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We present a new Newton-like method for large-scale unconstrained nonconvex minimization. And a new straightforward
limited memory quasi-Newton updating based on the modified quasi-Newton equation is deduced to construct the trust region
subproblem, in which the information of both the function value and gradient is used to construct approximate Hessian.The global
convergence of the algorithm is proved. Numerical results indicate that the proposed method is competitive and efficient on some
classical large-scale nonconvex test problems.

1. Introduction

We consider the following unconstrained optimization:

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where 𝑓 : 𝑅𝑛 → 𝑅 is continuously differentiable.
Trust region methods [1–14] are robust, can be applied

to ill-conditioned problems, and have strong global conver-
gence properties. Another advantage of trust region methods
is that there is no need to require the approximate Hessian of
the trust region subproblem to be positive definite. So, trust
region methods are important and efficient for nonconvex
optimization problems [6–8, 10, 12, 14]. For a given iterate
𝑥
𝑘

∈ 𝑅𝑛, the main computation of trust region algorithms
is solving the following quadratic subproblem:

min
𝑠∈𝑅
𝑛

𝜙
𝑘
(𝑠) = 𝑔𝑇

𝑘
𝑠 +

1

2
𝑠𝑇𝐵
𝑘
𝑠,

s.t. ‖𝑠‖ ≤ Δ
𝑘
,

(2)

where 𝑔
𝑘

= ∇𝑓(𝑥
𝑘
) is the gradient of 𝑓(𝑥) at 𝑥

𝑘
, 𝐵
𝑘
is the

true Hessian ∇2𝑓(𝑥
𝑘
) or its approximation, Δ

𝑘
> 0 is a trust

region radius, and ‖⋅‖ refers to the Euclidean norm on𝑅𝑛. For
a trial step 𝑠

𝑘
, which is generated by solving the subproblem

(2), adequacy of the predicted reduction and true variation of
the objective function is measured by means of the ratio

𝑟
𝑘
=

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
)

𝜙
𝑘
(0) − 𝜙

𝑘
(𝑠
𝑘
)

. (3)

Then the trust region radius Δ
𝑘
is updated according to the

value of 𝑟
𝑘
. Trust regionmethods ensure that at least a Cauchy

(steepest descent-like) decrease on each iteration satisfies
an evaluation complexity bound of the same order under
identical conditions [11]. It follows that Newton’s method
globalized by trust region regularization satisfies the same
𝑂(𝜀−2) evaluation upper bound; such a bound can also be
shown to be tight [12] provided additionally that the Hessian
on the path of the iterates for which pure Newton steps are
taken is Lipschitz continuous.

Newton’s method has been efficiently safeguarded to
ensure its global convergence to first- and even second-order
critical points, in the presence of local nonconvexity of the
objective using line search [3], trust region [4], or other regu-
larization techniques [9, 13].Many variants of these globaliza-
tion techniques have been proposed. These generally retain
fast local convergence under some nondegeneracy assump-
tions, are often suitable when solving large-scale problems,
and sometimes allow approximate rather than true Hessians
to be employed. Solving-large scale problems needs expensive
computation and storage. So many researchers have studied
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the limitedmemory techniques [15–24].The limitedmemory
techniques are firstly applied to line search method. Liu and
Nocedal [15, 16] proposed a limited memory BFGS method
(L-BFGS) for solving unconstrained optimization and proved
its global convergence. Byrd et al. [17] gave the compact
representations of the limited memory BFGS and SR1 for-
mula, which made it possible for combining limited memory
techniques with trust region method. Considering that the
L-BFGS updating formula used the gradient information
merely and ignored the available function value information,
Yang and Xu [19] deduced modified quasi-Newton formula
with limited memory compact representation based on the
modified quasi-Newton equation with a vector parameter
[18]. Recently, some researchers combined the limited mem-
ory techniques with trust region method for solving large-
scale unconstrained and constrained optimizations [20–24].

In this paper, we deduce a new straightforward limited
memory quasi-Newton updating based on the modified
quasi-Newton equation, which uses both available gradient
and function value information, to construct the trust region
subproblem. Then the corresponding trust region method
is proposed for large-scale unconstrained nonconvex min-
imization. The global convergence of the new algorithm is
proved under some appropriate conditions.

The rest of the paper is organized as follows. In the next
section, we deduce a new straightforward limited memory
quasi-Newton updating. In Section 3, a Newton-like trust
region method for large-scale unconstrained nonconvex
minimization is proposed and the convergence property is
proved under some reasonable assumptions. Some numerical
results are given in Section 4.

2. The Modified Limited Memory
Quasi-Newton Formula

In this section, we deduce a straightforward limited mem-
ory quasi-Newton updating based on the modified quasi-
Newton equation, which employs both the gradients and
function values to construct the approximate Hessian and
is a compensation for the missing data in limited memory
techniques. And then we apply the derived formula in trust
region method.

Consider the following modified quasi-Newton equation
[18]:

𝐵
𝑘+1

𝑠
𝑘
= 𝑦
𝑘
, (4)

where 𝑠
𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
, 𝑦
𝑘
= 𝑔
𝑘+1

−𝑔
𝑘
, 𝑦
𝑘
= (1+(𝜃

𝑘
/𝑠𝑇
𝑘
𝑦
𝑘
))𝑦
𝑘
=

𝜆
𝑘
𝑦
𝑘
, and 𝜃

𝑘
= 6(𝑓(𝑥

𝑘
)−𝑓(𝑥

𝑘+1
))+3(𝑔

𝑘
+𝑔
𝑘+1

)𝑇𝑠
𝑘
.The quasi-

Newton updatingmatrix constructed by (4) achieves a higher
order accuracy in approximating Hessian. Based on (4), the
modified BFGS (MBFGS) updating is as follows:

𝐵
𝑘+1

= 𝐵
𝑘
+

𝑦
𝑘
𝑦𝑇
𝑘

𝑦𝑇
𝑘
𝑠
𝑘

−
(𝐵
𝑘
𝑠
𝑘
) (𝐵
𝑘
𝑠
𝑘
)
𝑇

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

= 𝐵
𝑘
+ 𝜆
𝑘

𝑦
𝑘
𝑦𝑇
𝑘

𝑦𝑇
𝑘
𝑠
𝑘

−
(𝐵
𝑘
𝑠
𝑘
) (𝐵
𝑘
𝑠
𝑘
)
𝑇

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

.

(5)

For twice continuously differentiable function, if 𝑥
𝑘
con-

verges to a point 𝑥∗ at which 𝑔(𝑥∗) = 0 and ∇2𝑓(𝑥∗) is
positive definite, then lim

𝑘→∞
𝜃
𝑘
= 0, and then lim

𝑘→∞
𝜆
𝑘
=

1. Moreover, if 𝑘 is sufficiently large, the MBFGS updating
approaches to the BFGS updating.

Then formula (5) can be rewritten into the straightfor-
ward formula

𝐵
𝑘+1

= 𝐵
𝑘
− 𝑎
𝑘
𝑎𝑇
𝑘

+ 𝑏
𝑘
𝑏𝑇
𝑘
, (6)

where 𝑎
𝑘

= 𝐵
𝑘
𝑠
𝑘
/(𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
)
1/2 and 𝑏

𝑘
= (𝜆
𝑘
/𝑦𝑇
𝑘
𝑠
𝑘
)1/2𝑦
𝑘
. Thus,

𝐵
𝑘
can be recursively expressed as

𝐵
𝑘
= 𝐵
0
+
𝑘−1

∑
𝑖=0

(𝑏
𝑖
𝑏𝑇
𝑖

− 𝑎
𝑖
𝑎𝑇
𝑖
)

= 𝐵
0
+ [𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑘−1
]

[
[
[
[
[
[
[
[
[
[

[

𝑏𝑇
0

𝑏𝑇
1

...

𝑏𝑇
𝑘−1

]
]
]
]
]
]
]
]
]
]

]

− [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
]

[
[
[
[
[
[
[
[
[
[

[

𝑎𝑇
0

𝑎𝑇
1

...

𝑎𝑇
𝑘−1

]
]
]
]
]
]
]
]
]
]

]

.

(7)

Let 𝑌
𝑘
= [𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑘−1
], and let 𝑆

𝑘
= [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
]. Then

the above formula can be simply written as

𝐵
𝑘
= 𝐵
0
+ 𝑌
𝑘
𝑌𝑇
𝑘

− 𝑆
𝑘
𝑆𝑇
𝑘
. (8)

Formula (8) is called the whole memory quasi-Newton
formula. For a given positive integer 𝑚 (𝑚 usually
is taken for 3, 5, 7, . . .), if we use the last 𝑚 pairs
(𝑠
𝑘−𝑚

, 𝑦
𝑘−𝑚

), . . . , (𝑠
𝑘−1

, 𝑦
𝑘−1

) at the 𝑘th (𝑘 ≥ 𝑚) iteration to
update the starting matrix 𝐵(0)

𝑘
𝑚 times, according to (8),

we get the following limited memory MBFGS (L-MBFGS)
formula:

𝐵
𝑘
= 𝐵(𝑚)
𝑘

= 𝐵(0)
𝑘

+ 𝑌
𝑘
𝑌𝑇
𝑘

− 𝑆
𝑘
𝑆𝑇
𝑘
, (9)

where 𝑌
𝑘
= [𝑏
𝑘−𝑚

, . . . , 𝑏
𝑘−1

], 𝑆
𝑘
= [𝑎
𝑘−𝑚

, . . . , 𝑎
𝑘−1

]; then

𝐵
𝑘
= 𝐵(0)
𝑘

+ [𝑏
𝑘−𝑚

, . . . , 𝑏
𝑘−1

]

[
[
[
[
[
[

[

𝑏𝑇
𝑘−𝑚

...

𝑏𝑇
𝑘−1

]
]
]
]
]
]

]

− [𝑎
𝑘−𝑚

, . . . , 𝑎
𝑘−1

]

[
[
[
[
[
[

[

𝑎𝑇
𝑘−𝑚

...

𝑎𝑇
𝑘−1

]
]
]
]
]
]

]

,

(10)
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where 𝑎
𝑘−𝑚+𝑗

= 𝐵
𝑘−𝑚+𝑗

𝑠
𝑘−𝑚+𝑗

/(𝑠𝑇
𝑘−𝑚+𝑗

𝐵
𝑘−𝑚+𝑗

𝑠
𝑘−𝑚+𝑗

)
1/2 and

𝑏
𝑘−𝑚+𝑗

= (𝜆
𝑘−𝑚+𝑗

/𝑦𝑇
𝑘−𝑚+𝑗

𝑠
𝑘−𝑚+𝑗

)1/2𝑦
𝑘−𝑚+𝑗

(𝑗 = 0, 1, . . . , 𝑚 −

1).
Since the vectors 𝑏

𝑖
and 𝑎

𝑖
(𝑖 = 𝑘 − 𝑚, . . . , 𝑘 − 2) can

be obtained and saved from the previous iterations, we only
need to compute the vectors 𝑏

𝑘−1
and 𝑎

𝑘−1
to achieve the

limited memory quasi-Newton updating matrix. Suppose
𝐵(0)
𝑘

= 𝐼, the computation of 𝑏
𝑘−1

needs 3𝑛+3multiplications.
Then we consider the computation of 𝑎

𝑘−1
. If 𝐵

𝑘−1
can

be saved and multiplies by 𝑠
𝑘−1

directly, the process needs
𝑛2 multiplications. In this paper, we compute the product
𝐵
𝑘−1

𝑠
𝑘−1

by (9). Consider

𝐵
𝑘−1

𝑠
𝑘−1

= 𝐵(0)
𝑘−1

𝑠
𝑘−1

+ 𝑌
𝑘−1

𝑌𝑇
𝑘−1

𝑠
𝑘−1

− 𝑆
𝑘−1

𝑆𝑇
𝑘−1

𝑠
𝑘−1

= 𝐵(0)
𝑘−1

𝑠
𝑘−1

+ [𝑏
𝑘−𝑚−1

, . . . , 𝑏
𝑘−2

]
[
[

[

𝑏𝑇
𝑘−𝑚−1

𝑠
𝑘−1

...
𝑏𝑇
𝑘−2

𝑠
𝑘−1

]
]

]

− [𝑎
𝑘−𝑚−1

, . . . , 𝑎
𝑘−2

]
[
[

[

𝑎𝑇
𝑘−𝑚−1

𝑠
𝑘−1

...
𝑎𝑇
𝑘−2

𝑠
𝑘−1

]
]

]

.

(11)

So we need 4𝑚𝑛 multiplications to achieve 𝐵
𝑘−1

𝑠
𝑘−1

. Let
𝑎
𝑘−1

= 𝐵
𝑘−1

𝑠
𝑘−1

; then 𝑎
𝑘−1

= (𝑠𝑇
𝑘−1

𝑎
𝑘−1

)−1/2𝑎
𝑘−1

. It takes 2𝑛 + 1
multiplications to compute 𝑎

𝑘−1
. Ignoring lower order terms,

it is a total of (4𝑚 + 5)𝑛 multiplications to obtain 𝐵
𝑘
.

It is noticed that the only difference between the limited
memory quasi-Newton method and the standard quasi-
Newton method is in the matrix updating. Instead of storing
the matrices 𝐵

𝑘
, we need to store 𝑚 pairs vectors {𝑎

𝑖
, 𝑏
𝑖
} to

define 𝐵
𝑘
implicitly. The product 𝐵

𝑘
V or V𝑇𝐵

𝑘
V is obtained by

performing a sequence of inner products involving V and the
𝑚 most recent vectors pairs {𝑎

𝑖
, 𝑏
𝑖
}.

In the following, we discuss the computation of the
products 𝐵

𝑘
V and V𝑇𝐵

𝑘
V, V ∈ 𝑅𝑛. As the situation of (11),

we need 4𝑚𝑛 multiplications to obtain 𝐵
𝑘
V. If 𝐵

𝑘
V has been

computed, we only need to solve a vector product to obtain
V𝑇𝐵
𝑘
V which needs 𝑛 multiplications. If 𝐵

𝑘
V has not been

computed, we compute V𝑇𝐵
𝑘
V directly by using (9). Consider

V
𝑇𝐵
𝑘
V = V
𝑇𝐵(0)
𝑘
V + V
𝑇𝑌
𝑘
𝑌𝑇
𝑘
V − V
𝑇𝑆
𝑘
𝑆𝑇
𝑘
V

= V
𝑇𝐵(0)
𝑘
V + (𝑌𝑇

𝑘
V)
𝑇

(𝑌𝑇
𝑘
V) − (𝑆𝑇

𝑘
V)
𝑇

(𝑆𝑇
𝑘
V) .

(12)

The whole computation only requires (2𝑚 + 1)𝑛 + 4𝑚 multi-
plications. Thus, 2𝑚𝑛 multiplications are saved in contrast to
the previous method.

If we take 𝐵(0)
𝑘

= 𝛾
𝑘
𝐼, V𝑇V and 𝑌𝑇

𝑘
V, 𝑆𝑇
𝑘
V have been

obtained and saved from the previous iteration, from (11),
there are 2𝑚 + 1 multiplications to compute V𝑇𝐵

𝑘
V; it is a

considerable improvement on computation comparing with
(2𝑚 + 1)𝑛.

Algorithm 1. Compute and save 𝑆
𝑘
, 𝑌
𝑘
.

For 𝑗 = 0, 1, . . . , 𝑚 − 1,

Step 1. Compute 𝑏
𝑘−𝑚+𝑗

= (𝜆
𝑘−𝑚+𝑗

/𝑦𝑇
𝑘−𝑚+𝑗

𝑠
𝑘−𝑚+𝑗

)1/2 ×𝑦
𝑘−𝑚+𝑗

.

Step 2. Compute 𝑎
𝑘−𝑚+𝑗

= 𝐵
𝑘−𝑚+𝑗

𝑠
𝑘−𝑚+𝑗

.

Step 3. Compute (𝑠𝑇
𝑘−𝑚+𝑗

𝑎
𝑘−𝑚+𝑖

)−1/2𝑎
𝑘−𝑚+𝑖

.

Algorithm 2. Compute 𝐵
𝑘
V, V𝑇𝐵

𝑘
V.

Let 𝑥
𝑘
be the current iteration point, the vectors 𝑎

𝑘−1
,

𝑏
𝑘−1

, 𝑔
𝑘
andmatrixes 𝑆

𝑘−1
,𝑌
𝑘−1

have been obtained by
the previous iteration.

Step 1. Update 𝑆
𝑘
, 𝑌
𝑘
.

Step 2. Compute 𝑆𝑇
𝑘
V, 𝑌𝑇
𝑘
V.

Step 3. Compute 𝐵
𝑘
V by (11); compute V𝑇𝐵

𝑘
V by (12).

We use the form of (9) to store 𝐵
𝑘
. Instead of updating 𝐵

𝑘

into 𝐵
𝑘+1

, we update 𝑆
𝑘
, 𝑌
𝑘
into 𝑆

𝑘+1
, 𝑌
𝑘+1

.

3. Newton-Like Trust Region Method

In this section, we present a Newton-like trust regionmethod
for large-scale unconstrained nonconvex minimization.

Algorithm 3.

Step 0. Given 𝑥
0
∈ 𝑅𝑛, 𝜀 > 0, Δ̂ > 0, Δ

0
∈ (0, Δ̂), 𝜂 ∈ [0, 1/4),

𝐵
0
∈ 𝑅𝑛×𝑛 is a given matrix. Compute 𝑔

0
= ∇𝑓(𝑥

0
); set 𝑘 := 0.

Step 1. If ‖𝑔
𝑘
‖ < 𝜀, then stop.

Step 2. Solve the subproblem (2) to obtain 𝑠
𝑘
.

Step 3. Compute

𝑟
𝑘
=

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
)

𝜙
𝑘
(0) − 𝜙

𝑘
(𝑠
𝑘
)

. (13)

Step 4. Compute

𝑥
𝑘+1

= {
𝑥
𝑘
+ 𝑠
𝑘
, if 𝑟

𝑘
> 𝜂,

𝑥
𝑘
, otherwise.

(14)

Step 5. Update the trust region radius as the following:

Δ
𝑘+1

=

{{{{{
{{{{{
{

1

4
Δ
𝑘
, if 𝑟

𝑘
<

1

4
,

min {2Δ
𝑘
, Δ̂} , if 𝑟

𝑘
>

3

4
,

Δ
𝑘
, otherwise.

(15)

Step 6. By implementing Algorithm 1 to update 𝑆
𝑘
, 𝑌
𝑘
into

𝑆
𝑘+1

, 𝑌
𝑘+1

in order to update 𝐵
𝑘
into 𝐵

𝑘+1
, set 𝑘 := 𝑘 + 1; go to

Step 1.
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In Step 2, using CG-Steihaug algorithm in [3] to solve the
subproblem (2), the algorithm is suitable for solving large-
scale unconstrained optimization. In the solving process, the
products 𝐵

𝑘
V and V𝑇𝐵

𝑘
V are computed by Algorithm 2. Then

the whole computation of solving subproblem only requires
𝑂(𝑛) multiplications.

To give the convergence result, we need the following
assumptions.

Assumption 4.

(H1) The level set Ω = {𝑥 | 𝑓(𝑥) ≤ 𝑓(𝑥
0
)} is contained in a

bounded convex set.
(H2) The gradient of the objective function 𝑓(𝑥) is Lips-

chitz continuous in the neighborhood of 𝑥∗; that is,
there is a constant 𝐿 > 0 such that
󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑅𝑛. (16)

(H3) The solution 𝑠
𝑘
of the subproblem (2) satisfies

𝜙
𝑘
(0) − 𝜙

𝑘
(𝑠
𝑘
) ≥ 𝜎

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩min{Δ

𝑘
,

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑘
󵄩󵄩󵄩󵄩
} , (17)

where 𝜎 ∈ (0, 1].
(H4) The solution 𝑠

𝑘
of subproblem (2) satisfies
󵄩󵄩󵄩󵄩𝑠𝑘

󵄩󵄩󵄩󵄩 ≤ 𝛾Δ
𝑘
, (18)

for 𝛾 ≥ 1.

Lemma 5. Suppose that (H1) holds and 𝐵
𝑘
is positive definite;

there exist constants 𝑀
2
> 𝑀
1
≥ 0 such that

𝑀
1
≤

(𝑔
𝑘+1

− 𝑔
𝑘
)
𝑇

(𝑥
𝑘+1

− 𝑥
𝑘
)

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩
2

≤ 𝑀
2
,

𝑀
1
≤

󵄩󵄩󵄩󵄩𝑔𝑘+1 − 𝑔
𝑘

󵄩󵄩󵄩󵄩
2

(𝑔
𝑘+1

− 𝑔
𝑘
)
𝑇

(𝑥
𝑘+1

− 𝑥
𝑘
)

≤ 𝑀
2
,

(19)

for any 𝑥
𝑘+1

, 𝑥
𝑘

∈ Ω with 𝑥
𝑘+1

̸= 𝑥
𝑘
. Then matrices {𝐵

𝑘
} are

uniformly bounded.

Proof. From Taylor expansion

𝑓 (𝑥
𝑘+1

) = 𝑓 (𝑥
𝑘
) + 𝑔𝑇
𝑘
𝑠
𝑘
+

1

2
𝑠𝑇
𝑘
∇2𝑓 (𝑥

𝑘
+ 𝑡𝑠
𝑘
) 𝑠
𝑘
,

𝑡 ∈ (0, 1) ,

(20)

we have
󵄨󵄨󵄨󵄨󵄨2 (𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘+1
) + 𝑔𝑇
𝑘
𝑠
𝑘
)
󵄨󵄨󵄨󵄨󵄨

= 𝑠𝑇
𝑘
∇2𝑓 (𝑥

𝑘
+ 𝑡𝑠
𝑘
) 𝑠
𝑘
, 𝑡 ∈ (0, 1) .

(21)

Then
󵄨󵄨󵄨󵄨𝜃𝑘

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨
6 (𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘+1
)) + 3(𝑔

𝑘
+ 𝑔
𝑘+1

)
𝑇

𝑠
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

≤ 3
󵄨󵄨󵄨󵄨󵄨󵄨
𝑠𝑇
𝑘
∇2𝑓 (𝑥

𝑘
+ 𝑡𝑠
𝑘
) 𝑠
𝑘
− (𝑔
𝑘+1

− 𝑔
𝑘
)
𝑇

𝑠
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
.

(22)

Table 1

Problem Objective function Problem Objective function

1 Gaussian function 2 Powell badly scaled
function

3 Gulf function 4 Chebyquad function

5 Boundary value
function 6 Broyden tridiagonal

function

7 Separable cubic
function 8 Arwhead function

9 Extended denschnb
function 10 Extended denschnf

function

From (19), we obtain that

󵄨󵄨󵄨󵄨𝜃𝑘
󵄨󵄨󵄨󵄨 ≤ 6𝑀

2

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩
2

. (23)

It is obvious that

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝜃
𝑘

𝑠𝑇
𝑘
𝑦
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1 +

6𝑀
2

𝑀
1

. (24)

Thus,

𝑏𝑇
𝑘
𝑏
𝑘
≤

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩𝑦
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦𝑇
𝑘
𝑠
𝑘

≤ 𝑀
2
(1 +

6𝑀
2

𝑀
1

) . (25)

Since Tr(𝑥𝑦𝑇) = 𝑥𝑇𝑦(𝑥, 𝑦 ∈ 𝑅𝑛), Tr(𝐴 + 𝐵) = Tr(𝐴) +

Tr(𝐵) (𝐴, 𝐵 ∈ 𝑅𝑛×𝑛) and from (9) (in which 𝐵(0)
𝑘

= 𝐼), we
have

𝐵
𝑘
= 𝐵(0)
𝑘

+ [𝑏
𝑘−𝑚

, . . . , 𝑏
𝑘−1

]
[
[

[

𝑏𝑇
𝑘−𝑚

...
𝑏𝑇
𝑘−1

]
]

]

− [𝑎
𝑘−𝑚

, . . . , 𝑎
𝑘−1

]
[
[

[

𝑎𝑇
𝑘−𝑚

...
𝑎𝑇
𝑘−1

]
]

]

;

(26)

then by (25) and 𝐵
𝑘
being positive definite, we have

Tr (𝐵
𝑘
) = Tr (𝐵(0)

𝑘
) +
𝑚−1

∑
𝑗=0

(𝑏𝑇
𝑘−𝑚+𝑗

𝑏
𝑘−𝑚+𝑗

− 𝑎𝑇
𝑘−𝑚+𝑗

𝑎
𝑘−𝑚+𝑗

)

≤ Tr (𝐵(0)
𝑘

) +
𝑚−1

∑
𝑗=0

𝑏𝑇
𝑘−𝑚+𝑗

𝑏
𝑘−𝑚+𝑗

≤ 𝑛 + 𝑚(𝑀
2
+

6𝑀2
2

𝑀
1

) .

(27)

By the definition of Euclidean norm: ‖𝐴‖ =

√𝜌(𝐴𝑇𝐴) (𝐴 ∈ 𝑅𝑚×𝑛), when 𝐴 ∈ 𝑅𝑛×𝑛 is a symmetric
matrix, ‖𝐴‖ = 𝜌(𝐴). Obviously, 𝐵

𝑘
is a symmetric matrix.
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Table 2: Numerical results for NLMTR and NTR.

Prob/Dim NLMTR NTR
iter/nf/󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩/𝑓
∗/cpu iter/nf/󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩/𝑓
∗/cpu

1/3 4/8/2.7405𝑒 − 009/1.1279𝑒 − 008/0.00 28/64/3.0591𝑒 − 007/6.7392𝑒 − 015/0.02

2/2 33/79/2.3479𝑒 + 003/4.3276𝑒 − 004/0.01 36/78/0.0028/0.0014/0.00

3/3 39/83/0.0014/9.5599𝑒 − 005/0.01 76/170/9.8496𝑒 − 011/3.9977𝑒 − 012/0.02

4/5 33/77/4.5033𝑒 − 006/1.5576𝑒 − 012/0.01 9/20/3.6793𝑒 − 011/8.3131𝑒 − 023/0.00

5/10 47/98/0.0095/5.5443𝑒 − 004/0.01 ∗∗

5/50 51/107/3.6715𝑒 − 004/8.5719𝑒 − 006/0.01 ∗∗

6/10 /0.1274/4.7049𝑒 − 004/0.01 36/92/3.9484𝑒 − 007/2.5660𝑒 − 015/0.01

7/10 18/40/7.2477𝑒 − 009/1.3136𝑒 − 017/0.00 10/20/3.5034𝑒 − 009/3.7240𝑒 − 018/0.00

7/50 22/44/9.0075𝑒 − 009/1.9726𝑒 − 017/0.01 11/28/2.7054𝑒 − 009/2.1585𝑒 − 018/0.01

5/100 45/95/1.0124𝑒 − 004/1.1843𝑒 − 006/0.01 ∗∗

5/500 36/78/4.3127𝑒 − 006/1.0217𝑒 − 008/0.21 ∗∗

7/100 23/46/5.2647𝑒 − 009/6.6238𝑒 − 018/0.02 12/31/3.0016𝑒 − 011/2.8353𝑒 − 022/0.77

7/500 25/50/3.9054𝑒 − 009/3.8097𝑒 − 018/0.48 12/28/4.3635𝑒 − 009/5.4178𝑒 − 018/2.64

8/100 39/96/0.0210/1.8391𝑒 − 005/0.02 13/33/1.3995𝑒 − 011/ − 1.4211𝑒 − 014/1.14

9/100 41/91/6.3678𝑒 − 004/6.7291𝑒 − 008/0.03 9/19/1.0376𝑒 − 010/2.1414𝑒 − 021/0.72

9/500 41/91/0.0014/3.3646𝑒 − 007/0.29 11/24/6.1012𝑒 − 010/4.7336𝑒 − 020/12.09

10/100 40/90/0.0111/4.1508𝑒 − 007/0.02 26/68/2.4382𝑒 − 011/7.7829𝑒 − 025/2.15

10/500 42/94/0.0247/2.0754𝑒 − 006/0.33 18/49/1.2142𝑒 − 007/2.1634𝑒 − 017/14.44

5/1000 34/74/1.0801𝑒 − 006/1.2890𝑒 − 009/0.72 ∗∗

5/2000 32/70/2.7030𝑒 − 007/1.6186𝑒 − 010/2.65 ∗∗

5/5000 29/64/4.3275𝑒 − 008/1.0388𝑒 − 011/15.08 ∗∗

7/1000 25/50/5.7571𝑒 − 009/8.2784𝑒 − 018/1.82 10/21/3.6235𝑒 − 009/3.9031𝑒 − 018/15.85

7/2000 25/50/8.3098𝑒 − 009/1.7247𝑒 − 017/7.13 11/23/2.5187𝑒 − 010/1.9410𝑒 − 020/130.06

7/5000 26/52/9.1295𝑒 − 009/2.0187𝑒 − 017/80.52 ∗∗

9/1000 41/91/0.0020/6.7291𝑒 − 007/1.10 11/24/1.3827𝑒 − 009/2.5035𝑒 − 019/43.52

9/2000 44/97/0.0028/1.3458𝑒 − 006/3.63 8/23/5.3761𝑒 − 010/3.6664𝑒 − 020/112.23

9/5000 44/97/0.0045/3.3646𝑒 − 006/22.28 ∗∗

10/1000 42/94/0.0350/4.1508𝑒 − 006/1.19 17/49/1.6202𝑒 − 007/3.8522𝑒 − 017/44.47

10/2000 42/94/0.0494/8.3015𝑒 − 006/4.49 14/45/3.6692𝑒 − 007/1.9770𝑒 − 016/197.92

10/5000 45/100/0.0782/2.0754𝑒 − 005/23.59 ∗∗

∗∗The algorithm fails.

Suppose the eigenvalues of 𝐵
𝑘
are 0 < 𝜆

1
≤ 𝜆
2

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑛
;

then

󵄩󵄩󵄩󵄩𝐵𝑘
󵄩󵄩󵄩󵄩 = 𝜆
𝑛
≤
𝑛

∑
𝑖=1

𝜆
𝑖
= Tr (𝐵

𝑘
)

≤ 𝑛 + 𝑚(𝑀
2
+

6𝑀2
2

𝑀
1

) .

(28)

So, 𝐵
𝑘
is uniformly bounded.

Theorem 6. Let 𝜂 = 0 in Algorithm 3. Suppose that
Assumption 4 holds and ‖𝐵

𝑘
‖ ≤ 𝛽 for some constant 𝛽. Let

the sequence {𝑥
𝑘
} be generated by Algorithm 3. Then one has

lim
𝑘→∞

inf 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (29)

The proof is similar toTheorem 4.7 in [3] and is omitted.

4. Numerical Results

In this section, we apply Algorithm 3 to solve nonconvex
programming problems. Preliminary numerical results to
illustrate the performance of Algorithm 3 are denoted by
NLMTR. The contrast tests are called NTR, which is the
same as NLMTR except that 𝐵

𝑘
is updated by BFGS formula.

All tests are implemented by using Matlab R2008a on a PC
with CPU 2.00GHz and 2.00GB RAM. The test problem
collections for nonconvex unconstrained minimization are
taken fromMoré et al. in [25], the CUTEr collection [26, 27].
These problems are listed in Table 1.

All numerical results are listed in Table 2, in which iter
stands for the number of iterations, which equals the number
of gradient evaluations; nf stands for the number of objective
function evaluations; Prob stands for the problem label; Dim
stands for the number of variables of the tested problem; cpu
denotes the CPU time for solving the problems; ‖𝑔

𝑘
‖ is the

terminated gradient; and 𝑓∗ denotes the optimal value.
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We compare NLMTR with NTR. The trial step 𝑠
𝑘
is

computed by CG-steihaug algorithm [3]. The matrix 𝐵
𝑘

of NLMTR is updated by the straightforward modified L-
MBFGS formula (9). Choosing 𝜂 = 0.1, 𝑚 = 3. The matrices
𝐵
𝑘
of NTR is updated by BFGS formula in [3]. The iteration

is terminated by ‖𝑔
𝑘
‖ ≤ 𝜀 or ‖𝑠

𝑘
‖ ≤ 𝜀, where 𝜀 = 10−8. The

related figures are listed in Table 2.
From Table 2, we can see that for small-scale problems,

the optimal values and the gradient norms of NTR are
more accurate than NLMTR. For middle-scale problems, the
accuracy of NTR is higher, but the cpu time of NLMTR is
shorter. For large-scale problems, the cpu time of NTR is
much more than NLMTR, and for some problems NTR fails,
especially when 𝑛 = 5000. So NLMTR is suitable for solving
large-scale nonconvex problems.
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