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In 1986, Matthews generalized Banach contraction mapping theorem in dislocated metric space that is a wider space than metric
space. In this paper, we established common fixed point theorems for a class of contractive mappings. Our results extend the
corresponding ones of other authors in dislocated metric spaces.

1. Introduction

Fixed point theory is an important branch of nonlinear
analysis and can be used to many discipline branches, such
as control theory, convex optimization, differential inclusion,
and economics. Banach proved a celebrated fixed point
theorem for contraction mappings in complete metric space
which is one of the pivotal results of analysis. Dass and Gupta
[1] generalized Banach contraction mapping in metric space.
Also Rhoades [2] established a partial ordering for various
definitions of contractive mapping. The concept of metric
spaces, as an environmental space in fixed point theory,
has been generalized in several directions. Some of such
generalizations are dislocated spaces, quasimetric spaces,
dislocated quasimetric spaces, and generalized quasimetric
spaces. The concept of dislocated spaces is treated differ-
ently by different authors. Matthews [3] generalized Banach
contraction mapping theorem in dislocated metric space.
Hitzler [4] presented variants of Banach contraction principle
for various modified forms of a metric space including
dislocatedmetric space and applied them to semantic analysis
of logic programs. In this context, Hitzler and Seda [5]
raised some related questions on the topological aspects of
dislocated metrics. In 2005, Zeyada et al. [6] generalized
a fixed point theorem in dislocated quasimetric spaces. In
2008, Aage and Salunke [7] proved some results on fixed
points in dislocated quasimetric space. Recently, Isufati [8]
proved fixed point theorem for contractive type condition

with rational expression in dislocated quasimetric space. In
this paper, we study the mapping refereed by Xia Dafeng and
obtained fixed point theorems in dislocatedmetric space. For
fixed point theorems, see [9, 10]. The following definition is
introduced by Xia et al. [11].

Definition 1 (see [11]). Let 𝑅
+

= [0, ∞). Let 𝐺
1

: 𝑅
2

+
→ 𝑅
+
,

𝐺
2

: 𝑅
3

+
→ 𝑅
+
, satisfying the following:

(1) if 𝑤 ≤ 𝐺
1
(𝑢, V), then there exists 𝑐 ∈ (0, 1), such that

𝑤 ≤ 𝑐max{𝑢, V};

(2) if𝑤 ≤ 𝐺
2
(𝑢, V, 𝑟), then there exists 𝑐 ∈ (0, 1), such that

𝑤 ≤ 𝑐max{𝑢, V, 𝑟}.

Theorem 2 (see [11]). Let (𝑋, 𝑑) be complete metric spaces, let
𝑓, 𝑔 : 𝑋 → 𝑋 be continuous mappings, and for all 𝑥, 𝑦 ∈ 𝑋,
such that

𝑑 (𝑓 (𝑥) , 𝑔 (𝑦)) ≤ 𝐺
1

(𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑔 (𝑦))) (1)

or

𝑑 (𝑓 (𝑥) , 𝑔 (𝑦)) ≤ 𝐺
2

(𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑔 (𝑦)))

(2)

then 𝑓, 𝑔 have a unique common fixed point.
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2. Preliminaries

Definition 3 (see [6]). Let 𝑋 be a nonempty set and let 𝑑 :

𝑋 × 𝑋 → [0, ∞) be a function called a distance function. If
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(1) nonnegativity: 𝑑(𝑥, 𝑦) ≥ 0;

(2) faithful: 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦;

(3) the triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑥),

So, here 𝑑 is a quasimetric on 𝑋, and (𝑋, 𝑑) is called a
quasimetric space.

Definition 4 (see [6]). Let 𝑋 be a nonempty set and let 𝑑 :

𝑋 × 𝑋 → [0, ∞) be a function called a distance function. If
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(1) nonnegativity: 𝑑(𝑥, 𝑦) ≥ 0;

(2) indistancy implies equality: 𝑑(𝑥, 𝑦) = 0 = 𝑑(𝑦, 𝑥)

implies 𝑥 = 𝑦;

(3) the triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑥),

so, here 𝑑 is called a dislocated quasimetric or 𝑑
𝑞
-metric on

𝑋, and (𝑋, 𝑑) is called a dislocated quasimetric space.

Definition 5 (see [6]). Let 𝑋 be a nonempty set and let 𝑑 :

𝑋 × 𝑋 → [0, ∞) be a function called a distance function. If
for 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(1) nonnegativity: 𝑑(𝑥, 𝑦) ≥ 0;

(2) indistancy implies equality: 𝑑(𝑥, 𝑦) = 0 = 𝑑(𝑦, 𝑥)

implies 𝑥 = 𝑦;

(3) symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

(4) the triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑥),

so, here 𝑑 is called a dislocated metric or 𝑑-metric on 𝑋 and
the pair (𝑋, 𝑑) is called a dislocated metric space.

Definition 6 (see [6]). A sequence {𝑥
𝑛
} in 𝑑

𝑞
-metric space

(dislocated quasimetric space) (𝑋, 𝑑) is called a Cauchy
sequence, if for a given 𝜖 > 0, there exists 𝑛

0
∈ 𝑁

such that 𝑑(𝑥
𝑚

, 𝑥
𝑛
) < 𝜖 or 𝑑(𝑥

𝑛
, 𝑥
𝑚

) < 𝜖; that is,
min{𝑑(𝑥

𝑚
, 𝑥
𝑛
), 𝑑(𝑥
𝑛
, 𝑥
𝑚

)} < 𝜖 for all 𝑚, 𝑛 ≥ 𝑛
0
.

Definition 7 (see [6]). A sequence {𝑥
𝑛
} in 𝑑-metric spaces

(𝑋, 𝑑) is said to be 𝑑-converged to 𝑥 ∈ 𝑋 provided that

lim 𝑑 (𝑥
𝑛
, 𝑥) = lim 𝑑 (𝑥, 𝑥

𝑛
) = 0. (3)

In this case, 𝑥 is called a 𝑑-limit of {𝑥
𝑛
} and we write 𝑥

𝑛
→ 𝑥.

Definition 8 (see [6]). A 𝑑-metric space (𝑋, 𝑑) is called 𝑑-
complete if every 𝑑-Cauchy sequence in 𝑋 converges with
respect to 𝑥 in 𝑋.

Lemma 9. Every converging sequence in a 𝑑-metric space is a
Cauchy sequence.

Proof. Let {𝑥
𝑛
} be a sequence which converges to some 𝑥, and

let 𝜖 > 0 be arbitrarily given. Then there exists 𝑛
0

∈ 𝑁 with
𝑑(𝑥
𝑛
, 𝑥) < 𝜖/2 for all 𝑛 ≥ 𝑛

0
. For 𝑚, 𝑛 ≥ 𝑛

0
, then we obtain

that 𝑑(𝑥
𝑚

, 𝑥) + 𝑑(𝑥, 𝑥
𝑛
) < 𝜖/2 + 𝜖/2 = 𝜖. Hence {𝑥

𝑛
} is a

Cauchy sequence.

Lemma 10. Limits in dislocated metric spaces are unique.

Proof. Let 𝑥 and 𝑦 be limits of the sequence {𝑥
𝑛
}. Then

𝑑(𝑥
𝑛
, 𝑥) → 0 and 𝑑(𝑥

𝑛
, 𝑦) → 0 as 𝑛 → ∞. By the

triangle inequality of Definition 5, we conclude that 𝑑(𝑥, 𝑦) ≤

𝑑(𝑥, 𝑥
𝑛
) + 𝑑(𝑥

𝑛
, 𝑦) → 0 as 𝑛 → ∞. Hence 𝑑(𝑥, 𝑦) = 0

and using the properties (2) of Definition 5, we conclude that
𝑥 = 𝑦.

Lemma 11. Limits in dislocated quasimetric spaces are unique.

Proof. Let 𝑥 and 𝑦 be limits of the sequence {𝑥
𝑛
}. Then

𝑥
𝑛

→ 𝑥 and 𝑥
𝑛

→ 𝑦 as 𝑛 → ∞. By the triangle
inequality, it follows that 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥

𝑛
) + 𝑑(𝑥

𝑛
, 𝑦). As

𝑛 → ∞, we have 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥) + 𝑑(𝑦, 𝑦). Similarly,
𝑑(𝑦, 𝑥) ≤ 𝑑(𝑥, 𝑥) + 𝑑(𝑦, 𝑦). Hence |𝑑(𝑥, 𝑦) − 𝑑(𝑦, 𝑥)| ≤ 0; that
is, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). Also 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥

𝑛
) + 𝑑(𝑥

𝑛
, 𝑦) → 0

as 𝑛 → ∞.That is, 𝑑(𝑥, 𝑦) = 0, and 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0. By
the property (2) of Definition 4, we conclude that 𝑥 = 𝑦.

Example 12. Let𝑋 = 𝑅
+. Define𝑑 : 𝑋×𝑋 → 𝑅

+ by𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|. Then the pair (𝑋, 𝑑) is a dislocated metric space. We
define an arbitrary sequence {𝑥

𝑛
} in 𝑋; if 𝑘 > 𝑁, there exists

an positive integer𝑁 that satisfies |𝑥
𝑘

−𝑎| < 𝜖/2.Then, for any
𝑚, 𝑛 > 𝑁, we have 𝑑(𝑥

𝑛
, 𝑥
𝑚

) = |𝑥
𝑛

−𝑥
𝑚

| ≤ |𝑥
𝑛

−𝑎|+|𝑥
𝑚

−𝑎| <

𝜖/2 + 𝜖/2 = 𝜖. Thus, {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Also

as 𝑛 → ∞, then {𝑥
𝑛
} → ∞ ∈ 𝑋. Hence, every Cauchy

sequence in 𝑋 is convergent with respect to 𝑑. Thus, (𝑋, 𝑑) is
a complete dislocated metric space.

3. Main Results

In this section, now we establish that common fixed points
formapping satisfying contractive condition are proved in the
frame of dislocated metric spaces.

Definition 13 (see [9]). There exist 𝜙(𝑡) that satisfy the condi-
tion 𝜙

, if one lets 𝜙 : [0, +∞] → [0, ∞) be nondecreasing
and non-negative, then lim𝜙

𝑛
(𝑡) = 0, for a given 𝑡 > 0.

Lemma 14 (see [9]). If𝜙 satisfy the condition𝜙
, then𝜙(𝑡) < 𝑡,

for a given 𝑡 > 0.

Lemma 15 (see [11]). Let 𝐹 : 𝑅
3

+
→ 𝑅

+
, and satisfy the

condition 𝜙
; for all 𝑢, V ≥ 0, if 𝑢 ≤ 𝐹(V, V, 𝑢) or 𝑢 ≤ 𝐹(V, 𝑢, V)

or 𝑢 ≤ 𝐹(𝑢, V, V), then 𝑢 ≤ 𝜙(V).

Theorem 16. Let (𝑋, 𝑑) be a complete dislocated metric space,
and let 𝑓, 𝑔 : 𝑋 → 𝑋 be self-mapping, if
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(1) either 𝑓 or 𝑔 is continuous;
(2) there exists 𝐹 satisfying the condition 𝜙

, for all 𝑥, 𝑦 ∈

𝑋, such that

𝑑 (𝑓 (𝑥) , 𝑔 (𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑔 (𝑦))) ,

(4)

then 𝑓, 𝑔 have unique common fixed points.

Proof. Let 𝑔 be continuous, 𝑥
0
arbitrary in 𝑋, 𝑥

𝑛
, 𝑦
𝑛
the

sequence of 𝑋, and

𝑥
𝑛

= (𝑓𝑔)
𝑛

(𝑥
0
) = 𝑓𝑔 (𝑥

𝑛
− 1) , 𝑦

𝑛
= 𝑔(𝑓𝑔)

𝑛−1

(𝑥
0
) ,

𝑛 = 1, 2, . . .

(5)

Obviously,

𝑦
𝑛

= 𝑔 (𝑥
𝑛

− 1) , 𝑓 (𝑦
𝑛
) = 𝑥
𝑛
,

𝑔𝑓 (𝑦
𝑛
) = 𝑔 (𝑥

𝑛
) = 𝑦
𝑛+1

,

𝑛 = 1, 2, . . . .

(6)

By the given condition, we have

𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

) = 𝑑 (𝑓𝑔 (𝑥
𝑛
) , 𝑔 (𝑥

𝑛
))

≤ 𝐹 (𝑑 (𝑔 (𝑥
𝑛
) , 𝑥
𝑛
) , 𝑑 (𝑔 (𝑥

𝑛
) , 𝑓𝑔 (𝑥

𝑛
)) ,

𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
))) .

(7)

By Lemma 15, we have

𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

) ≤ 𝜙 (𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
))) . (8)

Also

𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
)) = 𝑑 (𝑓 (𝑦

𝑛
) , 𝑔 (𝑥

𝑛
)) = 𝑑 (𝑦

𝑛+1
, 𝑥
𝑛
)

≤ 𝐹 (𝑑 (𝑦
𝑛
, 𝑥
𝑛
) , 𝑑 (𝑦

𝑛
, 𝑓 (𝑦
𝑛
)) , 𝑑 (𝑥

𝑛
, 𝑔 (𝑥
𝑛
)))

= 𝐹 (𝑑 (𝑦
𝑛
, 𝑓 (𝑦
𝑛
)) , 𝑑 (𝑦

𝑛
, 𝑓 (𝑦
𝑛
)) ,

𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
))) .

(9)

Therefore

𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
)) = 𝑑 (𝑦

𝑛+1
, 𝑥
𝑛
) ≤ 𝜙 (𝑑 (𝑦

𝑛
, 𝑓 (𝑦
𝑛
)))

= 𝜙 (𝑑 (𝑦
𝑛
, 𝑥
𝑛
)) .

(10)

By Lemma 14, we have

𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

) ≤ 𝜙
2

(𝑑 (𝑥
𝑛

, 𝑦
𝑛
)) . (11)

Hence, by induction, for all 𝑛 ∈ 𝑁, we obtain

𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

) ≤ 𝜙
2𝑛

(𝑑 (𝑥
1
, 𝑦
1
)) = 𝜙

2𝑛

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
))) .

(12)

Similarly

𝑑 (𝑦
𝑛+1

, 𝑥
𝑛
) ≤ 𝜙
2𝑛−1

(𝑑 (𝑥
1
, 𝑦
1
)) = 𝜙

2𝑛−1

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
))) .

(13)

If 𝑛 ≥ 2, we have
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛+1
, 𝑦
𝑛+1

) + 𝑑 (𝑦
𝑛+1

, 𝑥
𝑛
)

≤ 𝜙
2𝑛

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
))) + 𝜙

2𝑛−1

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
)))

≤ 2𝜙
2𝑛−1

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
))) .

(14)

Note that by the condition 𝜙
 we know, for 𝑛, 𝑚 ∈ 𝑁 such that

𝑚 > 𝑛, we have
𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+𝑚−1

, 𝑥
𝑛+𝑚

)

≤ 𝜙
2𝑛−1

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
))) + 2𝜙

2(𝑛+1)−1

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
)))

+ ⋅ ⋅ ⋅ + 2𝜙
2(𝑛+𝑚−1)−1

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
)))

≤

2(𝑛+𝑚−1)−1

∑

𝑖=2𝑛−1

𝜙
𝑖

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
)))

≤

∞

∑

𝑖=2𝑛−1

𝜙
𝑖

(𝑑 (𝑥
1
, 𝑔 (𝑥
0
))) → 0.

(15)

Hence, 𝑑(𝑥
𝑛
, 𝑥
𝑚

) → 0 as 𝑚, 𝑛 → ∞. This forces
that {𝑥

𝑛
} is a Cauchy sequence in 𝑋. But 𝑋 is a completely

dislocated metric space; hence, {𝑥
𝑛
} is 𝑑-converges. Call the

𝑑-limit𝑥
∗

∈ 𝑋.Then,𝑥
𝑛

→ 𝑥
∗
as 𝑛 → ∞. By the continuity

of 𝑔, as 𝑛 → ∞, 𝑦
𝑛

= 𝑦
∗

= 𝑔(𝑥
∗

). So as 𝑛 → ∞,
𝑑(𝑥
𝑛+1

, 𝑦
𝑛+1

) ≤ 𝑑(𝑥
∗

, 𝑦
∗

) ≤ 0, 𝑥
∗
is the fixed point of 𝑔.

By the given condition, we have

𝑑 (𝑓 (𝑥
∗

) , 𝑔 (𝑥
∗

)) = 𝑑 (𝑓 (𝑥
∗

) , 𝑥
∗

)

≤ 𝐹 (𝑑 (𝑥
∗

, 𝑥
∗

) , 𝑑 (𝑥
∗

, 𝑓 (𝑥
∗

)) ,

𝑑 (𝑥
∗

, 𝑔 (𝑥
∗

)))

= 𝐹 (0, 𝑑 (𝑥
∗

, 𝑓 (𝑥
∗

)) , 0) .

(16)

Hence, 𝑑(𝑓(𝑥
∗

), 𝑥
∗

) ≤ 𝜙(0) = 0 ⇒ 𝑓(𝑥
∗

) = 𝑥
∗
, so 𝑥
∗
is

a common fixed point of 𝑓, 𝑔.
Uniqueness. Let 𝑦

∗
be another common fixed point of 𝑓, 𝑔.

Then by the given condition, we have

𝑑 (𝑥
∗

, 𝑦
∗

) = 𝑑 (𝑓 (𝑥
∗

) , 𝑔 (𝑦
∗

))

≤ 𝐹 (𝑑 (𝑥
∗

, 𝑦
∗

) , 𝑑 (𝑦
∗

, 𝑓 (𝑦
∗

)) , 𝑑 (𝑥
∗

, 𝑔 (𝑥
∗

)))

= 𝐹 (𝑑 (𝑥
∗

, 𝑦
∗

) , 0, 0) .

(17)

Since 𝑑(𝑥
∗

, 𝑦
∗

) ≤ 𝜙(0) = 0 ⇒ 𝑥
∗

= 𝑦
∗
, 𝑥
∗
is the unique fixed

point of𝑓; similarly, we prove that 𝑥
∗
is also the unique fixed

point of 𝑔.Thus the fixed point of𝑓, 𝑔 is unique, andwe prove
the theorem.
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Theorem 17. Let (𝑋, 𝑑) be a complete dislocated metric space;
and let 𝑓, 𝑔 : 𝑋 → 𝑋 be continuous mapping, if

(1) there exists 𝐹 satisfying the condition 𝜙
, for all 𝑥, 𝑦 ∈

𝑋, if 𝑥 ̸= 𝑦, such that

𝑑 (𝑓 (𝑥) , 𝑔 (𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑔 (𝑦))) ,

(18)

(2) there exists 𝑥
0

∈ 𝑋 such that {(𝑓𝑔)
𝑛

(𝑥
0
)} have a

condensation point, then 𝑓, 𝑔 have a unique common
fixed point.

Proof. Let 𝑥
𝑛
, 𝑦
𝑛
be the sequence of 𝑋, and for all 𝑛, 𝑥

𝑛
̸= 𝑦
𝑛
,

𝑥
𝑛

= (𝑓𝑔)
𝑛

(𝑥
0
) = 𝑓𝑔 (𝑥

𝑛
− 1) , 𝑦

𝑛
= 𝑔(𝑓𝑔)

𝑛−1

(𝑥
0
) ,

𝑛 = 1, 2, . . . .

(19)

Obviously,

𝑦
𝑛

= 𝑔 (𝑥
𝑛

− 1) , 𝑓 (𝑦
𝑛
) = 𝑥
𝑛
,

𝑔𝑓 (𝑦
𝑛
) = 𝑔 (𝑥

𝑛
) = 𝑦
𝑛+1

,

𝑛 = 1, 2, . . . .

(20)

Suppose that 𝑥
∗
is the condensation point of {𝑥

𝑛
}; there

exists the subsequence {𝑥
𝑛𝑖

} of {𝑥
𝑛
} such that 𝑥

𝑛𝑖
= 𝑥
∗
. Since

𝑔 is continuous, lim 𝑔(𝑥
𝑛𝑖

) = 𝑔(𝑥
∗

) = 𝑦
∗
.

Consider
𝑑 (𝑓 (𝑦

∗
) , 𝑔 (𝑥

∗
))

= 𝑑 (𝑓 (𝑦
∗

) , 𝑦
∗

)

≤ 𝐹 (𝑑 (𝑦
∗

, 𝑥
∗

) , 𝑑 (𝑦
∗

, 𝑓 (𝑦
∗

)) , 𝑑 (𝑥
∗

, 𝑔 (𝑥
∗

)))

= 𝐹 (𝑑 (𝑦
∗

, 𝑥
∗

) , 𝑑 (𝑦
∗

, 𝑓 (𝑦
∗

)) , 𝑑 (𝑥
∗

, 𝑦
∗

)) ,

𝑑 (𝑓 (𝑦
∗

) , 𝑦
∗

) ≤ 𝜙 (𝑑 (𝑥
∗

, 𝑦
∗

))

⇐⇒ 𝑑 (𝑓 (𝑦
∗

) , 𝑦
∗

) < 𝑑 (𝑥
∗

, 𝑦
∗

) .

(21)

Also consider
𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

)

= 𝑑 (𝑓𝑔 (𝑥
𝑛
) , 𝑔 (𝑥

𝑛
))

≤ 𝐹 (𝑑 (𝑔 (𝑥
𝑛
) , 𝑥
𝑛
) , 𝑑 (𝑔 (𝑥

𝑛
) , 𝑓𝑔 (𝑥

𝑛
)) , 𝑑 (𝑥

𝑛
, 𝑔 (𝑥
𝑛
)))

≤ 𝜙 (𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
))) ,

𝑑 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
))

= 𝑑 (𝑓 (𝑦
𝑛
) , 𝑔 (𝑥

𝑛
)) = 𝑑 (𝑦

𝑛+1
, 𝑥
𝑛
)

≤ 𝐹 (𝑑 (𝑦
𝑛
, 𝑥
𝑛
) , 𝑑 (𝑦

𝑛
, 𝑓 (𝑦
𝑛
)) , 𝑑 (𝑥

𝑛
, 𝑔 (𝑥
𝑛
)))

= 𝐹 (𝑑 (𝑦
𝑛
, 𝑓 (𝑦
𝑛
)) , 𝑑 (𝑦

𝑛
, 𝑓 (𝑦
𝑛
)) , 𝑑 (𝑥

𝑛
, 𝑔 (𝑥
𝑛
)))

≤ 𝜙 (𝑑 (𝑦
𝑛
, 𝑓 (𝑦
𝑛
)))

= 𝜙 (𝑑 (𝑦
𝑛
, 𝑥
𝑛
)) .

(22)

Thus

𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

) ≤ 𝜙
2

(𝑑 (𝑥
𝑛
, 𝑦
𝑛
)) < 𝑑 (𝑥

𝑛
, 𝑦
𝑛
) . (23)

Hence, we know that {𝑑(𝑥
𝑛+1

, 𝑦
𝑛+1

)} is decreasing. Let
lim 𝑑(𝑥

𝑛+1
, 𝑦
𝑛+1

) = 𝜖 and lim 𝑑(𝑦
𝑛𝑖+1

, 𝑥
𝑛𝑖

) = 𝑑(𝑦
∗

, 𝑥
∗

) ≤

lim 𝑑(𝑦
𝑛𝑖

, 𝑥
𝑛𝑖

) = 𝜖. Since {𝑥
𝑛𝑖

} is the subsequence of {𝑥
𝑛
}, we

have

𝑑 (𝑓 (𝑦
∗

) , 𝑦
∗

) = lim 𝑑 (𝑓 (𝑦
𝑛𝑖+1

) , 𝑦
𝑛𝑖+1

)

= lim (𝑑 (𝑥
𝑛𝑖

, 𝑦
𝑛𝑖

)) = 𝜖.

(24)

Hence, we conclude that 𝑑(𝑥
∗

, 𝑦
∗

) ≤ 𝑑(𝑓(𝑦
∗

), 𝑦
∗

), a
contradiction. So 𝑥

∗
= 𝑦
∗
,𝑦
∗
is the fixed point of𝑔. Similarly,

𝑦
∗
is the fixed point of 𝑓.

Uniqueness. Let 𝑦
 be another common fixed point of 𝑓, 𝑔.

Then by the given condition, we have

𝑑 (𝑦
∗

, 𝑦


) = 𝑑 (𝑓 (𝑦
∗

) , 𝑔 (𝑦


))

≤ 𝐹 (𝑑 (𝑦
∗

, 𝑦


) , 𝑑 (𝑦


, 𝑓 (𝑦


)) , 𝑑 (𝑦
∗

, 𝑔 (𝑦
∗

)))

= 𝐹 (𝑑 (𝑦
∗

, 𝑦


) , 0, 0) .

(25)

Since 𝑑(𝑦
∗

, 𝑦

) ≤ 𝜙(0) = 0 ⇒ 𝑦

∗
= 𝑦
, 𝑦
∗
is the unique

fixed point of 𝑓. Similarly, we prove that 𝑦
∗
is also the unique

fixed point of 𝑔. Thus the fixed point of 𝑓, 𝑔 is unique.
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