳨀→
1

2 − 𝑝
∫

(𝑟−𝑅)
2−𝑝

0

𝑥
(𝑝
2

−2)/𝑝(2−𝑝)
𝑑𝑥

=
𝑝

2 (𝑝 − 1)
(𝑟 − 𝑅)

2(𝑝−1)/𝑝
.

(29)

Lemma 7. Let (H1) and (H2) hold, and let 𝑝 = 2. Then,

lim
𝜌→𝑟

−

𝜆 (𝜌) = 0. (30)

Proof. There are positive numbers 𝑅 < 𝑟 and 𝑘 such that

𝑓 (𝑠) ≥
𝑘
2

𝑟 − 𝑠
, 𝑅 ≤ 𝑠 < 𝑟. (31)

Thus, if 𝑅 < 𝜌 < 𝑟, (24) implies that

{
1

2
𝜆 (𝜌)}

1/2

= ∫

𝜌

0

1

√𝐹 (𝜌) − 𝐹 (𝑠)

𝑑𝑠

= ∫

𝑅

0

𝑑𝑠

√𝐹 (𝜌) − 𝐹 (𝑠)

+ ∫

𝜌

𝑅

𝑑𝑠

√𝐹 (𝜌) − 𝐹 (𝑠)

= ∫

𝑅

0

𝑑𝑠

√∫
𝜌

𝑠
𝑓 (𝑤) 𝑑𝑤

+ ∫

𝜌

𝑅

𝑑𝑠

√∫
𝜌

𝑠
𝑓 (𝑤) 𝑑𝑤

≤ ∫

𝑅

0

(𝑘
2 ln 𝑟 − 𝑅

𝑟 − 𝜌
)

−1/2

𝑑𝑠

+ ∫

𝜌

𝑅

(𝑘
2 ln 𝑟 − 𝑠

𝑟 − 𝜌
)

−1/2

𝑑𝑠 by (31)

≤
1

𝑘
{𝑅[𝜉 (𝜌)]

−1/2

+ (𝑟 − 𝜌)

× ∫

𝜉(𝜌)

0

𝑥
−1/2

𝑒
𝑥
𝑑𝑥} 󳨀→ 0,

(32)

as 𝜌 → 𝑟
−, where

𝜉 (𝜌) := ln 𝑟 − 𝑅

𝑟 − 𝜌
, 𝑥 =: ln 𝑟 − 𝑠

𝑟 − 𝜌
. (33)

Lemma8. Let (H1), (H2), and (H3) hold, and assume that𝑝 ∈

(1, +∞). Then,

(a) if 𝑓
0
= ∞, then lim

𝜌→0
+𝜆(𝜌) = 0;

(b) if 𝑓
0
= 0, then lim

𝜌→0
+𝜆(𝜌) = +∞;

(c) if 𝑓
0
∈ (0,∞), then lim

𝜌→0
+𝜆(𝜌) = 𝜋

𝑝

𝑝
/𝑓
0
, where

𝜋
𝑝
:= 2∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑠𝑝/(𝑝 − 1)))
1/𝑝

𝑑𝑠. (34)

Proof. (a) If 𝑓
0
= ∞, then for any positive constant 𝑘, there

exists 𝑅 ∈ (0, 𝑟) such that

𝑓 (𝑠) ≥ 𝑘
𝑝
𝑠
𝑝−1

, 0 < 𝑠 < 𝑅. (35)
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Thus, if 0 < 𝜌 < 𝑅, (24) implies that

{𝜆 (𝜌)}
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(∫
𝜌

𝑠
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑠

≤ 2(
𝑝 − 1

𝑝
)

1/𝑝
𝑝
1/𝑝

𝑘
∫

𝜌

0

1

(𝜌𝑝 − 𝑠𝑝)
1/𝑝

𝑑𝑠 by (35)

= 2
(𝑝 − 1)

1/𝑝

𝑘
∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

𝑑𝑠

=
2

𝑘
∫

(𝑝−1)
1/𝑝

0

1

(1 − 𝑠𝑝/(𝑝 − 1))
1/𝑝

𝑑𝑠

=
1

𝑘
𝜋
𝑝
,

(36)

which implies that lim
𝜌→0

+𝜆(𝜌) = 0.
(b) If 𝑓

0
= 0, then for any 𝜀 > 0, there exists 𝛿 ∈ (0, 𝑟)

such that

𝑓 (𝑠) ≤ 𝜀
𝑝
𝑠
𝑝−1

, 0 < 𝑠 < 𝛿. (37)

Thus, if 0 < 𝜌 < 𝛿, (24) implies that

{𝜆 (𝜌)}
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(∫
𝜌

𝑠
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑠

≥ 2(
𝑝 − 1

𝑝
)

1/𝑝
𝑝
1/𝑝

𝜀
∫

𝜌

0

1

(𝜌𝑝 − 𝑠𝑝)
1/𝑝

𝑑𝑠 by (37)

= 2
(𝑝 − 1)

1/𝑝

𝜀
∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

𝑑𝑠

=
2

𝜀
∫

(𝑝−1)
1/𝑝

0

1

(1 − 𝑠𝑝/(𝑝 − 1))
1/𝑝

𝑑𝑠

=
1

𝜀
𝜋
𝑝
,

(38)

which implies that lim
𝜌→0

+𝜆(𝜌) = +∞.
(c) If 𝑓

0
∈ (0,∞), then for any 𝜀 ∈ (0, 𝑓

0
/2), there exists

𝛿 ∈ (0, 𝑟) such that

𝑓
0
− 𝜀 ≤

𝑓 (𝑠)

𝑠𝑝−1
≤ 𝑓
0
+ 𝜀, 0 < 𝑠 < 𝛿. (39)

Thus, if 0 < 𝜌 < 𝛿, (24) and the second part of (39) imply that

{𝜆 (𝜌)}
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(∫
𝜌

𝑠
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑠

≥ 2(
𝑝 − 1

𝑝
)

1/𝑝

(
𝑝

𝑓
0
+ 𝜀

)

1/𝑝

∫

𝜌

0

1

(𝜌𝑝 − 𝑠𝑝)
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑓
0
+ 𝜀

)

1/𝑝

∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

𝑑𝑠

=
2

(𝑓
0
+ 𝜀)
1/𝑝

∫

(𝑝−1)
1/𝑝

0

1

(1 − 𝑠𝑝/(𝑝 − 1))
1/𝑝

𝑑𝑠

=
1

(𝑓
0
+ 𝜀)
1/𝑝

𝜋
𝑝
,

(40)

which implies that

lim
𝜌→0

+

𝜆 (𝜌) ≥
𝜋
𝑝

𝑝

𝑓
0

. (41)

Similarly,

{𝜆 (𝜌)}
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(𝐹 (𝜌) − 𝐹 (𝑠))
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝜌

0

1

(∫
𝜌

𝑠
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑠

≥ 2(
𝑝 − 1

𝑝
)

1/𝑝

(
𝑝

𝑓
0
− 𝜀

)

1/𝑝

∫

𝜌

0

1

(𝜌𝑝 − 𝑠𝑝)
1/𝑝

𝑑𝑠

= 2(
𝑝 − 1

𝑓
0
− 𝜀

)

1/𝑝

∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

𝑑𝑠

=
2

(𝑓
0
− 𝜀)
1/𝑝

∫

(𝑝−1)
1/𝑝

0

1

(1 − 𝑠𝑝/(𝑝 − 1))
1/𝑝

𝑑𝑠

=
1

(𝑓
0
− 𝜀)
1/𝑝

𝜋
𝑝
,

(42)

which implies that if 0 < 𝜌 < 𝛿, (24) and the first part of (39)
imply that

lim
𝜌→0

+

𝜆 (𝜌) ≤
𝜋
𝑝

𝑝

𝑓
0

. (43)

Combining (41) and (43), it follows that

lim
𝜌→0

+

𝜆 (𝜌) =
𝜋
𝑝

𝑝

𝑓
0

. (44)
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Proof of Theorem 1. (i) It is from Lemma 8(a) that

lim
𝜌→0

+

𝜆 (𝜌) = 0. (45)

From Lemma 6 or Lemma 7, we have that

lim
𝜌→𝑟

−

𝜆 (𝜌) = 0. (46)

Combining this with (45) and using the facts that 𝜆(𝜌) > 0

and 𝜆(𝜌) is continuous, it concludes that there exists 𝜆
∗

> 0

such that (4) has at least two positive solutions for 𝜆 ∈ (0, 𝜆
∗
),

has at least one positive solution for 𝜆 = 𝜆
∗
, and has no

positive solution for 𝜆 > 𝜆
∗
.

(ii) It is an immediate consequence of Lemma 6, and
Lemma 7, and Lemma 8(b).

(iii) It is an immediate consequence of Lemma 6, and
Lemma 7, and Lemma 8(c).
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