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We prove the existence and uniqueness of entropy solution for nonlinear anisotropic elliptic equations with Neumann homogeneous
boundary value condition for L'-data. We prove first, by using minimization techniques, the existence and uniqueness of weak
solution when the data is bounded, and by approximation methods, we prove a result of existence and uniqueness of entropy

solution.

1. Introduction

Let Q be an open bounded domain of RY (N > 3) with
smooth boundary. Our aim is to prove the existence and
uniqueness of entropy solution for the anisotropic nonlinear
elliptic problem of the form

N

£ 20 2a)obt s o
(1)

ol 0

Zai <x, a—u) v;=0 on 0Q,

: X;

1
where the right-hand side f € LY(Q) and v, i€ {l,...,N}
are the components of the outer normal unit vector.
For the rest of the functions involved in (1), we are going
to enumerate their ’yroperties after we make some notations.
Forany O ¢ R™, we set

c.(@={rec@:inthw>1}, @
and we denote
+ -_ .
h™ = ilelgh(x) , h™ = irelgf)h(x). (3)

For the exponents, p(-) : O — RN, p(-) = (p,()s ..., pn(-)
with p;, € C+(§) for every i € {1,...,N} and for all x €

Q, we put py(x) = max{p;(x),..., py(x)} and p,,(x) =
min{p; (x),..., py(x)}. Now, we can give the properties of the
rest of the functions involved in (1).

We assume that for i = 1,...,N, the function g;
QxR — R is Carathéodory and satisfies the following
conditions: a;(x, &) is the continuous derivative with respect
to & of the mapping A; : QxR — R, A; = A;(x,¢), that is,
a;(x, &) = (0/08)A(x, &) such that the following equality and
inequalities holds

A;(x,0) =0, (@)

for almost every x € Q.
There exists a positive constant C, such that

la; (x,8)] = €, (i () + 7). (5)

for almost every x € Q and for every & € R, where j; is a

nonnegative function in L? '( (')(Q), with 1/p;(x)+1/ pi’ (x)=1.
There exists a positive constant C, such that

(a;(x,&) —a; (%, 1)) - (§-n)

. {Cﬂf—ql"f’“’ it f-n>1  ©
ek it fe-nl<,



for almost every x € Q and for every &,7 € R, with £ ## and

B <, (6, 8) - E < p; () A, (1,8), )

for almost every x € Q and for every & € R.
We also assume that the variable exponents p;(-) : Q —

[2, N) are continuous functions for alli = 1, ..., N such that
=N =N N
w ;< P(N—_l) ZL_ > 1,
N(p-1) N-p 5 p;
(8)
pi-p -1 _ Pp-N
pi P(N-1)
where 1/p = (1/N) YN, (1/p).
We introduce the numbers
N(p-1 . N N(p-1
q= (p )) __Ng _Np-1) ©)
N-1 N-q N-p

A prototype example, that is, covered by our assumptions is
the following anisotropic equation:

Set A,(x, &) = (1/pi(x)EI"™, ai(x, &) = €17 where
pi(x) = 2. Then, we get the following equation.

N3
|

Actually, one of the topics from the field of PDEs that continu-
ously gained interest is the one concerning the Sobolev space
with variable exponents, whPO(Q) or WO1 P (')(Q) depending
on the boundary condition (see [1-23]). In that context,
problems involving the p(-)-Laplace operator

Pi(x)-2 0

d -
S - )+ P72 = £ (10)

1

A ot = div (V" vu) (1)
or the more general operator
diva (x, Vu) (12)

were intensively studied (see [13]). At the same time, some
authors was interested by PDEs involving anisotropic Sobolev

spaces with variable exponent WPO) when the boundary
condition is the homogeneous Dirichlet boundary condition
(see [15, 16, 18, 20, 24-26]). In that context, the authors have
considered the anisotropic p(-)-Laplace operator

= P2
A= Y0, (|axiu| ! axl_u> (13)
i=1
or the more general variable exponent anisotropic operator
N
Zaxia (x, 8xiu) . (14)
i=1

When the homogeneous Dirichlet boundary condition is
replaced by the Neumann boundary condition, one has to
work with the anisotropic variable exponent Sobolev space
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whP Q) instead of WO1 it (')(Q). The main difficulty which
appears is that the famous Poincaré inequality does not apply
and then it is very difficult to get a priori estimates which
are necessary for the proof of the existence result of entropy
solutions. Sometimes one can use the Wirtinger inequality
which does not apply, in some problems like (1). The first
systematic study of anisotropic Neumann problem was done
by Fan (see [11]). In a second time, Boureanu and Radulescu
studied an anisotropic nonhomogeneous Neumann problem
with obstacle (see [2]). In the two papers, the authors were
interested by the existence and multiplicity results of weak
solution even if in [2], Boureanu and Ridulescu have showed
some conditions under which we can get uniqueness of weak
solution. In this paper, we are interested to the existence and
uniqueness of entropy solution. For the proof of the existence
of entropy solution of (1), we follow [27] and derive a priori
estimates for the approximated solutions u,, and the partial
derivatives Ou,/0x; in the Marcinkiewicz spaces .4 and
AP, respectively (see Section 2 or [27, 28] for definition and
properties of Marcinkiewicz spaces).

The study of anisotropic problems are motivated, for
example, by their applications to the mathematical analysis
of a system of nonlinear partial differential equations arising
in a population dynamics model describing the spread of an
epidemic disease through a heterogeneous habitat.

The paper is organized as follows. In Section 2, we
introduce some notations/functional spaces. In Section 3, we
prove for the problem (1), the existence and uniqueness of
weak solution when the data is bounded, and the existence
and uniqueness of entropy solution when the data is in L' ().

2. Preliminaries

In this section, we define Lebesgue, Sobolev, and anisotropic
spaces with variable exponent and give some of their
properties (see [29] for more details about Lebesgue and
Sobolev spaces with variable exponent). Roughly speaking,
anistropic Lebesgue and Sobolev spaces are functional spaces
of Lebesgue’s and Sobolev’s type in which different space
directions have different roles.

Given a measurable function p(-) : Q@ — [1,00), we
define the Lebesgue space with variable exponent L? Q) as
the set of all measurable functions u : O — R for which the
convex modular

by @)= [ 1 Vax (15)

is finite. If the exponent is bounded, that is, if p, < oo, then
the expression

defines a norm in L?(Q), called the Luxembourg norm. The
space (L¥ @), |- | P(,)) is a separable Banach space. Moreover,

if p_ > 1, then LPY(Q) is uniformly convex, hence reflexive,

and its dual space is isomorphic to L? ’(')(Q), where 1/p(x) +
1/p'(x) = 1. Finally, we have the Holder type inequality.
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Proposition 1 (generalized Holder inequality, see [10]). (i)
Foranyu € LPO(Q) and v € LP V(Q), we have

U uvdx| < (L+i,
Q p-  p_

(ii) If py, p, € B,(Q), p,(x) < py(x) for any x € Q, then
LX) (Q) — LPX(Q) and the imbedding is continuous.

) [l oy V1 - (17)

LP9(Q) — Rcalledthe
p(-)-modular of the LP)(Q) space is very useful in handling
these Lebesgue spaces with variable exponent. Indeed we

have the following properties (see [10]). If u € L? Q) and
p < co then

Moreover, the application p,, :

[ul,) <1 = |”|P() < Ppe) (u) < |M|P(), (18)

Uy > 1= lulb) < pyy @) <l (19)
luly) < 1(=1>1) = ppy ) < 1(= 15> 1), (20)

[t py — 0(— 00) &= pyy () — 0(— 00).  (21)

If, in addition, (1), ¢ L*(Q), then
lim, o lu, —ul,y = 0 & lim, o p,u, —u) =
0 < (u,), converges to u in measure and lim,, _, o, P,y () =

Pp(-)(u)
Now, let us introduce the definition of the isotropic

Sobolev space with variable exponent, W")(().
We set

WO Q) = {u e PV (Q) : [Vul € PO ()}, (22)
which is a Banach space equipped with the norm

||U||1,p(-) = |U|p(.) + |Vu|p(-)' (23)

Now, we present a natural generalization of the variable
exponent Sobolev space WP (Q)) that will enable us to study
the problem (1) with sufficient accuracy.

The anisotropic variable exponent Sobolev space whpo) Q)
is defined as follows:

Wl»f’(‘) Q)

{u e 1PV (Q); — e LY (Q), Vie{1,. N}]».
ax

1

(24)

Endowed with the norm

, (25)
pi()

—u
i

||”||p(<) =

the space WHPOQ), | - Il
[11, Theorems 2.1 and 2.2]).
We have the following result.

,) is a reflexive Banach space (see

Theorem 2 (see [11, Corollary 2.1]). Let Q C RN (N > 3) be
a bounded open set and for alli € {1,...,N}, p; € L®(Q),
pi(x) = 1 a.e. in Q. Then, for any r € L°(Q) with r(x) > 1
a.e. in Q such that

ess)}?g (pp (x) =7 (x)) >0, (26)
we have the compact embedding
w0 Q) — L'V (). (27)
Next, we define

T @) = {u: 0 - R T () e W' (), ¥k > 0} .
(28)

Finally, in this paper, we will use the Marcinkiewicz spaces
M(Q) (1 < g < o0) with constant exponent. Note that
the Marcinkiewicz spaces . (Q) in the variable exponent
setting were introduced for the first time by Sanchon and
Urbano (see [23]).

Marcinkiewicz spaces #9(Q) (1 < g < o) contain the
measurable functions 4 : QO — R for which the distribution

function
M@y)=|{xeQ:lhx)|>y}, y=0 (29)
satisfies an estimate of the form
A, (y) <Cy™,  for some finite constant C > 0.  (30)

The space .#%(Q)) is a Banach space under the norm

- suptl/q<t J h* (s)ds) 31)

t>0

(L.

where h* denotes the nonincreasing rearrangement of h:
h* @) =inf{y>0:1,(y) <t}. (32)
We will use the following pseudonorm

Ihl.gaqy = inf{C : A, (y) < Cy™9, Vy > 0}, (33)

which is equivalent to the norm ||h||j%q(0) (see [27]).
We need the following Lemma (see [28, Lemma A.2]).

Lemma 3. Let 1 < g < p < +00. Then, for every measurable
function u on Q, we have

) ((P—l)p/P‘D+1)||“"/sz(Q) < sAup{)LP meas[x € Q :
>0

[u(x)| > Al} < ||u||/%p(g
Moreover,

i) [ lulldx < (p/lp = @) (/" Nl
(meas(K))?" 4P, for every measurable subset K C Q.

In particular, M*(Q) C LE)C(Q) with continuous injection
and u € MP(Q) implies [ul? € AP'I(Q).



The following result is due to Troisi (see [30]).

Theorem 4. Let p,, py,..., Py € [1,+00); g € Wh{PrPraPN)

(Q) and let
q=p ifp <N,
(34)
gell,+o0) ifp" =N.
Then, there exists a constant C > 0 depending on
N, pi>py--> PN if P < N and also on q and meas(Q) if

P = N such that

N ag 1/N
oo =TT lobior+ [52] | 69
i=1 illLri(Q)
where py; = max{p;, py....pnt and 1/p = (1/N)
Y, (1/p;).

We will use through the paper, the truncation function T,
at height (y > 0), that is

s if Is| <y,
H) = {V sign (s) if Is| > y. G0

We need the following lemma.

Lemma 5. Let g be a nonnegative function in WhPO(Q).
Assume p < N and there exists a constant C > 0 such that

jﬁwﬂhw+zj

{lgl<y}

2

(37)
<C(y+1),

Then, there exists a constant D, depending on C, such that

Yy > 0.

"9“/%?’(0) <D, (38)
where p = N(p - 1)/(N - D).
Proof. Consider the following

Step 1 (”Ty(g)”Lm(Q) < 1). Then, obviously we have
lgll wi@ < D for some positive constant D. Indeed, since
1 < p <P < pyp according to Proposition 1 there exists a
positive constant C such that

”Tv (g)||LT>(Q) < C“Ty (9) <C (39)

"LPX/[(Q)
It follows that there exists a positive constant D such that

I9ll 47y < D- (40)

Step 2 (||Ty(g)||m—4(m > 1). We get from (37)

|7, (g <C(y+1). (41

"LPM _
Lfi (Q)

“aT ,(9)[”
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)Pi
LA (Q)

Not also that

o7, (9)
(17 @l | 2

y ar, (9) |

<20 <"T (9 lmum aVXi i <0>> "
(b -1 i 2 )

<2 "T( “LPM(O) ox; L% (Q) .

Therefore, by using (35), we obtain for y > 1,

N
(p; ~1)/Np; |, 1/Np;
17, @l = L T[2777y]
i=1 (43)
< DyZR (N _ pyV/P,
It follows that
J T, (9)|"dx < Dy"? (44)
{lgl>v}
which is equivalent to
y?meas ({|g] > y}) < Dy?". (45)
Therefore,
meas ({|g| > y}) < Dy 1@V?, (46)
Since,q = p" = Np/(N - p) we get
meas ({lg] > v}) < Dy NEVED )

which implies that [|gl ) < D.
For 0 <y < 1 we have

meas ({|g| > y}) < meas (Q) < meas (Q) y 7. (48)
So,

"g“/%f’(o) <D. (49)

We need the following well-known results. O

Theorem 6 (see [31, Theorem 6.2.1]). Let X be a reflexive
Banach space and let f : M c¢ X — R be Gateaux
differentiable over the closed set M. Then, the following are
equivalent.

(i) f is convex over M.
(ii) We have

f(”)—f(V)2<f’(V),u—v

Yu,v € M,

>X*><X (50)

where X* denotes the dual of the space X.
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(iii) The first Gateaux derivative is monotone, that is,
(f'w-f ),u-v

Yu,v € M.

>0
>X*><X (51)

(iv) The second Gateaux derivative of f exists and it is
positive, that is,

<f" (u)ov,v>X*xx20 Vv e M. (52)

Theorem 7 (see [32, Theorem 1.2]). Suppose X is a reflexive
Banach space with norm || - ||, and let M c X be a weakly
closed subset of X. Suppose ¥ : M ¢ X — R U {co} is
coercive and (sequentially) weakly lower semicontinuous on M
with respect to X, that is, suppose the following conditions are

fulfilled.

(1) Y(u) — ooasllully — oo, ue M.

(ii) For any u € M, any subsequence (u,,) in M such that
u,,, — u weakly in X there holds

Y (u) < lirf,llio%f ¥ (u,,) - (53)
Then, Y is bounded from below and attains its infinimun in M.

3. Main Results

In the sequel, we denote Wl’j’(')(Q) = Eand |- lly500) =
Il

3.1. Weak Solutions. Let us define first the notion of weak
solution.

Definition 8. Letu : & — R be a measurable function, we
say that u is a weak solution of problem (1) if u belongs to

whP 0(Q) and satisfies the following equation:

JZ“< _)axd

+ J P2y dx — I f(x)vdx =0,
Q Q

(54)

for every v € WI’Z’(')(Q).
We associate to problem (1) the energy functional I : E —
R, defined by

N
I(u) = JQ ;Ai <x, %) dx

(55)
1
+ P dx - I (x) udx.
JQ P (%) Q f
To simplify our writing, we denote by A : E — R the
functional
A) = J iA (x %>dx (56)
o &7 0x; '

We recall the following result (see [15, Lemma 3.4]).

Lemma 9. The functional A is well-defined on E. In addition,
A is of class €'(E,R) and

N
<A' (u), v> = JQ Zai (x, 27”) %dx, (57)
& ;

forallu,v € E.

Due to Lemma 9, a standard calculus leads to the facts
that I is well-defined on E and I € %'(E,R) with the

derivative given by
<I'(u),v>= J Za( >axdx

+ J || P2y dx — I f(x)vdx
Q Q

(58)

for all u,v € E. Obviously, the weak solutions of (1) are the
critical points of I; so by means of Theorem 7, we intend to
prove the existence of critical points in order to deduce the
existence of weak solutions.

Theorem 10. Assume (4)-(8) and f € L(Q). Then, there
exists a unique weak solution of problem (1).

Let us start the proof by establishing some useful lemmas.

Lemma 11. If hypotheses (4)-(8) are fulfilled, then the func-
tional I is coercive.

Proof. Let u € E be such that |[u]|; — o00. Using (7), we
deduce that

1 ou |
A) > — J — dx. 59
(u) p&,; ol3x (59)
We make the following notations:
le{ie{l,...,N}: 8_u 31}»,
0x; LPiO(Q)
(60)
Jzz{ie{l,...,N}: a_u >1}».
ox; LAO(Q)
We then have
p,(x)
Au)> — Z J dx
MzEJ
(61)
u [P
—_ Z J dx.
pMzEJ



Using (19), (20), and (21), we have

1 ou P 1 pi
A(M)Z—_'_Zg + —

ou
Mied, ilp() 0

.
Pumicz,19%ilp

1 ou |Pi

Pmicy, 0%; [,

1 du [P
> ) == (62)

PailF10xi 15

P ou

P
ilpi()

ou ou
ox;

1 N
>
Py ,»:Zlax
ou

1 N P >
> — (Y= -N].
Py (; 0%ilp,0)
By the generalized mean inequality or the Jensen’s inequality
applied to the convex function z : R" — R*, z(t) =

thr, p- > 1, we get

ilp()  ies,

N5y [Pn N b
ou (Z ) , (63)
Sloxilp ® N i=119%i1p,0)
thus,
.
1 1 N\ ou
Aw) > — < ou ) _N|. 69
Py | NP7 ;a ilp,)

1). We have

(3], )]

1
+ Elmm() ] Py L e

o
+ ulP
0
p,<->> bu

N (65)

T
M

1 1
> ———— min (1, —,)
2Pm*1p;{4 NP1

Case 1 (IulpM() >

ou
0x;

I(u)zL

M

N\ ou

1
w33

- C||f||L°°(Q) llullg -

1
2 —
p

pm
N | ou
+ |u|PM(')

3

i=1 ilp()

N
- C“f”LOO(Q)"u"E -
Pm
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Therefore,
1 1
[W)> —— min (1, —) Jul 2
me_lplt/l NPm-1
(66)
- C"f"m(o)”“"E T F
M
Case 2 (lul,, () < 1). Then |u|§;(-) -1 < 0, and we get
I(u)
[ N Pm
1 1 au P
>— | ——( Y2 +luPr  —-N-1
Py _Npm_1<i=zl axip()) o)
- ||f||L°°(Q)”“"L‘(Q)
[ P
1 1 N au P
> | — (Y| fulfr
Pu _NP"‘1<; 0x; p,-<~>> P
N+1
- C||f||L°°(Q)”””E -5
Pum
N Pm
S 1 . ou
= 2nipy ™ \b N Zl I
N+1
- C"f”Lw(Q)”””E PTIE
Pum
(67)
So, we obtain
1
Tw)s — m1n< ) Jul 2
20 py
(68)

N+1
- C"f"LOO(Q)”u"E -
Pm

Then, letting [lull; goes to infinity in (66) and (68), we
conclude that I(u) reaches infinity. Thus, I is coercive. O

Lemma 12. The functional I is weakly lower semicontinuous.

Proof. By [33, Corollary IIL.8], it is enough to show that I is
lower semicontinuous. To this aim, fix u € E and € > 0.
Since foreveryi € {1,..., N}, a;(x, -) is monotone, Theorem 6

yields
(o))
"\Vox, J\ox, ox

ov ou
A; (x, a—xl> - A, (x, B_x,> >
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=>1(v)>1(u)+ZJ ( §z><%_%>dx

(|V|PM(X)

1 Pm(x)
+ — |u™) d
L Pt (%) ™) dx

+ j f(x)(u—-v)dx.
(69)

Since the map t +— "™ t > 0 is convex, again by
Theorem 6, we have

|PM(X)

[P P > p o) [P (v —w),  (70)

then (69) becomes

N
I(v)zl(u)+ZLa (x,aau><§7v—%)dx

i=1

+ J [ulP#®)72y (v — u) dx (71)
Q

+j f(x)(u—-v)dx.
Q

Consider the second term in the right-hand side of (71). By
(5) and Holder type inequality, we have

ol 2)(2 )
. Q i ,axi axl ax,

i=1

N
ou ov  ou
> = . L — —— _ 2|4
,;JQ @ <x ax,.> 0x; 0x; *
> -max{C,,...,Cy}
ij '+a—”P'(x o _ou
=1 7Q Ji a-xi axi axi
N
ov  ou
; jn Ji () ; Ox; x
ij' aup,(x)lﬁ_a_udx
= 0x; 0x;
i av a_u
J’ p; () axi o0
-K i ou [P oy ou
Sillox, pol0%: 0Xily)
ou pi(x)-1
> —K'max{lj.| it
N ilp! ‘))
i P,( axi P’/()

N

ou ov

i=1

(72)

7
For the fourth term in the right-hand side of (71), we have
J fx)(u—-v)dx > —J |f(x)| lu—v| dx
Q Q
. (73)

"f"L‘X‘(Q)”u 4 PRI

[\

=Cyllu - vllg.

The third term in the right-hand side of (71) gives by using
Holder type inequality

J P72 (v — u) dx
Q

> - J- P = | dx
Q

(74)
! pamr(x)-1
z2-C ||u| v |PA’/I(.)|M - V|Pm(~)
> —C3|u - V|PM(')'
Gathering these inequalities, it follows that
IW)=2I(w)-Clu-vlg=1u)-e¢ (75)

for every v € E such that lu — vl < €/C. Thus, I is lower
semicontinuous. ]

Proof of Theorem 10. Consider the following

Step 1. Existence of weak solutions. The proof follows directly
from Lemmas 11 and 12 and Theorem 7.

Step 2. Uniqueness of weak solution. Let u, v € E be two weak
solutions of problem (1). Choosing a test function in (54), ¢ =
v—u for the weak solution u and ¢ = u—v for the weak solution
v, we get

N
Zal x,

Q i=1

+J P2y (v — u) dx (76)
Q

>8(v—u)

J fx)(v-—u)dx =0,

Q

ial (x, > Ou-v) dx

i=1 i

Q

+J P72y (14— v) dx (77)
Q

—J fx)(u-v)dx=0.
Q

Summing up (76) and (77), we obtain

[ (o) n(2)
o5 "\ ox, "\ ox; 0x;

(lulpzvz(x)—Zu _ |V|PM(X)_2

v) (u-—v)dx =0.
(78)

! L o (%)



Thus, by the monotonicity of the functions g;(x,-) and t +—
|£1P#*)=2¢ we deduce that u = v almost everywhere. ]

3.2. Entropy Solutions. First of all, we define a space in which
we will look for entropy solutions. We define the space

gLp0) (Q) as the set of every measurable functionu : O — R
which satisfies for every k > 0, Tj(u) € whPO(Q).

Lemma13 (see [34,35]). Letu € 9‘1’2’(')(0). Then, there exists
a unique measurable function v; : QO — R such that
ViX{lul<k}

_ 0T (u)
C ox

forae xe€Q, Vk>0, ie{l,...,N},
i

(79)

where y, denotes the characteristic function of a measurable
set A. The functions v; are called the weak partial gradients
of u and are still denoted ou/0x;. Moreover, if u belongs to

Wl’i’(')(Q), then v; € LP(Q) and coincides with the standard
distributional gradient of u, that is, v; = ou/0x;.

Definition 14. We define the space I ;f’ (')(Q) as the set of

function u € JVP ©(Q) such that there exists a sequence
(u,), € WPD(Q) satisfying

(a) u, —» uae.inQ,
(b) T (u,)/0x; — OT,(u)/0x; in L'(Q), for all k > 0.

Definition 15. A measurable function u is an entropy solution
of (1)ifu € 9‘;’/‘0(')(9) and for every k > 0,

N
ou\ 0
(x, =) =T B
; J;z % <x axi) ox, k (u SD) dx
+ J |u|PM(x)*2uTk (u B 90) dx (80)
Q

SJ f(xX) Ty (u-¢)dx,
Q

for all ¢ € WHPO(Q) 0 L®(Q).
Our main result in this section is the following.

Theorem 16. Assume (4)-(8) and f ¢ LY(Q). Then, there
exists a unique entropy solution u to problem (1).

Proof. The proof of this Theorem will be done in three steps.

Step 1 (a priori estimates).
Lemmal7. Assume(4)-(8)andf e LY(Q). Let ubean entropy
solution of (1). If there exists a positive constant M such that

N
j 11 ¥dx < M, Vit >0, (81)
{ul>t}
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then
N
2 I t19dx < |f, + M Ve>0,  (82)
o1 J10/0x)uliO >t

where o, (-) = p,(-)/(q;(-) + 1), foralli=1,...,N.

Proof. Take ¢ = 0in (80), we have

RICE-

+ j P O2UT, () dx < J f (%) T, (u) dx.
Q Q

9 T (u)> iT (u) dx
(83)

Since the second term in the previous inequality is nonnega-
tive, it follows that

RICE-

< J f(x) T, (u) dx.
Q

According to (7), we deduce that
pi(x)

9 T (u)> 9 T (u)dx

(84)

al 9
zLIa—xiTt(u) Vt>0.  (85)

Therefore, defining v := T,(u)/t, we have for all t > 0,

0
0x;

N

pi(x)-1
K

i=1

pi(x)
dx

—y
(86)

S1(]0 £i)
>0l )| dr<il,

From the previous inequality, the definition of «;(-) and (81),
we have

113 gy

Mz

i=1 J{I(B/axi)u|a;(-)>t}

<ZJ

19 gy
{1(0/0x,)ul“ O >t} {lul<t}

N
+ Z J £ g
{lul>t}

() N\ P/ (x)
aax« u“’(x)
T (R R
{lul<t} t

l
N
)
i=1
N
SZ;J

< | £l + M.

ou

pi(x)
dx + M
ax

tq,(x) (p;(x)/et;(x))
{1(0/0x;)u| O >t; |ul<t}

IN

pi(x)

Ou dx

0x;

{1@/0x;)ul9 > ul<t}

(87)
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Lemmal8. Assume (4)-(8)andf € LY(Q). Let u be an entropy
solution of (1), then

1 N
hi:z1 J{lulgh}

for every h > 0, with M a positive constant. Moreover, we have

dx <M (88)

ox;

2], = ) <l )

and there exists a constant D > 0 which depends on f and Q)
such that

meas {|u| > h} < Vh > 0. (90)

W1’

Proof. Taking ¢ = 0 in the entropy inequality (80) and using
(7), we obtain

3 | dx < £, < Mh
= Hui<ny Ox;
(o1
I |20y (w) dx < h| f]),,
Q
for all i > 0. This yields
J P 2T, () dix < B £ 92)
{lul>h}
As uTy, (W) Xqusny = Blulxgusnp> we get from the previous
inequality by using Fatou’s lemma
e sl o

Now, since |T},(u)| < |u| we have
L 1T, )P dx < L WP < . (94)
We deduce that
|, 11l dx<D(1.0). (95)
Indeed,

J T}, (u)|p’7”71dx
Q

< T}, (u)|P;‘_1dx

LITh(u)ISI}

v IT, ()
{IT, (w)[>1}

< meas (Q) + J T}, (u)|PM(x)_ld
Q

|p;w—1 dx (96)

< meas (Q) + || f] -

From aforementioned, we get

J{l o T W)™ dx < D(£,9). (97)

9
Therefore,
WP meas {Ju| > h} < D (f, Q) (98)
which implies
D(f,Q
meas {|u| > h} < L (99)
hpv1
O

Lemma 19. If u is an entropy solution of (1) then there exists
a constant C > 0 such that

J |Tk (u)| Mdx + ZJ

{lul<k}

up

dx<C(k+1),

(100)
vk > 0.

Proof. Taking ¢ = 0 in the entropy inequality (80) and using
(7), we get

j P20y (1) dx
Q

N i) (101)
+ZI 2 g | dx <],
{lul<k} |0x;
Note that
N
0
—T, (u) dx
ZJ{|u|<k} 0x; k
0
= T d
ZJ|u|<k [oufox;|<1} | 0X; k(u) *
N
+ j iTk (u) dx
{lul<k,|ou/ox;|>1} ax
N 0 pi(x)
< N meas (QQ) + J. —T, (u dx
@ Z {lul<k.|ou/ox;|>1} | 0X; @)
N 3 pix)
<N Q) + J =T dx,
meas (Q) Z (uists | 9%, (1) x

J Ty (u)|PX/‘dx
Q
< J | T (u)|p‘_”dx + J | T (u)|p;4 dx
{IT (<1} {ITW)I>1}
< meas (Q) + J |Tk (u)|PM(x)dx
Q

< meas (Q) + J P72y T, (u) dx.
Q
(102)
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Therefore, we deduce according to (101) that

ou |P
J T )] dx + z «[{Iu|<k} o )
< (N + 1) meas (Q) +k||f||1, Yk > 0.
O
Lemma 20. Ifu is an entropy solution of (1) then
o [Pt
Pp/( (axu XF)SC, Vi=1,...,N, (104)

where F={h < |ul<h+t,h>0,t>0.

Proof. Taking ¢ = Tj,(u) as a test function in the entropy
inequality (80), we get

i[ (x»ju) a%Tt(u—Th(u))dx

i=1

+ J [P 2UT, (- T, () dx (105)
Q
< Lf(x) T, (u—T, w)dx
It follows by using (7) that
pix)
’—u dx < 1] f].. (106)
X
Therefore,
a Px(x) 1
Pp'( (axu XF)SC, Vi=1,...,N. (107)
O
Lemma 21. If u is an entropy solution of (1) then
hEToo JQ | f] Xgush-ndx = 0, (108)
where h > 0, t > 0.
Proof. By Lemma 18, we deduce that
W |f] X =0 (109)

andas f € L'(Q), it follows by using the Lebesgue dominated
convergence theorem that

llm J |f| X{|u|>h_t}dx =0. (110)

h—+00 JQ

The proof of the following lemma can be found in [1]. O
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Lemma 22. Assume (4)-(8) and f € LYQ). Let u be an
entropy solution of (1), then

—ul >

D'
h} <——, Vh=1,Vi=1,...,N,
X

meas
{ BU/(Py)

i

(111)

where D' is a positive constant which depends on f and p),.

Step 2 (uniqueness of entropy solution). The proof of the
uniqueness of entropy solutions follows the same techniques
by Ouaro [20] (see also [35]). Indeed, let & > 0 and u, v be
two entropy solutions of (1). We write the entropy inequality
(54) corresponding to the solution u, with Tj,(v) as test
function, and to the solution v, with T (1) as test function.
Upon addition, we get

N d
J Zai (x, —u)
{lu-T;, )<t} = ox;

R (u—-T,(v))dx

0x;
J{lv T, (u Za ( )

(112)
. % (v-T, (w)dx
+ J;) |u|PM(x)_2uTt (u—T, (v))dx
* J PO, (v =T, () dx
Q
< [ £ @-T,00)+ T, (- T, ) dx
Define
E, :=={lu-v|<t|v|<h},
E, = E, 0 {jul <h}, (113)

Ey:=E, 0 {ul > h}.

We start with the first integral in (112). By (7), we have

J ia <x iu>-i(u—T (v))dx
u-Tyisn 5\ 0x; ox; h

< ] ]
> JE Zai <x, B_x,u> . a_x, (u—-v)dx (114)
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Using (5) and Proposition 1, we estimate the last integral in
(114) as follows:

JE Za (x, . )-aixivdx

3 i=1

N i(x)-1
o |F 0
<C J i (%) + | —u )‘—v dx
! E, Z‘ <J’ 0x; ox;
(115)
N (x)-1
o P
SCZ('AE() g” >
i1 i Pl fh<lul<h+t)
9 y
0X; |, -t<lvih}
where
b} pi(x)-1
—u
0x; PlO)h<lul<h+t)
(116)
l 0 pi(x)-1
= —U .
0x; L2 O ({h<lul<h+})
For all i = 1,...,N, the quantity (Ijilplg(,) +
[1(9/0x; )ulp"(")_1 Ip (th<lul<hie) 18 finite according to relations

(18), (19) and Lemma 20. The quantity |(9/0x; )vI ) h—t<|vi<h}
converges to zero as h goes to infinity according to Lemma 21.
Then, the last expression in (115) converges to zero as h tends
to infinity. Therefore, from (114), we obtain

J IZ\I:a <x iu>-i(u—T (v))dx
lu-Tyi<ts &\ 0x; 0x; h

ZIh+J Za( )-aixi(u—v)dx,

Ey izl

(117)

where I, converges to zero as h tends to infinity. We may
adopt the same procedure to treat the second term in (112)
to obtain

. 0 0
al|lx,—v| — (v-T,(u)dx
J'{|V—T,1(u)|<t},-zz1 ( ox; ) axi( )

s d d
ZIh—J Zai vl -a(u—v)dx,

where ], converges to zero as h tends to infinity.
For the two other terms in the left-hand side of (112), we
denote

(118)

K, - J P O2T, (u— T, (v)) dx
¢ (19)
+ J‘ P2y (v - T, (u)) dx.

We have |u|P 2y T, (u - T, (v)) —
as h goes to infinity and

— [ulPMO2yT (u-v) ae.

[l 2T, (=T, 1) I< ™0 e L (Q). (120)

1

Then, by the Lebesgue dominated convergence theorem, we
obtain

JQ |u| P2y T, (u—T, (v)dx

(121)
— J [ulP*2UT, (u-v)dx, as h — oo.
Q
In the same way, we get
J- |y|Pu=2yT, (v=T,w)dx
¢ (122)

— J P20 (v —u)dx, as h — oco.
Q
Therefore,

hh_{%oKh = L (|u|PM(x)_2u - |V|PM(x)_2v) T, (u—v)dx.
(123)

Furthermore, consider the right-hand side of inequality
(112). We have

lim. j £ @) (T, (u =T, ) + T, (v =T, ))) dx = 0.

(124)
Indeed,
F (T, (u=T, ) + T, (v =T, )))
— ) (T, =) +T,(v-u) =0
ae.in Q as h— oo, (125)

|f GO (T, (u =Ty 1) + T, (v =T, ()]
<2t|f (x)| e L' (),
so that we are able to apply the Lebesgue dominated conver-

gence theorem. Then, we deduce from relations (112)-(124)
after passing to the limitas & — oo in (112) the following:

iJ' <a<x iu)—u(x iv))-i(u—v)
5 Jjunien \ U\ 0x; "\ o 0x;

+ J (JulP 2y = PO 29) T, (u - v) < 0.
Q
(126)

Using (6) and ast — |£[P™)=2¢ is monotone, we deduce from
(126) that

J (|u|PM(x)—2
Q

Since p,, > 1, the following relation is true for any &,% € R,
§#n (cf. [12])

(e

u— P T (- v)dx < 0. (127)

n)(E-n)>0.  (128)
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Therefore, from (127), we get that (JulP*® 2y — |y[Pu()72y)
T,(u—v) = 0 a.e. in Q, which means that for all t € R*, there
exists O, ¢ Q with meas (€,) = 0 such that forall x € Q\ Q,,

(lulP 724 = P O2)) T, (u = v) = 0. (129)
Therefore,
(laP 20— P ®20) (u = v) = 0,
vxeQ\ [ Q. 130)
teN
Now, using (128) and (130), we obtain
U, =u, ae.in Q. (131)

Step 3 (Existence of entropy solutions). Let (f,),cn be a
sequence of bounded functions, strongly converging to f €
L'(Q) and such that

|l < 151

We consider the problem

Vn e N*. (132)

S0 0 Pra()-2 .
_;a_xi“" X, B_xiu” + |u,| u,=f, inQ,
(133)

3 0

Zai (x, —un> v;=0 on 0Q.
i=1 0x;

It follows from Theorem 10 that problem (133) admits a

unique weak solution u,, € WO (Q) which satisfies

\ ou,\ 0 (-2
Z J a; (x, B_x,> a—xigodx + L |un| u,pdx

=10 (134)

- | fatrga

forall g € Wl’z’(')(Q).

Our interest is to prove that these approximated solutions
u,, tend, as n goes to infinity, to a measurable function  which
is an entropy solution of the problem (1). We announce the
following important lemma, useful to get some convergence
results.

Lemma 23. If u, is a weak solution of (126) then there exist
some constants Cy, C, > 0 such that

(i) Tyl gy < Cos

(ii) llou,,/ox;| <C,, foralli=1,...,N.

ﬂP{Q/?(Q)
Proof. (i) is a consequence of Lemmas 19 and 5 by using
T (u,) for all k > 0 as a test function in (134).

(ii) We first use Ty(un) for all y > 0 as a test function in

(134) to get
N
2

im1 JHlul<y}

ou

pi
ox, dx <C(y+1). (135)
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Then, let /\|aun/ax,.|(“) = meas{x € Q : |ou,/0x;| > «a} for all
i=1,...,N,wehaveforanya > 1,y > 0,

Aou, jox, (@) < meas {x €Q: ‘aun > o, u,| < y}
e ox;
0
+meas{x €eQ: ‘aljc:l > a, |uy,| > y}
0 pi
< | <l ””) dx+ A, (y)
(1o, /ox,|> ol <y} \ & | OX; n
1 J ou, |7
< — lodx+ A " .
abfi Jiu, i<y | Ox; it (V)
(136)
Using (135) and (i), we get
Mow, jox,) (@) < C (% + }/_p>, (137)
obi

from which we deduce (ii).

By lemmas 3 and 23, it follows that (u,,),,cn- is uniformly
bounded in L*(Q) for some 1 < s, < P, and in the same
way, (|0u,,/0x;1),,cn- is uniformly bounded in L% (Q2) for some
1 < s; < p;. From this, we get that the sequence (u,,),,cn- is
uniformly bounded in WI’S(Q),wheres = min(sy, Sy, ..., Sy)-
Consequently, we can extract a subsequence, still denoted
(u,) satistying

a.e.in Q, in L (Q),

U, —u

. 1,s
u, —u in W(Q), (138)

ou, Ou

in L°(Q), Vi=1,...,N.
ox; Ox; @

— ;i (x)

By the same way as in the proof of [16, Lemma 3.5] (see also
[27]), we prove that

Zi(x)=0 aexeQVi=1,...,N. (139)

We deduce from (139) that

B <x aun>
"\ ox;

)
—a <x,a—”) aein Q,in L' (Q), Vi=1,...,N.
Xi

1

(140)

In order to pass to the limit in relation (134), we need also
the following convergence results which can be proved by the
same way as in [1]. O
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Proposition 24. Assume (4)-(8), f € LY(Q) and (132). Let

u, € Wl’?(')(Q) be the solution of (133). The sequence (u,,), ey
is Cauchy in measure. In particular, there exists a measurable
function u and a subsequence still denoted by u, such that
u, — uin measure.

Proposition 25. Assume (4)-(8), f ¢ LY(Q) and (132).
Let u, € W"PY(Q) be the solution of (133). The following
assertions hold.

(i) Foralli = 1,...,N, ou,/0x; converges in measure to
the weak partial gradient of u.

(ii) Foralli = 1,...,N and all k > 0, a;,(x, 0T} (u,)/0x;)
converges to a;(x, 0T} (u,)/0x;) in LY(Q) strongly and
in LP:O(Q) weakly.

We can now pass to the limit in (134). To this end, let ¢ €

Wl’i’(')(Q) NL®(Q). For any k > 0, choose T} (u,,— ¢) as a test
function in (134), we get

al ou,\ 0
> | a(x ) 21 (- g)ax

i=17Q i i

i j |un|PM(X)_2unTk (un - (P) dx (141)
Q

= J;) fn (x) Tk (un - (P) dx.

For the right-hand side of (141), the convergence is obvious
since f, converges strongly to f in L'(Q), and Ty (1, — ¢)
converges weakly-# to Ty.(u — ¢) in L(Q) and a.e in Q.

For the second term of (141), we have

JQ |u”|PM(x)72unTk (un - 90) dx
= JQ (|un|PM(x)_2un - |<p|PM(X)_2q>) Ty (u, — @) dx (142)

- L o] 29T (u, — ) dx.

The quantity (Ju,|P*™2u, — || 20)Ty (u, — @) is

nonnegative and since for all x € Q,s — |s|PM)=25 g

continuous; we get

(lal ™0, = [ ) Ty (1, - 9)

— (|u|pM(x)_2u - |(p|PM(x)_2(p) T (u—¢) ae in Q.
(143)

Then, it follows by Fatou’s Lemma that

lim inf JQ (lunlpM(x)—zun B |(P|pM(x)—z(P> T, (u, - ¢) dx

n— +00

> J (lalP2 0 — P20 Ty (u - ) dix.
Q
(144)

13
Let us show that || 2¢ € L'(Q).
We have
J gl = [ o as
Q Q
(145)
< | (ol )™ ax.
Q
If llgllo, < 1, then [ [lolP*™2p|dx < meas(Q2) < +oo.
If ¢l > 1, then
M(X)— v
[ Jlol g dx < [ (lollo)™ ax
Q o (146)

= (”SD“oo)p&_l meas (Q) < +00.
Hence, [p|*®2¢ ¢ L'(Q).

Since T} (u,,—¢) converges weakly-# to Ty (u—¢) in L ()
and |p|?®2¢ € L'(Q), it follows that

lim JQ o] 29T, (u, — 9) dx

n— +00
(147)
= [ 1ol (- ) .
For the first term of (141), we write it as follows:
ul ou,\ 0
Z I a|x, — | —u,dx
5 Jiu,-gl<it 0x; ) 0x;
(148)

N

—ZJ a(x au">idx
5 iz 7 0x; axifl) ‘

i=1

The first term of (148) is nonnegative by (7), then by Fatou’s
Lemma and (138), we get

y ( ou ) 0
Z J a; | x, — | =—udx
: {lu—gl<k} ox; ) 0x;

i=1
(149)

N
< lim infz J a; (x, a%) iundx.
n—0o {lu,~¢l<k} ox ox

i=1

According to Proposition 25, the second term of (148) con-

verges to
EN J a (x _au ) _8 dx
Z uglsky  \70x; ) 0x; T

Combining the previous convergence results, we obtain

N ou\ 0
x,— ) —T. (u-o)d
;jﬂal(x axi)ax, () dx

1

(150)

+ J P2 Ty (u - @) dx (151)
Q

< Lf(x) Ty (u - @) dx.
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