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A new bandwidth allocationmodel is studied in this paper. In this model, a system, such as a communication network, is composed
of a finite number of users, and they compete for limited bandwidth resources. Each user adopts the decision that maximizes his
or her own benefit characterized by the utility function. The decision space of each user is subject to constraints. In addition,
some users form a group, and their joint decision space is also subject to constraints. Under the assumption that each user’s utility
function satisfies some continuity and concavity conditions, the existence, uniqueness, and fairness, in some appropriate sense, of
the Nash equilibrium point in the allocation game are proved. An algorithm yielding a sequence converging to the equilibrium
point is proposed. Finally, a numerical example with detailed analysis is provided to illustrate the effectiveness of our work.

1. Introduction

With the widespread use of internet and the increasing
popularity of mobile devices, more and more people can
get online at almost anytime and anywhere. An immediate
challenge facing the significant increment of online users is
the support of quality of service (QoS). Over the past decade
considerable efforts have been made to ensure the smooth
operation of the networking systems. For example, the load
balancing problems were considered by Anselmi et al. [1] and
Ayesta et al. [2].The routing problems were studied by La and
Anantharam [3], Richman and Shimkin [4], Boulogne et al.
[5], andKorilis et al. [6–8].Niyato andHossain [9] studied the
practical issue such as the admission control for the wireless
broadband standard. Ganesh et al. [10] and Yaı̈che et al. [11]
considered the pricing issues. In modeling the networking
problems, quite often the bandwidth availability is the main
concern and has its role in the associated performance
measure.The network system quantifies the results caused by
different operation scenarios and seeks the approach leading
to the greatest benefits in some sense. Since the benefit of
any network user inevitably involves that of other users, its

evaluation ismostly carried out in the context of game theory.
In the survey paper Altman et al. collected a long list of
networking models based on game theoretic formulation.
Interested readers are referred to [12] and the rich reference
therein.

As mentioned above, the bandwidth availability is the
major concern inmanynetworking problems.Thebandwidth
allocation is thus the core issue as far as the quality of service
is concerned. While the bandwidth allocation problem was
considered by many authors in different contexts of network-
ing protocols or communication standards (see e.g., [9, 11, 13,
14]), at a high level of abstraction the problem can be regarded
as the classical resources distribution problem studied in
many professional fields such as economics, management
science, and operations research. Given a finite number of
units competing for the limited resources, how does each unit
decide its share based on its own utility function? Lazar et al.
[15] formulated this problem for the network composed of
noncooperative users. Under certain monotonicity, differen-
tiability, and convexity assumptions on the cost function the
unique existence and certain fairness property of the Nash
equilibriumpoint (NEP)were proved. An algorithmbased on
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Gauss-Seidel and Jacobi schemes was proposed and proved
to yield a sequence converging to the NEP. However, the
framework in [15] assumes only the natural constraint for
the bandwidth allocation. That is, the feasible bandwidth of
any user falls within the interval lower bounded by zero and
upper bounded by the bandwidth available for that user. In
practice some techniques such as the bandwidth throttling
and bandwidth/traffic shaping [16] are available to provide
more adaptive bandwidth control. To address this issue,
Rhee and Konstantopoulos [17, 18] relaxed the assumption
and allowed some prespecified numbers for the upper and
lower bounds of the bandwidth.This relaxation increases the
flexibility of flow control and helps theQoS satisfaction by the
networking system.On the other hand, inmodern broadband
communication systems some users might form a group and
expect the group-wise QoS, in addition to the user-wise one.
For example, the customers of an internet service provider
(ISP) might include the individuals and a company with
many employees. To maintain the QoS, parameters would
be assigned to bound the bandwidth of each individual and
each employee. Furthermore the ISP and the company would
set the constraint for the employee-averaged, or equivalently,
employee-totaled bandwidth, as shown in Figure 1. A similar
concept of group constraint can be seen in the cost-effective
broadband access network such as the Ethernet-based passive
optical network (EPON) [19, 20]. This system is composed
of an optical line terminal (OLT) and many optical network
units (ONUs). The OLT is situated in the central office and
ONUs are distributed over the remote areas for multimedia
communication with the subscribers. In the upload process
each ONU adopts the time division multiplexing access
(TDMA) protocol to transmit data frames to the OLT, in the
sense that each ONU only transmits the data during the time
slots specifically scheduled for it [21]. The protocol avoids
the frame collisions between different ONUs at the cost of
imposing the upper bound for the time-average flow of each
ONU and the upper bound for the total flow of all ONUs.

In light of the bandwidth sharing mechanism in EPON
and other similar systems, we extend the existing results to
include the user-grouping constraint for better model fitting.
Suppose each user has his or her own utility function that
describes the relation between the allocated bandwidth and
the resultant benefit to that user. Following the standard
assumptions, (1) the function depends on the bandwidth of
the user, and on the bandwidth of other users only through
their total bandwidth, and (2) the function satisfies certain
continuity and concavity properties; we show the unique
existence and the fairness with some appropriate sense,
of the NEP in the allocation game. The contributions of
our work are twofold. First, a novel concept called user-
grouping NEP is proposed. This concept is corresponding
to the new introduction of the group constraint, under
which the uniqueness of NEP proved in [15, 17] no longer
holds. Based on this concept we give a new definition for
the equilibrium point and prove its uniqueness under our
assumptions. The fairness of the allocation based on the
user-grouping NEP is also proved. Second, we show that the
Gauss-Seidel type algorithm in [15, 18] can be modified to
yield a sequence converging to the user-grouping NEP. Since

Figure 1: The system bandwidth allocation r = (𝑟1, 𝑟2, . . . , 𝑟𝑛)
subject to user-wise constraints: 𝑟𝑖 ≤ 𝑟𝑖 ≤ 𝑟𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑛}, and
a user-grouping constraint 𝑅𝑔 ≤ ∑𝑚𝑖=1 𝑟𝑖 ≤ 𝑅𝑔. The total allocation𝑅 = ∑𝑛𝑖=1 𝑟𝑖 is less than 𝑇, the total bandwidth.

the bandwidth allocation is of central concern in networking
systems, our results might result in the reinvestigation and
reformulation of other networking issues such that more
practical approaches can be developed.

2. Preliminaries

Suppose a networking system has 𝑛 users and they compete
for the system bandwidth. Each user is assigned with the
bandwidth subject to predecided upper and lower bounds.
In addition, 𝑚 of the 𝑛 users form a group and the total
bandwidth of the 𝑚 users is also subject to a predecided
constraint. We would like to design the system bandwidth
allocation policy that optimizes the performance index of
each user in the game-theoretical sense. For convenience, we
use the list of nomenclature shown at the end of the paper.

Assume the utility function for each user depends on
the bandwidth of that user and the total bandwidth of other
users. That is, the utility function for user 𝑖 in N can be
written as 𝑈𝑖(𝑟𝑖, 𝑅). Also, assume the utility function satisfies
the following continuity and concavity properties [18].

Assumption 1. For each utility function 𝑈𝑖(𝑟𝑖, 𝑅)
(a) 𝑈𝑖(𝑟𝑖, 𝑅) is continuously differentiable with respect to𝑟𝑖;
(b) (𝜕/𝜕𝑟𝑖)𝑈𝑖(𝑟𝑖, 𝑅) is strictly decreasing with respect to 𝑟𝑖

and nonincreasing with respect to 𝑅.
Nowwe define the allocation function. For user 𝑖 inN\M

with the available bandwidth 𝑇𝑖, the allocation function 𝐴 𝑖 is
defined as

𝐴 𝑖 (𝑇𝑖) = arg max
𝑟𝑖≤𝑟≤𝑟𝑖

𝑈𝑖 (𝑟, 𝑟 + 𝑇 − 𝑇𝑖) . (1)

For user 𝑖 in M with the available bandwidth 𝑇𝑖 and inside-
group information 𝑇𝑔𝑖 , the allocation function A𝑖 is defined
as

A𝑖 (𝑇𝑖, 𝑇𝑔𝑖 ) = arg max
𝑟𝑖≤𝑟≤𝑟𝑖 , 𝑅𝑔≤𝑇

𝑔

𝑖
+𝑟≤𝑅𝑔

𝑈𝑖 (𝑟, 𝑟 + 𝑇 − 𝑇𝑖) . (2)
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Assumption 2. The bandwidth allocation with the constraint
parameters has the following properties:

(a) 𝑇𝑖 > A𝑖(𝑇𝑖, 𝑇𝑔𝑖 ) for each feasible 𝑇𝑖 and 𝑇𝑔𝑖 where𝑖 ∈M, and 𝑇𝑖 > 𝐴 𝑖(𝑇𝑖) for each feasible 𝑇𝑖 where𝑖 ∈N \M;
(b) ∑𝑚𝑖=1 𝑟𝑖 > 𝑅𝑔 > 𝑅𝑔 > ∑𝑚𝑖=1 𝑟𝑖.

In our framework, the classicalNash equilibriumpoint (NEP)
in the allocation game is defined as

r∗ := (𝑟∗1 , 𝑟∗2 , . . . , 𝑟∗𝑛 ) , (3)

where

𝑟∗𝑖 ∈ argmax
𝑟∈𝐶𝑖

𝑈𝑖(𝑟, 𝑟 + ∑
𝑗 /=𝑖

𝑟∗𝑗) . (4)

Note that 𝐶𝑖 is {𝑟 | 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑖, 𝑅𝑔 ≤ 𝑟 + ∑𝑗∈M\{𝑖} 𝑟∗𝑗 ≤ 𝑅𝑔} if𝑖 ∈ M and is {𝑟 | 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑖} otherwise. The user-grouping
NEP is defined as

r∗𝑔 := (𝑅
∗
𝑔𝑚 , 𝑟∗𝑚+1, 𝑟∗𝑚+2, . . . , 𝑟∗𝑛) , (5)

where

𝑅∗𝑔 := 𝑚∑
𝑖=1

𝑟∗𝑖 . (6)

Remark 3. The definitions (3)-(4) reflect the central concept
of the well-studied constrained NEP. That is, given the
constrained strategy space 𝐶𝑖 for each user 𝑖 ∈ N, 𝑟∗𝑖 is
defined as the maximizer of the utility function of user 𝑖
provided that the strategy 𝑟∗𝑗 is adopted by user 𝑗 for each𝑗 ∈ N \ {𝑖}. Note that the bandwidth of users in the group
M should satisfy the extra group constraint and thus 𝑟∗𝑖
might lose its uniqueness in 𝐶𝑖 as the group constraint is
active. The novel concept of user-grouping NEP in (5)-(6) is
thus proposed to compensate the property of the equilibrium
point. We will show in Section 3.1 that our setting ensures the
uniqueness of the user-grouping NEP.

Remark 4. Suppose 𝑇∗𝑖 := 𝑇 − ∑𝑛𝑗 /=𝑖 𝑟∗𝑗 . Also, let 𝑇𝑔∗𝑖 := 𝑅𝑔 −∑𝑚𝑗 /=𝑖 𝑟∗𝑗 , then
𝑟∗𝑖 := {A𝑖 (𝑇∗𝑖 , 𝑇𝑔∗𝑖 ) if 𝑖 ∈M𝐴 𝑖 (𝑇∗𝑖 ) if 𝑖 ∈N \M. (7)

By part (a) in Assumption 2 we have

𝑟∗𝑖 < 𝑇∗𝑖 = 𝑇 − 𝑛∑
𝑗 /=𝑖

𝑟∗𝑗 . (8)

Consequently,

𝑅∗ := 𝑛∑
𝑖=1

𝑟∗𝑖 < 𝑇. (9)

Thismeans that the NEP, or r∗, satisfies the natural constraint𝑅∗ ≤ 𝑇 and the constraint is always inactive. Part (b) in
Assumption 2 is a natural condition such that the constraint𝑅𝑔 ≤ ∑𝑚𝑖=1 𝑟𝑖 ≤ 𝑅𝑔 makes sense.

The existence of the NEP in our setting is guaranteed by
Rosen’s result in the following.

Theorem 5 (see [22,Theorem 1]). An equilibrium point exists
for every concave 𝑛-person game.

Theorem 5 can be obtained using the classical Kakutani
fixed point theorem and in some sense generalizes Nash’s
setting on the strategy space of the users [23, 24]. In the
next section we delve into other properties and propose an
algorithm to locate the NEP.

3. Main Results

3.1. Uniqueness. Our first result is concerned with the
uniqueness of the user-groupingNEP.This property as shown
in [18, page 13] is not implied by the uniqueness theorem in
[22]. For the NEP r∗ = (𝑟∗1 , 𝑟∗2 , . . . , 𝑟∗𝑛 ) defined in (3)-(4),
the Karash-Kuhn-Tucker (KKT) conditionsmust be satisfied.
That is, for each 𝑖 ∈N\M there exist KKTmultipliers 𝜆∗𝑖 and𝜆∗𝑖 (see e.g., [25, page 458]) such that

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟∗𝑖 , 𝑅∗) + 𝜆
∗

𝑖 − 𝜆∗𝑖 = 0, (10)

𝜆∗𝑖 (𝑟∗𝑖 − 𝑟𝑖) = 0, (11)

𝜆∗𝑖 (𝑟𝑖 − 𝑟∗𝑖 ) = 0, (12)

𝑟𝑖 ≤ 𝑟∗𝑖 ≤ 𝑟𝑖, (13)

𝜆∗𝑖 ≥ 0, 𝜆∗𝑖 ≥ 0. (14)

In addition, for each 𝑖 ∈ M there exist KKT multipliers 𝜆∗𝑖
and 𝜆∗𝑖 satisfying (11)–(14), and 𝛾∗𝑖 and 𝛾∗𝑖 satisfying

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟∗𝑖 , 𝑅∗) + 𝜆
∗

𝑖 − 𝜆∗𝑖 + 𝛾∗𝑖 − 𝛾∗𝑖 = 0, (15)

𝛾∗𝑖 (𝑅∗𝑔 − 𝑅𝑔) = 0, (16)

𝛾∗
𝑖
(𝑅𝑔 − 𝑅∗𝑔) = 0, (17)

𝑅𝑔 ≤ 𝑅∗𝑔 ≤ 𝑅𝑔, (18)

𝛾∗
𝑖
≥ 0, 𝛾∗𝑖 ≥ 0, (19)

where 𝑅∗𝑔 is defined in (6).

Lemma 6. For each 𝑖 ∈N \M, let 𝑟(1)𝑖 := 𝐴 𝑖(𝑇(1)𝑖 ) and 𝑟(2)𝑖 :=𝐴 𝑖(𝑇(2)𝑖 ) for some feasible 𝑇(1)𝑖 and 𝑇(2)𝑖 , then

𝑟(1)𝑖 > 𝑟(2)𝑖 ⇒ 𝜆(1)𝑖 − 𝜆(1)𝑖 ≥ 𝜆(2)𝑖 − 𝜆(2)𝑖 , (20)
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where the nonnegative KKT multipliers 𝜆(1)𝑖 , 𝜆(1)𝑖 , 𝜆(2)𝑖 and 𝜆(2)𝑖
satisfy

𝜆(1)𝑖 (𝑟(1)𝑖 − 𝑟𝑖) = 0, 𝜆(1)𝑖 (𝑟𝑖 − 𝑟(1)𝑖 ) = 0, (21)

𝜆(2)𝑖 (𝑟(2)𝑖 − 𝑟𝑖) = 0, 𝜆(2)𝑖 (𝑟𝑖 − 𝑟(2)𝑖 ) = 0. (22)

Proof. Since 𝑟(1)𝑖 and 𝑟(2)𝑖 are both feasible, 𝑟(1)𝑖 > 𝑟(2)𝑖 implies
𝜆(1)𝑖 = 0 and 𝜆(2)𝑖 = 0 by (21) and (22), respectively. Conse-
quently, the result follows since 𝜆(1)𝑖 ≥ 0 and 𝜆(2)𝑖 ≥ 0.
Theorem 7. The user-grouping NEP defined in (5) is unique.

Proof. Suppose r(1) = (𝑟(1)1 , 𝑟(1)2 , . . . , 𝑟(1)𝑛 ) and r(2) = (𝑟(2)1 , 𝑟(2)2 ,. . . , 𝑟(2)𝑛 ) are both the equilibrium points. Let 𝑅(1) = ∑𝑛𝑖=1 𝑟(1)𝑖
and 𝑅(2) = ∑𝑛𝑖=1 𝑟(2)𝑖 . We can thus write for 𝑖 ∈N \M that

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(1)𝑖 , 𝑅(1)) + 𝜆
(1)

𝑖 − 𝜆(1)𝑖 = 0,
− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(2)𝑖 , 𝑅(2)) + 𝜆

(2)

𝑖 − 𝜆(2)𝑖 = 0,
(23)

where 𝜆(1)𝑖 , 𝜆(1)𝑖 , 𝜆(2)𝑖 , 𝜆(2)𝑖 are the associated KKT multipliers.
Assume that 𝑅(1) > 𝑅(2). If there exists 𝑖 ∈ N \M such that𝑟(1)𝑖 > 𝑟(2)𝑖 , by Lemma 6 and Assumption 1 we have

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(1)𝑖 , 𝑅(1)) + 𝜆
(1)

𝑖 − 𝜆(1)𝑖
> − 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(2)𝑖 , 𝑅(2)) + 𝜆

(2)

𝑖 − 𝜆(2)𝑖 ,
(24)

which is a contradiction. We thus have 𝑟(1)𝑖 ≤ 𝑟(2)𝑖 for 𝑖 in
N \M. This implies 𝑅(1)𝑔 := ∑𝑚𝑖=1 𝑟(1)𝑖 > ∑𝑚𝑖=2 𝑟(2)𝑖 = 𝑅(2)𝑔 . Note
that, for 𝑖 ∈M,

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(1)𝑖 , 𝑅(1)) + 𝜆
(1)

𝑖 − 𝜆(1)𝑖 + 𝛾(1)𝑖 − 𝛾(1)
𝑖
= 0,

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(2)𝑖 , 𝑅(2)) + 𝜆
(2)

𝑖 − 𝜆(2)𝑖 + 𝛾(2)𝑖 − 𝛾(2)
𝑖
= 0.

(25)

With similar arguments in proving Lemma 6 we can show
that

𝑅(1)𝑔 > 𝑅(2)𝑔 ⇒ 𝛾(1)𝑖 − 𝛾(1)
𝑖
≥ 𝛾(2)𝑖 − 𝛾(2)

𝑖
. (26)

If 𝑟(1)𝑖 > 𝑟(2)𝑖 for some 𝑖 ∈M, we have

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(1)𝑖 , 𝑅(1)) + 𝜆
(1)

𝑖 − 𝜆(1)𝑖 + 𝛾(1)𝑖 − 𝛾(1)
𝑖

> − 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(2)𝑖 , 𝑅(2)) + 𝜆
(2)

𝑖 − 𝜆(2)𝑖 + 𝛾(2)𝑖 − 𝛾(2)
𝑖
,

(27)

which is a contradiction. We thus have 𝑟(𝑖)𝑖 ≤ 𝑟(2)𝑖 for each𝑖 ∈ M and therefore 𝑅(1)𝑔 ≤ 𝑅(2)𝑔 , also a contradiction. With

analogous arguments we can show that assuming 𝑅(1) < 𝑅(2)
also leads to a contradiction. Therefore 𝑅(1) = 𝑅(2) and by
Lemma 6 𝑟(1)𝑖 = 𝑟(2)𝑖 for 𝑖 ∈ N \M. This implies 𝑅(1)𝑔 = 𝑅(2)𝑔 ;
therefore r∗𝑔 is unique.

3.2. Fairness. A bandwidth allocation r = (𝑟1, 𝑟2, . . . , 𝑟𝑛) is
said to be fair if for any feasible 𝑡1 and 𝑡2

A𝑖 (𝑡1, 𝑡2) ≥ A𝑗 (𝑡1, 𝑡2) ⇒ 𝑟𝑖 ≥ 𝑟𝑗, (28)

where 𝑖, 𝑗 ∈M, and for any feasible 𝑡
𝐴 𝑖 (𝑡) ≥ 𝐴𝑗 (𝑡) ⇒ 𝑟𝑖 ≥ 𝑟𝑗, (29)

where 𝑖, 𝑗 ∈ N \ M. This definition suggests that a fair
allocation guarantees the user in greater need of bandwidth
actually obtains more bandwidth.

Theorem 8. The bandwidth allocation based on the NEP
defined in (3)-(4) is fair.

Proof. Suppose 𝑖 ∈ M. Let 𝑟(1)𝑖 = A𝑖(𝑇(1)𝑖 , 𝑡) and 𝑟(2)𝑖 =
A𝑖(𝑇(1)𝑖 + Δ𝑇, 𝑡 + Δ𝑇). We thus have

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(1)𝑖 , 𝑅(1)) + 𝜆
(1)

𝑖 − 𝜆(1)𝑖 + 𝛾(1)𝑖 − 𝛾(1)
𝑖
= 0,

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(2)𝑖 , 𝑅(2)) + 𝜆
(2)

𝑖 − 𝜆(2)𝑖 + 𝛾(2)𝑖 − 𝛾(2)
𝑖
= 0.

(30)

Assume 𝑟(2)𝑖 − Δ𝑇 > 𝑟(1)𝑖 , which implies 𝑟(2)𝑖 > 𝑟(1)𝑖 and by
Lemma 6 𝜆(2)𝑖 − 𝜆(2)𝑖 ≥ 𝜆(1)𝑖 − 𝜆(1)𝑖 . Also,

𝑅(2) := 𝑟(2)𝑖 + 𝑅(2)−𝑖 > 𝑟(1)𝑖 + Δ𝑇 + 𝑅(2)−𝑖
= 𝑟(1)𝑖 + 𝑅(1)−𝑖 := 𝑅(1). (31)

Similarly,

𝑅(2)𝑔 := 𝑟(2)𝑖 + 𝑚∑
𝑗 /=𝑖

𝑟(2)𝑗 > 𝑟(1)𝑖 + Δ𝑇 + 𝑚∑
𝑗 /=𝑖

𝑟(2)𝑗
= 𝑟(1)𝑖 + 𝑚∑

𝑗 /=𝑖

𝑟(1)𝑗 := 𝑅(1)𝑔 .
(32)

Note that (32) implies 𝛾(2)𝑖 − 𝛾(2)
𝑖
≥ 𝛾(1)𝑖 − 𝛾(1)

𝑖
. We then have

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(2)𝑖 , 𝑟(2)𝑖 + 𝑅(2)−𝑖 ) + 𝜆(2)𝑖 − 𝜆(2)𝑖 + 𝛾(2)𝑖 − 𝛾(2)
𝑖

> − 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟(1)𝑖 , 𝑟(1)𝑖 + 𝑅(1)−𝑖 ) + 𝜆(1)𝑖 − 𝜆(1)𝑖 + 𝛾(1)𝑖 − 𝛾(1)
𝑖
,

(33)

which is a contradiction. Therefore, 𝑟(2)𝑖 − Δ𝑇 ≤ 𝑟(1)𝑖 , which
implies

𝑇(1)𝑖 + Δ𝑇 − 𝑟(2)𝑖 ≥ 𝑇(1)𝑖 − 𝑟(1)𝑖 , (34)
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namely,

𝑇(1)𝑖 + Δ𝑇 −A𝑖 (𝑇(1)𝑖 + Δ𝑇, 𝑡 + Δ𝑇) ≥ 𝑇(1)𝑖 −A𝑖 (𝑇(1)𝑖 , 𝑡) .
(35)

To show the allocation based on r∗ is fair, consider first the
case that 𝑖, 𝑗 ∈ M. By definition 𝑟∗𝑖 = A𝑖(𝑇∗𝑖 , 𝑇𝑔∗𝑖 ), 𝑟∗𝑗 :=
A𝑗(𝑇∗𝑗 , 𝑇𝑔∗𝑗 ) where 𝑇∗𝑖 , 𝑇𝑔∗𝑖 , 𝑇∗𝑗 and 𝑇𝑔∗𝑗 are all feasible. With𝑅∗ defined in (9) we have

𝑇 − 𝑅∗ = 𝑇∗𝑖 −A𝑖 (𝑇∗𝑖 , 𝑇𝑔∗𝑖 ) = 𝑇∗𝑗 −A𝑗 (𝑇∗𝑗 , 𝑇𝑔∗𝑖 ) , (36)

which equals the remaining bandwidth of the system after
allocation. GivenA𝑖(𝑇∗𝑖 , 𝑇𝑔∗𝑖 ) > A𝑗(𝑇∗𝑖 , 𝑇𝑔∗𝑖 ), we have

𝑇∗𝑖 −A𝑗 (𝑇∗𝑖 , 𝑇𝑔∗𝑖 ) > 𝑇∗𝑖 −A𝑖 (𝑇∗𝑖 , 𝑇𝑔∗𝑖 )
= 𝑇∗𝑗 −A𝑗 (𝑇∗𝑗 , 𝑇𝑔∗𝑗 ) . (37)

Note that

𝑇∗𝑖 − 𝑇∗𝑗 = 𝑇𝑔∗𝑖 − 𝑇𝑔∗𝑗 = 𝑟∗𝑖 − 𝑟∗𝑗 := Δ𝑇∗. (38)

Equations (35) and (37) imply Δ𝑇∗ > 0; hence 𝑟∗𝑖 > 𝑟∗𝑗 . The
case for 𝑖, 𝑗 ∈ N \ M can be similarly proved and is thus
ignored (see [18, Theorem 2.3] for details).

3.3. Algorithm. In this section we analyze the scheme to
identify the user-groupingNash equilibrium point.We say an
individual update is implemented on user 𝑖 if the bandwidth
of each user other than 𝑖 is fixed and the bandwidth of
user 𝑖 is updated to maximize his or her utility function. In
addition, we say a batch update occurs in the collection K
of users if the bandwidth of each user not in K is fixed and
the individual update is sequentially implemented on each
user in K repeatedly till an equilibrium is reached. Here
K is either M or N \ M. If K = M the batch update is
implemented assuming no group constraint, namely,𝑅𝑔 = ∞
and 𝑅𝑔 = 0. Note that the batch update is guaranteed to reach
an equilibrium (see [15] and [18, Section 2.4]). As a result,
suppose r𝑘 = (𝑟𝑘1 , 𝑟𝑘1 , . . . , 𝑟𝑘𝑛) is the system allocation at step𝑘. If an individual update occurs at user 𝑖 ∈ N \M at step𝑘 + 1, that means 𝑟𝑘+1𝑗 = 𝑟𝑘𝑗 for 𝑗 ∈N \ {𝑖}, and

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟𝑘+1𝑖 , 𝑅𝑘+1) + 𝜆𝑘+1𝑖 − 𝜆𝑘+1𝑖 = 0, (39)

for someKKTmultipliers 𝜆𝑘+1𝑖 and 𝜆𝑘+1𝑖 and𝑅𝑘+1 = ∑𝑛𝑖=1 𝑟𝑘+1𝑖 .
If a batch update occurs at the group of users at step 𝑘+1, that
means 𝑟𝑘+1𝑗 = 𝑟𝑘𝑗 for each 𝑗 ∈ N \M, and we can write for
each 𝑖 ∈M

− 𝜕𝜕𝑟𝑖𝑈𝑖 (𝑟𝑘+1𝑖 , 𝑅𝑘+1) + 𝜆𝑘+1𝑖 − 𝜆𝑘+1𝑖 + 𝛾𝑘+1𝑖 − 𝛾𝑘+1
𝑖

= 0, (40)

where 𝜆𝑘+1𝑖 , 𝜆𝑘+1𝑖 , 𝛾𝑘+1𝑖 and 𝛾𝑘+1𝑖 are the associated KKT
multipliers. We now show that a repeated implementation of

sequential batch updates on users inM and users inN \M,
as outline in Algorithm 1, yields a sequence converging to the
user-grouping NEP r∗𝑔 in (5). Define first the error measure𝑒(r𝑘𝑔) between r𝑘𝑔 and r∗𝑔 as

𝑒 (r𝑘𝑔) = 𝑛∑
𝑖=𝑚+1

𝑟𝑘𝑖 − 𝑟∗𝑖  + 𝑅𝑘𝑔 − 𝑅∗𝑔 + 𝑅𝑘 − 𝑅∗ , (41)

where 𝑅𝑘𝑔 := ∑𝑚𝑖=1 𝑟𝑘𝑖 . 𝑅∗𝑔 and 𝑅∗ are defined in (6) and (9),
respectively.

Lemma 9. The error measure 𝑒(r𝑘𝑔) defined in (41) is nonin-
creasing, namely, 𝑒(r𝑘+1𝑔 ) ≤ 𝑒(r𝑘𝑔) for any positive integer 𝑘.
Proof. If at step 𝑘 + 1 an individual update occurs at 𝑖 ∈
N \M, (39) is satisfied. Since (10) is also satisfied, we have
by Lemma 6 and part (b) in Assumption 1 that

𝑅𝑘+1 ≥ 𝑅∗ ⇒ 𝑟𝑘+1𝑖 ≤ 𝑟∗𝑖 ,
𝑅𝑘+1 ≤ 𝑅∗ ⇒ 𝑟𝑘+1𝑖 ≥ 𝑟∗𝑖 . (42)

Under the assumption

𝑒 (r𝑘+1𝑔 ) − 𝑒 (r𝑘𝑔) = 𝑟𝑘+1𝑖 − 𝑟∗ − 𝑟𝑘𝑖 − 𝑟∗
+ 𝑅𝑘+1 − 𝑅∗ − 𝑅𝑘 − 𝑅∗ .

(43)

Suppose 𝑅𝑘+1 ≥ 𝑅∗. If 𝑅𝑘 ≥ 𝑅𝑘+1, then
𝑒 (r𝑘+1𝑔 ) − 𝑒 (r𝑘𝑔) = − (𝑟𝑘+1𝑖 − 𝑟∗) − 𝑟𝑘𝑖 − 𝑟∗ + 𝑅𝑘+1 − 𝑅𝑘

⇒ {= 0 if 𝑟𝑘𝑖 < 𝑟∗𝑖< 0 o.w.
(44)

Since 𝑅𝑘 < 𝑅𝑘+1 implies 𝑟𝑘𝑖 < 𝑟𝑘+1𝑖 , we have

𝑒 (r𝑘+1𝑔 ) − 𝑒 (r𝑘𝑔) = −𝑟𝑘+1𝑖 + 𝑟𝑘𝑖 + 𝑅𝑘+1 − 𝑅∗ − 𝑅𝑘 − 𝑅∗
⇒ {= 0 if 𝑅𝑘 > 𝑅∗< 0 o.w.

(45)

Using similar arguments we can analyze the case for 𝑅𝑘+1 <𝑅∗ and obtain also that 𝑒(r𝑘+1𝑔 ) ≤ 𝑒(r𝑘𝑔). If at step 𝑘 + 1 a batch
update occurs, (15) and (40) hold for each 𝑖 ∈ M. Suppose𝑅𝑘+1 ≥ 𝑅∗. If there exists an 𝑖 ∈ M such that 𝑟𝑘+1𝑖 > 𝑟∗𝑖 then
part (b) in Assumption 1 implies

𝛾𝑘+1𝑖 − 𝛾𝑘+1
𝑖

< 𝛾∗𝑖 − 𝛾∗𝑖 ; (46)

therefore by (26)𝑅∗𝑔 ≥ 𝑅𝑘+1𝑔 . If no such 𝑖 exists, namely, 𝑟𝑘+1𝑖 ≤𝑟∗ for each 𝑖 ∈ M, then naturally 𝑅𝑘+1𝑔 ≤ 𝑅∗𝑔 . A similar result
can be derived for the case 𝑅𝑘+1 ≤ 𝑅∗. We then have

𝑅𝑘+1 ≥ 𝑅∗ ⇒ 𝑅𝑘+1𝑔 ≤ 𝑅∗𝑔 , (47)

𝑅𝑘+1 ≤ 𝑅∗ ⇒ 𝑅𝑘+1 ≥ 𝑅∗𝑔 . (48)
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Table 1: The parameters of 𝛼𝑖 for 𝑖 ∈N = {1, 2, . . . , 100}.
𝑖 𝛼𝑖
1–10 .6111 .7052 .0283 .5209 .2591 .5082 .9732 .8182 .8588 .8966
11–20 .2995 .8800 .2552 .1921 .1866 .8611 .4446 .3866 .8320 .2065
21–30 .8978 .4595 .1634 .2687 .5207 .7724 .3874 .0444 .9868 .5230
31–40 .8437 .8919 .6856 .5178 .4420 .3801 .0318 .2159 .0853 .7969
41–50 .4018 .0498 .3165 .8712 .9314 .4257 .8662 .4806 .9083 .2505
51–60 .5266 .2448 .8384 .5257 .3498 .2571 .1688 .5992 .8110 .8489
61–70 .8448 .2350 .5083 .6694 .0907 .5430 .2980 .3818 .5339 .4265
71–80 .2320 .0284 .0260 .2743 .6945 .3300 .7505 .7957 .0537 .0092
81–90 .7281 .6644 .5853 .9190 .1673 .9720 .2196 .0382 .7078 .2290
91–100 .3526 .7095 .5887 .1088 .6468 .7311 .8634 .0226 .5252 .1512

Now

𝑒 (r𝑘+1𝑔 ) − 𝑒 (r𝑘𝑔) = 𝑅𝑘+1𝑔 − 𝑅∗𝑔 − 𝑅𝑘𝑔 − 𝑅∗𝑔
+ 𝑅𝑘+1 − 𝑅∗ − 𝑅𝑘 − 𝑅∗ .

(49)

Assume 𝑅𝑘+1 ≥ 𝑅∗. If 𝑅𝑘 ≥ 𝑅𝑘+1 then
𝑒 (r𝑘+1𝑔 ) − 𝑒 (r𝑘𝑔) = − (𝑅𝑘+1𝑔 − 𝑅∗𝑔) − 𝑅𝑘𝑔 − 𝑅∗𝑔 + 𝑅𝑘+1 − 𝑅𝑘

⇒ {= 0 if 𝑅𝑘𝑔 < 𝑅∗𝑔< 0 o.w.
(50)

If 𝑅𝑘 < 𝑅𝑘+1, which is equivalent to 𝑅𝑘𝑔 < 𝑅𝑘+1𝑔 , then

𝑒 (r𝑘+1𝑔 ) − 𝑒 (r𝑘𝑔) = −𝑅𝑘+1𝑔 + 𝑅𝑘𝑔 + 𝑅𝑘+1 − 𝑅∗ − 𝑅𝑘 − 𝑅∗
⇒ {= 0 if 𝑅𝑘 > 𝑅∗< 0 o.w.

(51)

Applying similar arguments again we can analyze the case for𝑅𝑘+1 < 𝑅∗ and obtain also that 𝑒(r𝑘+1𝑔 ) ≤ 𝑒(r𝑘𝑔).
Theorem 10. Algorithm 1 yields a sequence {r𝑘𝑔}∞𝑘=1 converging
to r∗𝑔 , the user-groupingNEP of the bandwidth allocation game.

Proof. In the light of Lemma 9, we only need to show that
for each positive integer 𝑘, r𝑘𝑔 /= r∗𝑔 implies the existence of a
finite integer 𝑘1 such that 𝑒(r𝑘+𝑘1𝑔 ) < 𝑒(r𝑘𝑔). Suppose it is not
the case then there exists some 𝑘 such that 𝑒(r𝑘+𝑘2𝑔 ) = 𝑒(r𝑘𝑔) for
any positive integer 𝑘2, where r𝑘𝑔 /= r∗𝑔 . Consider the update
scheme that, at step 𝑘 + 𝑖 − 𝑚 for 𝑖 ∈ N \M, the individual
update occurs at user 𝑖, and at step 𝑘 + 𝑛 + 1 − 𝑚 the batch
update takes place for users inM. Without loss of generality
we assume 𝑅𝑘+𝑛+1−𝑚 ≥ 𝑅∗, then 𝑅𝑔(𝑘 + 𝑛 + 1 − 𝑚) ≤ 𝑅∗𝑔 by
(47). Since 𝑒(r𝑘+𝑛+1−𝑚𝑔 ) = 𝑒(r𝑘+𝑛−𝑚𝑔 ), (50) together with (51)
implies 𝑅𝑘+𝑛−𝑚 ≥ 𝑅∗; hence 𝑅𝑘+𝑛−𝑚𝑔 ≤ 𝑅∗𝑔 . That is, 𝑅⋅ − 𝑅∗
and 𝑅⋅𝑔 − 𝑅∗𝑔 do not change their signs as the step number is

increased from 𝑘+𝑛−𝑚 to 𝑘+𝑛+1−𝑚. Moreover, 𝑅𝑘+𝑛−𝑚 ≥𝑅∗ implies 𝑟𝑘+𝑛−𝑚𝑛 ≤ 𝑟∗𝑛 . Since 𝑒(r𝑘+𝑛+1−𝑚𝑔 ) = 𝑒(r𝑘+𝑖−𝑚−1𝑔 ) for𝑖 ∈ N \M, (44) and (45) together imply 𝑅𝑘+𝑖−𝑚 ≥ 𝑅∗ and
thus 𝑟𝑘+𝑖−𝑚𝑖 ≤ 𝑟∗𝑖 , for 𝑖 ∈ N \M. As a result, 𝑟𝑘+𝑛−𝑚𝑖 ≤ 𝑟∗𝑖 for𝑖 ∈N \M. Note that 𝑅𝑘+𝑛−𝑚𝑔 ≤ 𝑅∗𝑔 and

𝑅𝑘+𝑛−𝑚 = 𝑅𝑘+𝑛−𝑚𝑔 + 𝑛∑
𝑖=𝑚+1

𝑟𝑘+𝑛−𝑚𝑖
≥ 𝑅∗ = 𝑅∗𝑔 + 𝑛∑

𝑖=𝑚+1

𝑟∗𝑖 .
(52)

We conclude that𝑅𝑘+𝑛−𝑚𝑔 = 𝑅∗𝑔 and 𝑟𝑘+𝑛−𝑚𝑖 = 𝑟∗𝑖 for 𝑖 ∈N\M,
namely, r𝑘𝑔 = r∗𝑔 , a contradiction.

4. A Numerical Example

Consider a data communication network system with 100
users. Suppose 30 of them form a group. We then have N ={1, 2, . . . , 100} and M = {1, 2, . . . , 30}. The adopted utility
function is

𝑈𝑖 (𝑟𝑖, 𝑅) = 𝑟𝛼𝑖𝑖 (𝑇 − 𝑅) , (53)

where the parameters 𝛼𝑖’s are listed in Table 1. Note that
the utility function, known as the generalized power function
[26], has the continuity and concavity properties required
by Assumption 1. In particular, it can be shown [18, page 11]
easily that the maximizer

argmax
𝑟
𝑈𝑖 (𝑟, 𝑅) = 𝛼𝑖1 + 𝛼𝑖𝑇𝑖 < 𝑇𝑖, (54)

and thus part (a) in Assumption 2 is satisfied. Suppose the
total available bandwidth 𝑇 = 6000, and the upper and lower
bounds for total bandwidth allocated to the group is 𝑅𝑔 =2000 and 𝑅𝑔 = 800, respectively. Assume that the individual
bandwidth constraint for each user in Table 2 is used. Clearly
these parameters satisfy the natural requirements of part
(b) in Assumption 2. Applying Algorithm 1 yields a dynamic
bandwidth allocation evolving with the implementation step,
as shown in Figure 2. The left part of the figure shows the
evolution of total bandwidth allocated to the group, which is
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(P1) Initiate the algorithm with a feasible r𝑔 and set 𝑠 = 0.
(P2) (if current step is 𝑘) Perform a batch update for users inM at step 𝑘 + 1

by assigning 𝑟𝑘+1𝑗 = 𝑟𝑘𝑗 for all 𝑗 ∈N \M,
to reach 𝑟𝑘+1𝑖 = A𝑖 (𝑇𝑘+1𝑖 , 𝑇𝑔,𝑘+1𝑖 ) for all 𝑖 ∈M.

(P3) (if current step is �̂�) Perform an individual update at user 𝑖 inN \M
by assigning 𝑟�̂�+1𝑗 = 𝑟�̂�𝑗 for all 𝑗 ∈N \ {𝑖},
to reach 𝑟�̂�+1𝑖 = 𝐴 𝑖(𝑇�̂�𝑖 ), and let �̂� = �̂� + 1.
Sequentially implement this whole procedure till each user inN \M
is updated.

(P4) Repeat (P3) to complete a batch update at users inN \M.
(P5) Set 𝑠 = 𝑠 + 1 and record the current r𝑔 asR(𝑠).

If ‖R(𝑠) −R(𝑠 − 1)‖ < 𝜀 then stops, otherwise go to (P2).

Algorithm 1: The scheme to locate the user-grouping NEP.

(a) (b)

Figure 2: The sequence generated by Algorithm 1 for the example.

composed of user 1, user 2, up to user 30. At the beginning
of the algorithm, an initial feasible bandwidth allocation is
allocated to each user of the system. Fix the total bandwidth
allocated to the users not in the group and find the optimal
total bandwidth 𝑅𝑔. In the example 𝑅𝑔 is 3950.3. Since this
value is greater than the upper bound 𝑅𝑔 = 2000. 𝑅𝑔 is
replaced with 𝑅𝑔. Fix this 𝑅𝑔 we have the total available
bandwidth 𝑇 − 𝑅𝑔 = 6000 − 2000 = 4000 for users not
in the group. Based on this availability of the bandwidth we
can find the equilibrium point for users not in the group.
In the example we have, for instance, the bandwidth 𝑟70 =50, 𝑟90 = 57.554, and 𝑟100 = 38.0004. Now fix the total
bandwidth of the users not in the group, and find the optimal

bandwidth 𝑅𝑔 again. In the example we obtain 𝑅𝑔 = 2115.8.
Since this value is greater than the upper bound 𝑅𝑔 = 2000,𝑅𝑔 is replaced with 𝑅𝑔 again. Note that the current optimal
bandwidth allocation for each user outside the group is found
based on the condition that the total bandwidth for the group
is 𝑅𝑔. The current 𝑅𝑔 and 𝑟𝑚+1, . . . , 𝑟𝑛 is thus the 𝑅∗𝑔 and𝑟∗𝑚+1, . . . , 𝑟∗𝑛 for the user-grouping NEP in (5).

5. Conclusion

We have proposed a novel bandwidth allocationmodel based
on game theory. The consideration of the user-grouping
constraint distinguishes this model from the abundant ones
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Table 2: The bandwidth constraint for each user.

User (𝑖) 1–10 11–20 21–30 31–70 71–90 91–100
Upper bound (𝑟𝑖) 100 200 290 50 78 100
Lower bound (𝑟𝑖) 10 20 30 5 10 22

concerning similar allocation issues. Suppose each user com-
petes for the system bandwidth resources and is granted with
a constrained decision space. In particular, some users are
united in one group and the total bandwidth allocated to the
group is constrained as well. Given the appropriate constraint
parameters and the utility function satisfyingmild continuity
and concavity conditions for each user, we have shown
the unique existence of the user-grouping Nash equilibrium
point for the allocation game. In addition, we have shown
the fairness, in a proper sense, of the allocation based on
this equilibrium point. Finally, we have proposed an iterative
algorithm and proved that a sequence converging to the
point can be generated by the algorithm. A practical example
illustrating a network satisfying our settings has been given to
show how the equilibrium point can be located successfully.

Nomenclature

N: The index set for the users, that is,
N := {1, 2, . . . , 𝑛}

M: The index set for the users in the group,
that is,M := {1, 2, . . . , 𝑚}

N \M: The index set for the users not in the
group, that is,N \M := {𝑚,𝑚 + 1, . . . , 𝑛}𝑟𝑖: The bandwidth allocated to user 𝑖𝑟𝑖: Lower bound for 𝑟𝑖𝑟𝑖: Upper bound for 𝑟𝑖𝑅𝑔: Total bandwidth allocated to the group
members, that is, 𝑅𝑔 := 𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑚𝑅𝑔: Lower bound for 𝑅𝑔𝑅𝑔: Upper bound for 𝑅𝑔𝑇: Total bandwidth available in the system𝑅: Total bandwidth allocated, that is,𝑅 := 𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑛𝑅−𝑖: Total bandwidth allocated, excluding to
user 𝑖, that is, 𝑅−𝑖 := 𝑟1 + ⋅ ⋅ ⋅ + 𝑟𝑖−1 + 𝑟𝑖+1+⋅ ⋅ ⋅ + 𝑟𝑛𝑇𝑖: Total bandwidth available for user 𝑖, that
is, 𝑇𝑖 := 𝑇 − 𝑅−𝑖𝑇𝑔𝑖 : Inside-group information for user 𝑖 ∈M,
that is, 𝑇𝑔𝑖 := 𝑅𝑔 − ∑𝑚𝑗 /=𝑖 𝑟𝑗.
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