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ModifiedMann-Halpern algorithms for finding the fixed points of pseudocontractive mappings are presented. Strong convergence
theorems are obtained.

1. Introduction

Finding the fixed points of nonlinear operators is an impor-
tant topic in fixed point theory, due to the fact thatmany non-
linear problems can be reformulated as fixed point equations
of nonlinear mappings. The research of this area dates back
to Picard’s and Banach’s time. Now it is well known that the
Picard iterates {𝑇𝑛𝑥} converge to the unique fixed point of
𝑇 whenever 𝑇 is a contraction of a complete metric space.
However, if 𝑇 is not a contraction (e.g., nonexpansive), then
the Picard algorithm {𝑇𝑛𝑥} does not converge. Consequently,
Mann’s algorithm was constructed by Mann [1] in 1953:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛

+ 𝛼
𝑛
𝑇𝑥
𝑛

, 𝑛 ≥ 0. (1)

There are a large number of papers onMann’s algorithm in the
literature. See [2–5]. Now we know that if 𝑇 is nonexpansive,
then Mann’s algorithm converges weakly to a fixed point of
𝑇. This algorithm however does not converge in the strong
topology.

In order to get the strong convergence, the following
Halpern’s algorithm was introduced:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛

, 𝑛 ≥ 0. (2)

The interest and importance of Halpern iterative method lie
in the fact that strong convergence of the sequence {𝑥

𝑛
} is

achieved under certain mild conditions on parameter {𝛼
𝑛
} in

a general Banach space. Please refer to [6–12].

In the present paper, we are devoted to find the fixed
points of pseudocontractive mappings. For some related
works, please see [13–23]. The interest of pseudocontractions
lies in their connection with monotone operators. Browder
and Petryshyn [24] studied weak convergence of Mann’s
algorithm for the class of strict pseudocontractions. But
Mann’s algorithm fails to converge for Lipschitzian pseudo-
contractions [25].

Inspired by the results in the literature, the main purpose
of this paper is to construct an iterative method for finding
the fixed points of pseudocontractive mappings. Under some
mild conditions, strong convergence results are given.

2. Preliminaries

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩
and norm ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed
convex subset of 𝐻. A mapping 𝑇 : 𝐶 → 𝐶 is called
pseudocontractive if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

, 𝑥, 𝑦 ∈ 𝐶. (3)

A mapping 𝑇 : 𝐶 → 𝐶 is called 𝑘-Lipschitzian if there exists
𝑘 > 0 such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (4)

for all 𝑥, 𝑦 ∈ 𝐶. In this case, if 𝑘 < 1, then𝑇 is a 𝑘-contraction.
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It is well known that in a real Hilbert space 𝐻 the
following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩
2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝑥 + 𝑦⟩, (5)

for all 𝑥, 𝑦 ∈ 𝐻.
In the present paper, we will use the following notations:

(i) we use Fix(𝑇) to denote the set of fixed points of 𝑇;
(ii) 𝑥
𝑛
⇀ 𝑥 denotes the weak convergence of 𝑥

𝑛
to 𝑥;

(iii) 𝑥
𝑛
→ 𝑥 denotes the strong convergence of 𝑥

𝑛
to 𝑥.

Lemma 1 (see [26]). Let 𝐶 be a closed convex subset of a
real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a continuous
pseudocontractive mapping.Then (𝐼−𝑇) is demiclosed at zero.

Lemma 2 (see [27]). Let {𝑤
𝑛
} be a sequence of real numbers.

Assume {𝑤
𝑛
} does not decrease at infinity; that is, there exists

at least a subsequence {𝑤
𝑛𝑘
} of {𝑤

𝑛
} such that 𝑤

𝑛𝑘
≤ 𝑤
𝑛𝑘+1

for
all 𝑘 ≥ 0. For every 𝑛 ≥ 𝑀, define an integer sequence {𝑊(𝑛)}
as

𝑊(𝑛) = max {𝑖 ≤ 𝑛 : 𝑤
𝑛𝑖
< 𝑤
𝑛𝑖+1
} . (6)

Then𝑊(𝑛) → ∞ as 𝑛 → ∞ and for all 𝑛 ≥ 𝑀

max {𝑤
𝑊(𝑛)
, 𝑤
𝑛
} ≤ 𝑤
𝑊(𝑛)+1

. (7)

Lemma 3 (see [28]). Assume that {𝐴
𝑛
} is a sequence of

nonnegative real numbers such that

𝐴
𝑛+1
≤ (1 − 𝛾

𝑛
) 𝐴
𝑛
+ 𝜉
𝑛
, (8)

where {𝛾
𝑛
} is a sequence in (0, 1) and {𝜉

𝑛
} is a sequence such

that

(1) ∑∞
𝑛=1
𝛾
𝑛
= ∞;

(2) lim sup
𝑛→∞

(𝜉
𝑛
/𝛾
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝜉
𝑛
| < ∞.

Then lim
𝑛→∞

𝐴
𝑛
= 0.

3. Main Results

Now we present the statement of our algorithm.

TheModified Mann-Halpern Algorithm. Let 𝐶 be a nonempty
closed convex subset of a realHilbert space𝐻. Let𝑇 : 𝐶 → 𝐶
be a pseudocontractive mapping and 𝑆 : 𝐶 → 𝐻 a 𝜌-
contractive mapping. Let {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} be three real

number sequences in [0, 1]. We have the following steps.

(1) Initialization:

∀𝑥
0
∈ 𝐶. (9)

(2) Mann step: for a given 𝑥
𝑛
, define a sequence 𝑦

𝑛
by

𝑦
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
, (10)

for all 𝑛 ≥ 0.

(3) Halpern step: for a given 𝑥
𝑛
and 𝑦

𝑛
, define

𝑥
𝑛+1
= 𝛼
𝑛
𝑆 (𝑥
𝑛
) + (1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑦
𝑛
, (11)

for all 𝑛 ≥ 0.
In the following, we assume that
(i) the mapping 𝑇 : 𝐶 → 𝐶 is 𝑘-Lipschitzian;
(ii) the sequences {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} satisfy the following

conditions (C1)–(C5):

(C1): lim
𝑛→∞

𝛼
𝑛
= 0;

(C2): ∑∞
𝑛=1
𝛼
𝑛
= ∞;

(C3): 𝛼
𝑛
+ 𝛽
𝑛
≤ 𝛾
𝑛
;

(C4): 0 < lim inf
𝑛→∞

𝛽
𝑛
;

(C5): 0 < lim sup
𝑛→∞

𝛾
𝑛
< 1/(√1 + 𝑘2 + 1).

Now, we prove our main result as follows.

Theorem 4. Suppose Fix(𝑇) ̸= 0. Then the sequence {𝑥
𝑛
}

defined by (11) converges strongly to a fixed point of 𝑇.

Proof. Since 𝑆 is a 𝜌-condition, then ProjFix(𝑇)𝑆 is a contrac-
tive mapping (where Proj is the metric projection). Hence,
there exists a unique 𝑢 such that 𝑢 = ProjFix(𝑇)𝑆(𝑢). In the
sequel, we will show that the sequence {𝑥

𝑛
} defined by (11)

converges strongly to 𝑢.
From (11), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝑆 (𝑥𝑛) + (1 − 𝛼𝑛 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇𝑦𝑛 − 𝑢

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑆 (𝑥𝑛) − 𝑢) + (1 − 𝛼𝑛 − 𝛽𝑛) (𝑥𝑛 − 𝑢) + 𝛽𝑛 (𝑇𝑦𝑛 − 𝑢)

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
(𝑆 (𝑥
𝑛
) − 𝑢) + (1 − 𝛼

𝑛
)

× (
1 − 𝛼
𝑛
− 𝛽
𝑛

1 − 𝛼
𝑛

(𝑥
𝑛
− 𝑢) +

𝛽
𝑛

1 − 𝛼
𝑛

(𝑇𝑦
𝑛
− 𝑢))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑆 (𝑥𝑛) − 𝑢
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛼
𝑛
− 𝛽
𝑛
) (𝑥
𝑛
− 𝑢)

1 − 𝛼
𝑛

+
𝛽
𝑛
(𝑇𝑦
𝑛
− 𝑢)

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

(12)

It is well known that there holds the following inequality in
Hilbert spaces:

󵄩󵄩󵄩󵄩𝑡𝑥 + (1 − 𝑡) 𝑦
󵄩󵄩󵄩󵄩
2

= 𝑡‖𝑥‖
2

+ (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

− 𝑡 (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

(13)

for all 𝑥, 𝑦 ∈ 𝐻 and 𝑡 ∈ [0, 1]. Hence, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛼
𝑛
− 𝛽
𝑛
)(𝑥
𝑛
− 𝑢)

1 − 𝛼
𝑛

+
𝛽
𝑛
(𝑇𝑦
𝑛
− 𝑢)

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
1 − 𝛼
𝑛
− 𝛽
𝑛

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

+
𝛽
𝑛

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

−
𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)

(1 − 𝛼
𝑛
)
2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

.

(14)
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We know that 𝑇 is pseudocontractive if and only if 𝑇 satisfies
the condition

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦

󵄩󵄩󵄩󵄩
2 (15)

for all 𝑥, 𝑦 ∈ 𝐶. Since 𝑢 ∈ Fix(𝑇), we have from (15) that

‖𝑇𝑥 − 𝑢‖
2

≤ ‖𝑥 − 𝑢‖
2

+ ‖𝑥 − 𝑇𝑥‖
2

, (16)

for all 𝑥 ∈ 𝐶.
By using (13) and (16), we obtain

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛𝑇𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩(1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛𝑇𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝛾𝑛)(𝑥𝑛 − 𝑢) + 𝛾𝑛(𝑇𝑥𝑛 − 𝑢)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩(1 − 𝛾𝑛)(𝑥𝑛 − 𝑇𝑦𝑛) + 𝛾𝑛(𝑇𝑥𝑛 − 𝑇𝑦𝑛)

󵄩󵄩󵄩󵄩
2

= (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

)

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

.

(17)

Note that 𝑇 is 𝑘-Lipschitzian and

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 𝛾𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 . (18)

From (17), we have

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

)

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛
𝑘
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩
2

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

= (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

)

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾
3

𝑛
𝑘
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

− 𝛾
𝑛
(1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

− 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

.

(19)

By condition (C5), without loss of generality, we may assume
that 𝛾

𝑛
≤ 𝑎 < 1/(√1 + 𝑘2 + 1) for all 𝑛. Then, we have 1 −

2𝛾
𝑛
− 𝛾
2

𝑛
𝐿
2

> 0 for all 𝑛 ≥ 0. Substituting (19) to (14) and
noting condition (C3), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛼
𝑛
− 𝛽
𝑛
)(𝑥
𝑛
− 𝑢)

1 − 𝛼
𝑛

+
𝛽
𝑛
(𝑇𝑦
𝑛
− 𝑢)

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
1 − 𝛼
𝑛
− 𝛽
𝑛

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

+
𝛽
𝑛

1 − 𝛼
𝑛

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩
2

)

−
𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)

(1 − 𝛼
𝑛
)
2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
𝛽
𝑛
(𝛼
𝑛
+ 𝛽
𝑛
− 𝛾
𝑛
)

(1 − 𝛼
𝑛
)
2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

.

(20)

Therefore,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛼
𝑛
− 𝛽
𝑛
) (𝑥
𝑛
− 𝑢)

1 − 𝛼
𝑛

+
𝛽
𝑛
(𝑇𝑦
𝑛
− 𝑢)

1 − 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩 . (21)
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It follows from (12) and (21) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑆 (𝑥𝑛) − 𝑢
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑆 (𝑥𝑛) − 𝑆 (𝑢)
󵄩󵄩󵄩󵄩 + 𝛼𝑛 ‖𝑆 (𝑢) − 𝑢‖

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩 + 𝛼𝑛 ‖𝑆 (𝑢) − 𝑢‖

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩

= 𝛼
𝑛
‖𝑆 (𝑢) − 𝑢‖ + [1 − (1 − 𝜌) 𝛼

𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩 ,
‖𝑆 (𝑢) − 𝑢‖

1 − 𝜌
}

≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑢
󵄩󵄩󵄩󵄩 ,
‖𝑆 (𝑢) − 𝑢‖

1 − 𝜌
} .

(22)

This implies that the sequence {𝑥
𝑛
} is bounded.

From (5) and (11), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) (𝑥𝑛 − 𝑢) − 𝛽𝑛 (𝑥𝑛 − 𝑇𝑦𝑛)

+𝛼
𝑛
(𝑆(𝑥
𝑛
) − 𝑢)

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛)(𝑥𝑛 − 𝑢) − 𝛽𝑛(𝑥𝑛 − 𝑇𝑦𝑛)

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑆 (𝑥
𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩

=
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛)(𝑥𝑛 − 𝑢)

󵄩󵄩󵄩󵄩
2

− 2𝛽
𝑛
(1 − 𝛼

𝑛
) ⟨𝑥
𝑛
− 𝑇𝑦
𝑛
, 𝑥
𝑛
− 𝑢⟩

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑆 (𝑥
𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩.

(23)

Note that (19) is equivalent to

2⟨𝑥
𝑛
− 𝑇𝑦
𝑛
, 𝑥
𝑛
− 𝑢⟩

≥ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

+ 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

.

(24)

Therefore,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

− 𝛽
𝑛
(1 − 𝛼

𝑛
) 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩
2

− 𝛽
𝑛
(1 − 𝛼

𝑛
) 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑆 (𝑥
𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

− 𝛽
𝑛
(1 − 𝛼

𝑛
) 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑆 (𝑥
𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩.

(25)

It follows that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛
(1 − 𝛼

𝑛
) 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛
(⟨2𝑆 (𝑥

𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩ −

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

) .

(26)

Since 𝑥
𝑛
and 𝑆(𝑥

𝑛
) are bounded, there exists𝑀 > 0 such that

sup
𝑛
{2⟨𝑆(𝑥

𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩ − ‖𝑥

𝑛
− 𝑢‖
2

} ≤ 𝑀. So
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛
(1 − 𝛼

𝑛
) 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛
𝑀.

(27)

Next, we prove two cases.
Assume there exists an integer𝑚 > 0 such that {‖𝑥

𝑛
−𝑢‖}

is decreasing for all 𝑛 ≥ 𝑚.
In this case, we know that lim

𝑛→∞
‖𝑥
𝑛
− 𝑢‖ exists. From

(27), we deduce

𝛽
𝑛
(1 − 𝛼

𝑛
) 𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩
2

+𝑀𝛼
𝑛
.

(28)

By conditions (C4) and (C5), we have lim inf
𝑛→∞

𝛽
𝑛
(1 −

𝛼
𝑛
)𝛾
𝑛
(1 − 2𝛾

𝑛
− 𝛾
2

𝑛
𝑘
2

) > 0. Thus, from (28), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (29)

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛𝑘
} of {𝑥

𝑛
}

satisfying

𝑥
𝑛𝑘
󳨀→ 𝑥̃ ∈ 𝐶,

lim sup
𝑛→∞

⟨𝑆 (𝑢) − 𝑢, 𝑥
𝑛
− 𝑢⟩ = lim

𝑘→∞

⟨𝑆 (𝑢) − 𝑢, 𝑥
𝑛𝑘
− 𝑢⟩.

(30)

Thus, we use the demiclosed principle of 𝑇 (Lemma 1) to
deduce

𝑥̃ ∈ Fix (𝑇) . (31)
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So

lim sup
𝑛→∞

⟨𝑆 (𝑢) − 𝑢, 𝑥
𝑛
− 𝑢⟩ = lim

𝑘→∞

⟨𝑆 (𝑢) − 𝑢, 𝑥
𝑛𝑘
− 𝑢⟩

= ⟨𝑆 (𝑢) − 𝑢, 𝑥̃ − 𝑢⟩

≤ 0.

(32)

Returning to (25) and using (5) we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢
󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑆 (𝑥
𝑛
) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑆 (𝑥
𝑛
) − 𝑆 (𝑢) , 𝑥

𝑛+1
− 𝑢⟩

+ 2𝛼
𝑛
⟨𝑆 (𝑢) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
⟨𝑆 (𝑢) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 𝛼
𝑛
𝜌 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩
2

)

+ 2𝛼
𝑛
⟨𝑆 (𝑢) − 𝑢, 𝑥

𝑛+1
− 𝑢⟩.

(33)

It follows that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩
2

≤ [1 − (1 − 𝜌) 𝛼
𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩
2

+
2𝛼
𝑛

1 − 𝛼
𝑛
𝜌
⟨𝑆𝑢 − 𝑢, 𝑥

𝑛+1
− 𝑢⟩.

(34)

In Lemma 3, we take 𝐴
𝑛
= ‖𝑥
𝑛+1
− 𝑢‖
2, 𝛾
𝑛
= (1 − 𝜌)𝛼

𝑛
, and

𝜉
𝑛
= (2𝛼
𝑛
/(1−𝛼

𝑛
𝜌))⟨𝑆𝑢−𝑢, 𝑥

𝑛+1
−𝑢⟩.We can check easily that

∑
∞

𝑛=1
𝛾
𝑛
= ∞ and lim sup

𝑛→∞
(𝜉
𝑛
/𝛾
𝑛
) ≤ 0. Thus, we deduce

that 𝑥
𝑛
→ 𝑢.

Assume there exists an integer 𝑛
0
such that ‖𝑥

𝑛0
− 𝑢‖ ≤

‖𝑥
𝑛0+1
−𝑢‖. In this case, we set 𝜔

𝑛
= {‖𝑥
𝑛
−𝑢‖}.Then, we have

𝜔
𝑛0
≤ 𝜔
𝑛0+1

. Define an integer sequence {𝑊
𝑛
} for all 𝑛 ≥ 𝑛

0
as

follows:

𝑊(𝑛) = max {𝑙 ∈ N | 𝑛
0
≤ 𝑙 ≤ 𝑛, 𝜔

𝑙
≤ 𝜔
𝑙+1
} . (35)

It is clear that𝑊(𝑛) is a nondecreasing sequence satisfying

lim
𝑛→∞

𝑊(𝑛) = ∞,

𝜔
𝜏(𝑛)
≤ 𝜔
𝑊(𝑛)+1

,

(36)

for all 𝑛 ≥ 𝑛
0
. From (28), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑊(𝑛) − 𝑇𝑥𝑊(𝑛)
󵄩󵄩󵄩󵄩 = 0. (37)

This implies that 𝜔
𝑤
(𝑥
𝑊(𝑛)
) ⊂ Fix(𝑇). Thus, we obtain

lim sup
𝑛→∞

⟨𝑆 (𝑢) − 𝑢, 𝑥
𝑊(𝑛)
− 𝑢⟩ ≤ 0. (38)

Since 𝜔
𝑊(𝑛)
≤ 𝜔
𝑊(𝑛)+1

, we have from (34) that

𝜔
2

𝑊(𝑛)
≤ 𝜔
2

𝑊(𝑛)+1

≤ [1 − (1 − 𝜌) 𝛼
𝑊
(𝑛)] 𝜔

2

𝑊(𝑛)

+
2𝛼
𝑊
(𝑛)

1 − 𝛼
𝑊
(𝑛) 𝜌
⟨𝑆𝑢 − 𝑢, 𝑥

𝑊(𝑛)+1
− 𝑢⟩.

(39)

It follows that

𝜔
2

𝑊(𝑛)
≤

2

(1 − 𝛼
𝑊
(𝑛) 𝜌) (1 − 𝜌)

⟨𝑆𝑢 − 𝑢, 𝑥
𝑊(𝑛)+1

− 𝑢⟩. (40)

Combining (38) and (40), we have

lim sup
𝑛→∞

𝜔
𝑊(𝑛)
≤ 0, (41)

and hence

lim
𝑛→∞

𝜔
𝑊(𝑛)
= 0. (42)

From (34), we obtain

󵄩󵄩󵄩󵄩𝑥𝑊(𝑛)+1 − 𝑢
󵄩󵄩󵄩󵄩
2

≤ [1 − (1 − 𝜌) 𝛼
𝑊
(𝑛)]
󵄩󵄩󵄩󵄩𝑥𝑊(𝑛) − 𝑢

󵄩󵄩󵄩󵄩
2

+
2𝛼
𝑊
(𝑛)

1 − 𝛼
𝑊
(𝑛) 𝜌
⟨𝑆𝑢 − 𝑢, 𝑥

𝑊(𝑛)+1
− 𝑢⟩.

(43)

It follows that

lim sup
𝑛→∞

𝜔
𝑊(𝑛)+1

≤ lim sup
𝑛→∞

𝜔
𝑊(𝑛)
. (44)

This together with (42) implies that

lim
𝑛→∞

𝜔
𝑊(𝑛)+1

= 0. (45)

Applying Lemma 2 we get

0 ≤ 𝜔
𝑛
≤ max {𝜔

𝑊(𝑛)
, 𝜔
𝑊(𝑛)+1

} . (46)

Therefore, 𝜔
𝑛
→ 0.That is, 𝑥

𝑛
→ 𝑢.The proof is completed.

4. Conclusions

It is now well known that Mann’s algorithm fails to converge
for Lipschitzian pseudocontractions. Strong convergence of
Ishikawa’s algorithm has not been achieved without com-
pactness assumption. In the present paper, modified Mann-
Halpern algorithms for finding the fixed points of pseu-
docontractive mappings are presented. Strong convergence
theorems are obtained.
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