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We deal with the controllability problem for the pseudoparabolic equation by means of boundary controls. Due to the unusual
spectrum of this kind of equations, we prove that the null controllability property is false. Furthermore, by the explicit solution, we
show that the approximate controllability holds.

1. Introduction

This paper is devoted to the study of controllability properties
of the 1D pseudoparabolic equation:

𝑦
𝑡
− 𝑦
𝑥𝑥
− 𝑘𝑦
𝑥𝑥𝑡

= 0, 𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇) ,

𝑦 (0, 𝑡) = 0, 𝑦 (1, 𝑡) = 𝑢 (𝑡) , 𝑡 ∈ (0, 𝑇) ,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ (0, 1) ,

(1)

where 𝑦 = 𝑦(𝑥, 𝑡) is the state, 𝑢 = 𝑢(𝑡) is a control function
acting on the boundary {1} × (0, 𝑇), and 𝑘 > 0 is a constant.

The pseudoparabolic equations are a kind of Sobolev-
Galpern type equations. They have occurred in numerous
physical applications among which include problems involv-
ing seepage of fluids through fissured rocks [1], unsteady
flows of second-order fluids [2, 3], and the theory of thermo-
dynamics involving two temperatures [4]. They can also be
used as a regularization of ill-posed transport problems, espe-
cially as a quasicontinuous approximation to discrete models
for population dynamics [5]. Furthermore, pseudoparabolic
equations are closely related to the well-know BBM equations
[6] which are advocated as a refinement of KdV equations.

In the last two decades, important progress has been
made in the controllability analysis of parabolic equations.
We refer to the works [7–13] and the references therein. It
is well known that the null and approximate controllability
hold for the classical parabolic equations. However, for some

special models, there arise some new results. For example, in
[14], the authors considered the heat equation with memory:

𝑦
𝑡
− Δ𝑦 + ∫

𝑡

0

Δ𝑦 (𝑥, 𝑠) 𝑑𝑠 = 0. (2)

By establishing that the observability inequality for the heat
equation with memory is not true, they proved that there
exists a set of initial conditions such that the null controlla-
bility property fails by means of boundary controls. Recently,
Doubova and Fernández-Cara [15] studied the approximate
distributed and boundary controllability of viscoelastic fluids
of the Jeffreys kind, which can be equivalently rewritten as a
parabolic equation with memory

𝑦
𝑡
− ]Δ𝑦 − 𝑏∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

Δ𝑦 (𝑠) 𝑑𝑠 + ∇𝜋 = 𝑒
−𝑎𝑡
∇ ⋅ 𝜏
0
. (3)

The main tool for proving the approximate controllability
result is a unique continuation property for its adjoint system.
The authors pointed out that this parabolic equation with
memory transforms from a damped wave equation (see [15]):

𝑧
𝑡𝑡
− 𝑎𝑧
𝑡
− ]Δ𝑧

𝑡
− 𝑏Δ𝑧 + ∇ (𝑒

𝑎𝑡
𝜋) = ∇ ⋅ 𝜏

0
. (4)

In recent years, there are more and more works addressing
the controllability problems of damped wave equations (see
e.g., [16–19] and the references cited therein).

In this paper, we focus on another kind of parabolic
equation with damped term 𝑦

𝑡𝑥𝑥
, that is, so-called the
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pseudoparabolic equation. Inspired by the above works,
whether the pseudoparabolic equation is controllable or not
seems very interesting. Indeed, as the third-order term arises,
some properties of (1) are quite different from those of the
parabolic equations. One of the most essential differences
is that, comparing with the fact that the eigenvalues of
heat equations accumulate at −∞, the eigenvalues of (1)
have an accumulation real point −1/𝑘 (it will be shown
in Section 2). A similar property was pointed in [20]. This
difference causes that the controllability properties of (1)
become deeply different from the ones for the parabolic
equations.Wewill show that system (1) is not null controllable
under the influence of such unusual spectrum. To this end,
we turn the control problem into a moment problem.Thanks
to the Paley-Wiener theorem, the result is got, and our
approach avoids the proof of the observability inequalities
which was used in [14]. On the other hand, we establish
the approximate controllability of system (1) in some Fourier
definition of Sobolev spaces 𝐻

𝛼
. The proof is based on a

duality method and the explicit solution of the adjoint system
of (1), which we obtain by variable separations instead of the
Laplace transform in [15].The techniques we use to prove the
approximate controllability contain some ideas of the unique
continuation properties.

Throughout this paper, we will use the following nota-
tions. The 𝑛th Fourier coefficient (with respect to the
orthonormal basis (sin(𝑛𝜋𝑥))

𝑛≥1
of 𝐿2(0, 1)) of any integrable

function 𝑦 : (0, 1) → R is defined as

𝑦
𝑛
= ∫

1

0

𝑦 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥. (5)

So, 𝑦 can be written in the form

𝑦 (𝑥) = ∑

𝑛≥1

(𝑦
𝑛
) sin (𝑛𝜋𝑥) . (6)

For any 𝛼 ∈ R, let

𝐻
𝛼
:= {𝑦 : (0, 1) 󳨀→ R; ∑

𝑛≥1

𝑛
2𝛼󵄨󵄨󵄨󵄨𝑦𝑛

󵄨󵄨󵄨󵄨
2

< ∞} . (7)

Endowed with the scalar product

(𝑦, 𝑧)
𝛼
= ∑

𝑛≥1

𝑛
2𝛼
𝑦
𝑛
𝑧̂
𝑛
. (8)

𝐻
𝛼
is a Hilbert space. Moreover, 𝐻

1
= 𝐻
1

0
(0, 1), 𝐻

2
= 𝐻
2
(0,

1)⋂𝐻
1

0
(0, 1), and 𝐻

−𝛼
= 𝐻
󸀠

𝛼
(the dual space of 𝐻

𝛼
with

respect to the central space 𝐻
0
= 𝐿
2
(0, 1)) for any 𝛼 ≥ 0.

Finally, for any 𝑓 = ∑
𝑛≥1

𝑐
𝑛
sin(𝑛𝜋𝑥) ∈ 𝐻

−𝛼
and any 𝑔 =

∑
𝑛≥1

𝑑
𝑛
sin(𝑛𝜋𝑥) ∈ 𝐻

𝛼
, we have that

⟨𝑓, 𝑔⟩
𝐻
−𝛼

,𝐻
𝛼

= ∑

𝑛≥1

𝑐
𝑛
𝑑
𝑛
, (9)

where ⟨⋅, ⋅⟩
𝐻
−𝛼

,𝐻
𝛼

stands for the duality pairing between 𝐻
−𝛼

and𝐻
𝛼
.

Themain aim of this paper is to analyze the controllability
properties of (1). It will be said that (1) is approximate

controllable by boundary control at time 𝑇; if for any 𝑦
0
∈

𝐻
1

0
(0, 1), the set of reachable states

𝑅 (𝑇) = {𝑦 (𝑇) = 𝑦 (𝑇; 𝑢) :

𝑦 is the solution of (1) with 𝑢 ∈ 𝐻
1

0
(0, 𝑇)}

(10)

is dense in𝐻
𝛼
. And it will be said that (1) is null controllable

at time 𝑇; if for any given 𝑦
0
∈ 𝐻
1

0
(0, 1), there exist controls

𝑢 ∈ 𝐻
1

0
(0, 𝑇) such that the associated solutions to (1) satisfy

𝑦 (𝑥, 𝑇) = 0 in Ω. (11)

For the sake of simplicity, we will take 𝑘 = 1 throughout
this paper. All the results can be extended without difficulty
to 𝑘 > 0 arbitrary.

The rest of this paper is organized as follows. In Section 2,
we will show some elementary properties for (1) and their
adjoint equation. Section 3 is devoted to studying the null and
approximate controllability of (1), respectively. In Section 4,
some open questions related to this work are provided.

2. Preliminaries

In this section, we first consider the existence and uniqueness
of the solution to problem (1).

Let 𝑦(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) + 𝑥𝑢(𝑡). We readily obtain that 𝑧 is a
solution of the system

𝑧
𝑡
− 𝑧
𝑥𝑥
− 𝑧
𝑥𝑥𝑡

= −𝑥𝑢
󸀠
, 𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇) ,

𝑧 (0, 𝑡) = 𝑧 (1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇) ,

𝑧 (𝑥, 0) = 𝑦
0
(𝑥) − 𝑥𝑢 (0) , 𝑥 ∈ (0, 1) .

(12)

The existence and uniqueness of the solution to the problem
(12) are well known (see [21, 22]); that is, for every 𝑦

0
∈

𝐻
1

0
(0, 1) and 𝑢 ∈ 𝐻

1

0
(0, 𝑇), system (12) admits a unique

solution 𝑧 ∈ 𝐶([0, 𝑇]; 𝐿
2
(0, 1)). In turn, we see that if 𝑦

0
∈

𝐻
1

0
(0, 1) and 𝑢 ∈ 𝐻

1

0
(0, 𝑇), system (1) admits a unique

solution 𝑦 ∈ 𝐶([0, 𝑇]; 𝐿
2
(0, 1)).

In order to prove the controllability of system (1), let us
consider the following homogeneous initial boundary value
problem:

𝑦
𝑡
− 𝑦
𝑥𝑥
− 𝑦
𝑥𝑥𝑡

= 0, 𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇) ,

𝑦 (0, 𝑡) = 𝑦 (1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇) ,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ (0, 1) .

(13)

We will give an explicit solution of the problem (13) by the
method of separation of variables.

Proposition 1. If the initial condition 𝑦
0
is given by 𝑦

0
(𝑥) =

∑
𝑛≥1

𝑎
𝑛
sin(𝑛𝜋𝑥), then the solution to (13) is

𝑦 (𝑥, 𝑡) = ∑

𝑛≥1

𝑎
𝑛
𝑒
𝜆
𝑛

𝑡 sin (𝑛𝜋𝑥) , (14)
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where 𝜆
𝑛
= 𝜇
𝑛
/(1 − 𝜇

𝑛
) and 𝜇

𝑛
= −(𝑛𝜋)

2. Moreover, 𝜆
𝑛
< 0,

{𝜆
𝑛
}
𝑛≥1

is a monotone decreasing sequence, and 𝜆
𝑛
→ −1 as

𝑛 → ∞.

Proof. Let 𝑦(𝑥, 𝑡) = 𝑇(𝑡)𝑋(𝑥) ̸= 0. From the first equality of
(13), we have

𝑇
󸀠
(𝑡)

𝑇 (𝑡) + 𝑇󸀠 (𝑡)
≡
𝑋
󸀠󸀠
(𝑥)

𝑋 (𝑥)
. (15)

We can see that the identity is true if and only if both sides of
it are equal to one constant. Let the constant be 𝜇. Then we
get

𝑋
󸀠󸀠
(𝑥) = 𝜇𝑋 (𝑥) , 0 < 𝑥 < 1,

𝑇
󸀠
(𝑡) − 𝜇𝑇 (𝑡) − 𝜇𝑇

󸀠
(𝑡) = 0, 𝑡 > 0.

(16)

Since the solution 𝑦(𝑥, 𝑡) satisfies the boundary condition,
𝑋(0) = 𝑋(1) = 0 is necessary. Thus, we obtain an eigenvalue
problem

𝑋
󸀠󸀠
(𝑥) = 𝜇𝑋 (𝑥) , 0 < 𝑥 < 1,

𝑋 (0) = 𝑋 (1) = 0.

(17)

By using a simple calculation, we have that 𝜇 = 𝜇
𝑛
= −(𝑛𝜋)

2

and

𝑋
𝑛
(𝑥) = 𝐵

0
sin (𝑛𝜋𝑥) , (18)

where 𝐵
0
is an arbitrary constant. Now, let us turn to the

second equation of (16)

𝑇
󸀠
(𝑡) − 𝜇

𝑛
𝑇
󸀠
(𝑡) − 𝜇

𝑛
𝑇 (𝑡) = 0, 𝑡 > 0. (19)

It is easy to see that

𝑇
𝑛
(𝑡) = 𝐵

1
𝑒
𝜆
𝑛

𝑡 (20)

is the solution to (19), where 𝜆
𝑛
= 𝜇
𝑛
/(1 − 𝜇

𝑛
) and 𝐵

1
is an

arbitrary constant. Combining the initial condition𝑦
0
, we can

write the solution of (13) as

𝑦 (𝑥, 𝑡) = ∑

𝑛≥1

𝑎
𝑛
𝑒
𝜆
𝑛

𝑡 sin (𝑛𝜋𝑥) . (21)

The expressions of 𝜆
𝑛
imply that 𝜆

𝑛
< 0, {𝜆

𝑛
}
𝑛≥1

is a mon-
otone decreasing sequence, and 𝜆

𝑛
→ −1 as 𝑛 → ∞.

Remark 2. It is important to observe that the spectrum of
(1) is quite different from that of heat equation. This will be
essential when dealing with the controllability problem of (1).

As an easy consequence of the above representation
formula, we have the following result.

Proposition 3. Let 𝛼 ∈ R. If 𝑦
0
∈ 𝐻
𝛼
, then 𝑦 ∈ 𝐶(R+; 𝐻

𝛼
).

In addition, if 𝛼 > 3/2, then ∑
𝑛≥1

𝑛|𝑎
𝑛
| < +∞ and 𝑦

𝑥
(1, ⋅) ∈

𝐶(R+).

Proof. If 𝑦
0
∈ 𝐻
𝛼
, we have ∑

𝑛≥1
𝑛
2𝛼
|𝑎
𝑛
|
2
< +∞. It holds that

𝑛
2𝛼󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛
𝑒
𝜆
𝑛

𝑡󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑛
2𝛼󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨
2

𝑒
2𝜆
𝑛

𝑡
≤ 𝑛
2𝛼󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨
2

, (22)

and hence, 𝑦 ∈ 𝐶(R+; 𝐻
𝛼
).

On the other hand, taking the derivative with respect to
𝑥 in (14), we obtain that

𝑦
𝑥
(1, 𝑡) = ∑

𝑛≥1

𝑎
𝑛
𝑒
𝜆
𝑛

𝑡
(𝑛𝜋) (−1)

𝑛
. (23)

Since

∑

𝑛≥1

𝑛
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛
𝑒
𝜆
𝑛

𝑡󵄨󵄨󵄨󵄨󵄨
≤ ∑

𝑛≥1

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

≤ (∑

𝑛≥1

𝑛
2𝛼󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨
2

)

1/2

⋅ (∑

𝑛≥1

𝑛
−2(𝛼−1)

)

1/2

,

(24)

we see that ∑
𝑛≥1

𝑛|𝑎
𝑛
| < +∞ and 𝑦

𝑥
(1, ⋅) ∈ 𝐶(R+), provided

that 𝛼 > 3/2.

Now, let us turn to the adjoint system to system (1) as
follows:

𝜑
𝑡
+ 𝜑
𝑥𝑥
− 𝜑
𝑥𝑥𝑡

= 0, 𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇) ,

𝜑 (0, 𝑡) = 𝜑 (1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇) ,

𝜑 (𝑥, 𝑇) = 𝜑
𝑇
(𝑥) , 𝑥 ∈ (0, 1) .

(25)

Based on the method in Proposition 1, we have that if 𝜑𝑇 is
decomposed as

𝜑
𝑇
(𝑥) = ∑

𝑛≥1

𝑏
𝑛
sin (𝑛𝜋𝑥) , (26)

the solution of (25) is given by

𝜑 (𝑥, 𝑡) = ∑

𝑛≥1

𝑏
𝑛
𝑒
𝜆
𝑛

(𝑇−𝑡) sin (𝑛𝜋𝑥) , (27)

which yields

𝜑
𝑥
(1, 𝑡) = ∑

𝑛≥1

𝑏
𝑛
𝑒
𝜆
𝑛

(𝑇−𝑡)
(𝑛𝜋) (−1)

𝑛
. (28)

Corresponding to Proposition 3, we have the following result.

Proposition 4. Let 𝛼 ∈ R. If 𝜑𝑇 ∈ 𝐻
−𝛼
, then 𝜑 ∈ 𝐶(R+; 𝐻

−𝛼
).

In addition, if 𝛼 < −3/2, then ∑
𝑛≥1

𝑛|𝑏
𝑛
| < +∞ and 𝜑

𝑥
(1, ⋅) ∈

𝐶(R+).

Proof. If 𝜑𝑇 ∈ 𝐻
−𝛼
, we have ∑

𝑛≥1
𝑛
−2𝛼

|𝑏
𝑛
|
2
< ∞. It follows

that

𝑛
−2𝛼󵄨󵄨󵄨󵄨󵄨

𝑏
𝑛
𝑒
𝜆
𝑛

(𝑇−𝑡)󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑛
−2𝛼󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨
2

. (29)

Hence 𝜑 ∈ 𝐶(R+; 𝐻
−𝛼
). On the other hand, we have by the

Cauchy-Schwarz inequality that

∑

𝑛≥1

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ (∑

𝑛≥1

𝑛
2𝛼+2

)

1/2

⋅ (∑

𝑛≥1

𝑛
−2𝛼

(
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨
2

))

1/2

. (30)

It is clear that ∑
𝑛≥1

𝑛|𝑏
𝑛
| < +∞, provided that 𝛼 < −3/2.
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3. The Main Results

This section is devoted to the study of the controllability of
system (1). We first do some transformation by the duality
principle.

Multiplying (formally) the first equation in (1) by 𝜑which
is the solution of (25) and integrating on (0, 1) × (0, 𝑇), we
have

∫

𝑇

0

∫

1

0

𝑦
𝑡
𝜑𝑑𝑥𝑑𝑡 − ∫

𝑇

0

∫

1

0

𝑦
𝑥𝑥
𝜑𝑑𝑥𝑑𝑡 − ∫

𝑇

0

∫

1

0

𝑦
𝑥𝑥𝑡
𝜑𝑑𝑥 𝑑𝑡 = 0.

(31)

Integrating by parts, we get

∫

1

0

𝑦 (𝑥, 𝑇) 𝜑 (𝑥, 𝑇) 𝑑𝑥 − ∫

𝑇

0

∫

1

0

𝑦𝜑
𝑡
𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

𝑦 (1, 𝑡) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡 − ∫

𝑇

0

∫

1

0

𝑦𝜑
𝑥𝑥
𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

𝑦
𝑡
(1, 𝑡) 𝜑

𝑥
(1, 𝑡) 𝑑𝑡

− ∫

1

0

𝑦 (𝑥, 𝑇) 𝜑
𝑥𝑥
(𝑥, 𝑇) 𝑑𝑥

+ ∫

𝑇

0

∫

1

0

𝑦𝜑
𝑥𝑥𝑡
𝑑𝑥 𝑑𝑡

+ ∫

1

0

𝑦
0
(𝑥) (𝜑

𝑥𝑥
(𝑥, 0) − 𝜑 (𝑥, 0)) 𝑑𝑥 = 0.

(32)

Noticing the first equation in (25), we obtain

∫

1

0

𝑦 (𝑥, 𝑇) (𝜑
𝑥𝑥
(𝑥, 𝑇) − 𝜑 (𝑥, 𝑇)) 𝑑𝑥

− ∫

1

0

𝑦
0
(𝑥) (𝜑

𝑥𝑥
(𝑥, 0) − 𝜑 (𝑥, 0)) 𝑑𝑥

= ∫

𝑇

0

𝑦
𝑡
(1, 𝑡) 𝜑

𝑥
(1, 𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑦 (1, 𝑡) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡.

(33)

It is clear that (33) can be rewritten as

−⟨𝜑 − 𝜑
𝑥𝑥
, 𝑦⟩
𝐻
−𝛼

,𝐻
𝛼

󵄨󵄨󵄨󵄨󵄨

𝑇

0

= ∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡.

(34)

Now, we are ready to show the controllability of system (1).

3.1. Null Controllability. Following some of the key ideas
developed by Micu [23], we are able to show that the null
controllability property fails.

Theorem 5. For 𝑇 > 0, there exist initial conditions 𝑦
0
∈

𝐻
1

0
(0, 1) such that for any control function 𝑢 ∈ 𝐻

1

0
(0, 𝑇), the

associated solution 𝑦 to system (1) is not identically equal zero
at time 𝑇.

Proof. It follows from (34) that the null controllability prob-
lem is equivalent to the existence of a control function 𝑢 =

𝑢(𝑡) such that

⟨𝜑(𝑥, 0) − 𝜑
𝑥𝑥
(𝑥, 0), 𝑦

0
(𝑥)⟩
𝐻
−𝛼

,𝐻
𝛼

= ∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡.

(35)

Using (9), (27), and (28), we can transform the control
problem into a moments problem. In other words, we need
to find the control function 𝑢 = 𝑢(𝑡) such that

∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝑒
−𝜆
𝑛

𝑡
(𝑛𝜋) (−1)

𝑛
𝑑𝑡 = 𝑎

𝑛
(1 + 𝑛

2
𝜋
2
) . (36)

To this end, we consider that any initial data 𝑦
0
with the

sequence {𝑎
𝑛
}
𝑛≥1

satisfies 𝑎
𝑛
= 0 for 𝑛 > 𝑁. Suppose that

for this kind of 𝑦
0
, there exists a 𝑢 such that (36) holds. Let

𝐹 (𝑧) := ∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝑒
𝑖𝑧𝑡
𝑑𝑡. (37)

By Paley-Wiener theorem, 𝐹 is an entire function and

𝐹 (𝑖𝜆
𝑛
) = ∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝑒
−𝜆
𝑛

𝑡
𝑑𝑡 = 0, for 𝑛 > 𝑁. (38)

The fact that 𝑖𝜆
𝑛
→ −𝑖 as 𝑛 → +∞ implies that 𝐹 is zero on

a set with a finite accumulation point. Therefore, 𝐹 ≡ 0.
It follows that 𝑎

𝑛
= 0 for each 𝑛 ≥ 1. Thus the proof of

Theorem 5 is completed.

3.2. Approximate Controllability. Because of the lack of null
controllability, the approximate controllability of system (1)
becomes much more interesting. We will study the approx-
imate controllability in this part. Without loss of generality,
we assume that 𝑦

0
= 0 and by (34) we have

− ⟨𝜑
𝑇
(𝑥) − 𝜑

𝑇

𝑥𝑥
(𝑥), 𝑦(𝑥, 𝑇)⟩

𝐻
−𝛼

,𝐻
𝛼

= ∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡.

(39)

In order to show the approximate controllability, two
lemmas are needed later. The first one is an equivalent
condition for the approximate controllability.

Lemma 6. For system (25), if we assume that 𝜑𝑇 = 0 if and
only if ∫𝑇

0
(𝑢(𝑡)+𝑢

󸀠
(𝑡))𝜑
𝑥
(1, 𝑡)𝑑𝑡 = 0 for any function 𝑢 = 𝑢(𝑡),

then system (1) is approximatively controllable in𝐻
𝛼
.

Proof. Recall that the approximate controllability of system
(1) in 𝐻

𝛼
is equivalent to that 𝑅(𝑇) that is dense in 𝐻

𝛼
.

Therefore, in order to conclude the proof, we only need to
show that 𝑅(𝑇) is dense in𝐻

𝛼
. It follows from Hahn-Banach

theorem that every continuous linear functional on𝐻
𝛼
which

vanishes on 𝑅(𝑇), must vanish everywhere on𝐻
𝛼
.
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Now, suppose that 𝑅(𝑇) is not dense in 𝐻
𝛼
. Then by

Hahn-Banach theorem there exists 𝜑𝑇 ∈ 𝐻
−𝛼

with 𝜑
𝑇
−

𝜑
𝑇

𝑥𝑥
̸= 0, such that for any 𝑦(𝑥, 𝑇) ∈ 𝑅(𝑇), we have

⟨𝜑
𝑇
(𝑥) − 𝜑

𝑇

𝑥𝑥
(𝑥), 𝑦(𝑥, 𝑇)⟩

𝐻
−𝛼

,𝐻
𝛼

= 0. (40)

By (39), we get that

∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡 = 0. (41)

But from the condition 𝜑
𝑇

= 0 if and only if ∫𝑇
0
(𝑢(𝑡) +

𝑢
󸀠
(𝑡))𝜑
𝑥
(1, 𝑡)𝑑𝑡 = 0 for any function 𝑢 = 𝑢(𝑡), we have that

0 is the only initial value 𝜑𝑇 ∈ 𝐻
−𝛼

for which the solution
𝜑(𝑥, 𝑡) of (25) fulfills ∫𝑇

0
(𝑢(𝑡) + 𝑢

󸀠
(𝑡))𝜑
𝑥
(1, 𝑡)𝑑𝑡 = 0 for any

function 𝑢 = 𝑢(𝑡). Therefore 𝜑𝑇 = 0, and it is contrary to the
choice of 𝜑𝑇. This completes the proof of Lemma 6.

Lemma 6 implies that, in order to prove the approximate
controllability of system (1) with boundary control, we only
need to check the condition about the solution of the dual
problem (25) in Lemma 6.

The following elementary lemma can be found in [24, 25].

Lemma 7. Let (𝛽
𝑛
)
𝑛≥1

and (𝜆
𝑛
)
𝑛≥1

be two sequences of
complex numbers such that∑

𝑛≥1
|𝛽
𝑛
| < ∞ and Re 𝜆

𝑛
< Λ for

each 𝑛 ≥ 1 and some number Λ ∈ R. Assume that the 𝜆
𝑛
s are

pairwise distinct and that ∑
𝑛≥1

𝛽
𝑛
𝑒
𝜆
𝑛

𝑡
= 0 for a.e. 𝑡 ∈ (0, 𝑇).

Then 𝛽
𝑛
= 0 for all 𝑛 ≥ 1.

We are now in a position to present the proof of the
approximate controllability of (1) with boundary control.

Theorem 8. Let 𝑇 > 0. System (1) is approximately control-
lable in𝐻

𝛼
with 𝛼 < −3/2 at time 𝑇.

Proof. First, we prove that there is a control function 𝑢 such
that 𝑅(𝑇) is dense in𝐻

𝛼
with 𝛼 < −3/2. Now, take 𝜑𝑇 ∈ 𝐻

−𝛼

with 𝛼 < −3/2 decomposed as in (26).
Set 𝜃 = 𝑢 + 𝑢

󸀠 and denote

𝐺 := {𝑔 ∈ 𝐿
2
(0, 𝑇) ; ∫

𝑇

0

𝑒
𝑡
𝑔 (𝑡) 𝑑𝑡 = 0} . (42)

Then it follows that when 𝑢 ranges over𝐻1
0
(0, 𝑇) and 𝜃 ranges

over 𝐺.
Assume that, for any 𝑢 ∈ 𝐻1

0
(0, 𝑇),

∫

𝑇

0

𝜃 (𝑡) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡 = ∫

𝑇

0

(𝑢 (𝑡) + 𝑢
󸀠
(𝑡)) 𝜑
𝑥
(1, 𝑡) 𝑑𝑡 = 0.

(43)

By Lemma 6, we only need to prove that 𝜑𝑇 = 0 or
equivalently that 𝑏

𝑛
= 0 for each 𝑛 (see (26)). Noticing that

for any 𝜃 ∈ Span (𝑒𝑡)⊥,

(𝜃, 𝜑
𝑥
(1, ⋅))
𝐿
2

(0,𝑇)
= 0. (44)

We have 𝜑
𝑥
(1, ⋅) ∈ Span (𝑒𝑡)⊥⊥ = Span (𝑒𝑡). Therefore, from

(28), there exists a constant 𝐶 ∈ R such that

∑

𝑛≥1

𝑏
𝑛
𝑒
𝜆
𝑛

(𝑇−𝑡)
(𝑛𝜋) (−1)

𝑛
= 𝐶𝑒
𝑡
, (45)

for a.e. 𝑡 ∈ (0, 𝑇). If taking 𝜏 = 𝑇 − 𝑡, 𝑐
𝑛
= 𝑏
𝑛
(𝑛𝜋)(−1)

𝑛, and
𝑐
0
:= −𝐶𝑒

𝑇, we obtain

∑

𝑛≥1

𝑐
𝑛
𝑒
𝜆
𝑛

𝜏
+ 𝑐
0
𝑒
−𝜏
= 0, (46)

for a.e. 𝜏 ∈ (0, 𝑇).
On the other hand, since 𝜑𝑇 ∈ 𝐻

−𝛼
with 𝛼 < −3/2 and by

Proposition 4, we have that

∑

𝑛≥1

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 = 𝜋∑

𝑛≥1

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 < +∞. (47)

Then by Lemma 7, we obtain that 𝑐
𝑛
= 0 for each 𝑛 ≥ 1. It

implies that 𝜑𝑇 = 0. The proof of Theorem 8 is completed.

4. Concluding Remark

In this paper, the controllability of the pseudoparabolic
equation is studied. With a boundary control, it is proved
that the system is not null controllable, but that an approx-
imate controllability result is obtained in some appropriate
functional spaces. Below is a list of unsolved and interesting
questions related to our work.

(1) It has been got that the approximate controllability
holds in 𝐻

𝛼
with 𝛼 < −3/2. The question whether

the approximate controllability holds for 𝛼 ≥ −3/2

remains open. The method in this paper does not
work for that case.

(2) It seems natural to expect that the controllabil-
ity for multidimensional pseudoparabolic equations
through a boundary controller or a locally distributed
one.Wewill consider these problems in the forthcom-
ing papers.

(3) It would be quite interesting to study the controlla-
bility properties of (1) for the case variable coefficient
(i.e., 𝑘 = 𝑘(𝑥, 𝑡)). However, it seems very difficult, and
many classical methods such asmoment problem and
strongly continuous semigroupsmay be false. Indeed,
controllability of equation with variable coefficients
always bring us much more difficult than that with
constant coefficient. One needs a highly innovative
way to obtain the observability inequalities or unique
continuation properties. An examplewas presented in
[26] to establish some controllability results for wave
equations with variable coefficients by a Riemannian
geometry method.
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Appliquées. Neuvième Série, vol. 79, no. 8, pp. 741–808, 2000.

[19] F. W. Chaves-Silva, L. Rosier, and E. Zuazua, “Null controllabil-
ity of a system of viscoelasticity with a moving control,” Journal
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