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Weprove the existence anduniqueness of entropy solution for nonlinear anisotropic elliptic equationswithNeumannhomogeneous
boundary value condition for 𝐿1-data. We prove first, by using minimization techniques, the existence and uniqueness of weak
solution when the data is bounded, and by approximation methods, we prove a result of existence and uniqueness of entropy
solution.

1. Introduction

Let Ω be an open bounded domain of R𝑁
(𝑁 ≥ 3) with

smooth boundary. Our aim is to prove the existence and
uniqueness of entropy solution for the anisotropic nonlinear
elliptic problem of the form

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥
𝑖

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) + |𝑢|
𝑝𝑀(𝑥)−2𝑢 = 𝑓 in Ω,

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) 𝜈
𝑖
= 0 on 𝜕Ω,

(1)

where the right-hand side 𝑓 ∈ 𝐿
1
(Ω) and 𝜈

𝑖
, 𝑖 ∈ {1, . . . , 𝑁}

are the components of the outer normal unit vector.
For the rest of the functions involved in (1), we are going

to enumerate their properties after we make some notations.
For anyΩ ⊂ R𝑁, we set

𝐶
+
(Ω) = {ℎ ∈ 𝐶 (Ω) : inf

𝑥∈Ω

ℎ (𝑥) > 1} , (2)

and we denote
ℎ
+
= sup

𝑥∈Ω

ℎ (𝑥) , ℎ
−
= inf
𝑥∈Ω

ℎ (𝑥) . (3)

For the exponents, 𝑝⃗(⋅) : Ω → R𝑁, 𝑝⃗(⋅) = (𝑝
1
(⋅), . . . , 𝑝

𝑁
(⋅))

with 𝑝
𝑖
∈ 𝐶

+
(Ω) for every 𝑖 ∈ {1, . . . , 𝑁} and for all 𝑥 ∈

Ω, we put 𝑝
𝑀
(𝑥) = max{𝑝

1
(𝑥), . . . , 𝑝

𝑁
(𝑥)} and 𝑝

𝑚
(𝑥) =

min{𝑝
1
(𝑥), . . . , 𝑝

𝑁
(𝑥)}. Now, we can give the properties of the

rest of the functions involved in (1).
We assume that for 𝑖 = 1, . . . , 𝑁, the function 𝑎

𝑖
:

Ω × R → R is Carathéodory and satisfies the following
conditions: 𝑎

𝑖
(𝑥, 𝜉) is the continuous derivative with respect

to 𝜉 of the mapping 𝐴
𝑖
: Ω × R → R, 𝐴

𝑖
= 𝐴

𝑖
(𝑥, 𝜉), that is,

𝑎
𝑖
(𝑥, 𝜉) = (𝜕/𝜕𝜉)𝐴

𝑖
(𝑥, 𝜉) such that the following equality and

inequalities holds

𝐴
𝑖
(𝑥, 0) = 0, (4)

for almost every 𝑥 ∈ Ω.
There exists a positive constant 𝐶

1
such that

󵄨󵄨󵄨󵄨𝑎𝑖 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1
(𝑗

𝑖
(𝑥) +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1

) , (5)

for almost every 𝑥 ∈ Ω and for every 𝜉 ∈ R, where 𝑗
𝑖
is a

nonnegative function in 𝐿𝑝
󸀠

𝑖
(⋅)
(Ω), with 1/𝑝

𝑖
(𝑥)+1/𝑝

󸀠

𝑖
(𝑥) = 1.

There exists a positive constant 𝐶
2
such that

(𝑎
𝑖
(𝑥, 𝜉) − 𝑎

𝑖
(𝑥, 𝜂)) ⋅ (𝜉 − 𝜂)

≥ {
𝐶
2

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥) if 󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨 ≥ 1,

𝐶
2

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑝
−

𝑖 if 󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨 < 1,

(6)
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for almost every 𝑥 ∈ Ω and for every 𝜉, 𝜂 ∈ R, with 𝜉 ̸= 𝜂 and

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

≤ 𝑎
𝑖
(𝑥, 𝜉) ⋅ 𝜉 ≤ 𝑝

𝑖
(𝑥) 𝐴

𝑖
(𝑥, 𝜉) , (7)

for almost every 𝑥 ∈ Ω and for every 𝜉 ∈ R.
We also assume that the variable exponents 𝑝

𝑖
(⋅) : Ω →

[2,𝑁) are continuous functions for all 𝑖 = 1, . . . , 𝑁 such that

𝑝 (𝑁 − 1)

𝑁 (𝑝 − 1)
< 𝑝

−

𝑖
<
𝑝 (𝑁 − 1)

𝑁 − 𝑝
,

𝑁

∑

𝑖=1

1

𝑝
−

𝑖

> 1,

𝑝
+

𝑖
− 𝑝

−

𝑖
− 1

𝑝
−

𝑖

<
𝑝 − 𝑁

𝑝 (𝑁 − 1)
,

(8)

where 1/𝑝 = (1/𝑁)∑
𝑁

𝑖=1
(1/𝑝

−

𝑖
).

We introduce the numbers

𝑞 =
𝑁 (𝑝 − 1)

𝑁 − 1
, 𝑞

∗
=

𝑁𝑞

𝑁 − 𝑞
=
𝑁 (𝑝 − 1)

𝑁 − 𝑝
. (9)

A prototype example, that is, covered by our assumptions is
the following anisotropic equation:

Set𝐴
𝑖
(𝑥, 𝜉) = (1/𝑝

𝑖
(𝑥))|𝜉|

𝑝𝑖(𝑥), 𝑎
𝑖
(𝑥, 𝜉) = |𝜉|

𝑝𝑖(𝑥)−2
𝜉where

𝑝
𝑖
(𝑥) ≥ 2. Then, we get the following equation.

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥
𝑖

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−2 𝜕

𝜕𝑥
𝑖

𝑢) + |𝑢|
𝑝𝑀(𝑥)−2 = 𝑓. (10)

Actually, one of the topics from the field of PDEs that continu-
ously gained interest is the one concerning the Sobolev space
with variable exponents, 𝑊1,𝑝(⋅)

(Ω) or 𝑊1,𝑝(⋅)

0
(Ω) depending

on the boundary condition (see [1–23]). In that context,
problems involving the 𝑝(⋅)-Laplace operator

Δ
𝑝(𝑥)

𝑢 = div (|∇𝑢|𝑝(𝑥)−2∇𝑢) (11)

or the more general operator

div 𝑎 (𝑥, ∇𝑢) (12)

were intensively studied (see [13]). At the same time, some
authorswas interested by PDEs involving anisotropic Sobolev
spaces with variable exponent 𝑊1,𝑝⃗(⋅) when the boundary
condition is the homogeneous Dirichlet boundary condition
(see [15, 16, 18, 20, 24–26]). In that context, the authors have
considered the anisotropic 𝑝(⋅)-Laplace operator

Δ
𝑝⃗(𝑥)

𝑢 =

𝑁

∑

𝑖=1

𝜕
𝑥𝑖
(
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑥𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−2

𝜕
𝑥𝑖
𝑢) (13)

or the more general variable exponent anisotropic operator

𝑁

∑

𝑖=1

𝜕
𝑥𝑖
𝑎 (𝑥, 𝜕

𝑥𝑖
𝑢) . (14)

When the homogeneous Dirichlet boundary condition is
replaced by the Neumann boundary condition, one has to
work with the anisotropic variable exponent Sobolev space

𝑊
1,𝑝⃗(⋅)

(Ω) instead of 𝑊1,𝑝⃗(⋅)

0
(Ω). The main difficulty which

appears is that the famous Poincaré inequality does not apply
and then it is very difficult to get a priori estimates which
are necessary for the proof of the existence result of entropy
solutions. Sometimes one can use the Wirtinger inequality
which does not apply, in some problems like (1). The first
systematic study of anisotropic Neumann problem was done
by Fan (see [11]). In a second time, Boureanu and Rădulescu
studied an anisotropic nonhomogeneous Neumann problem
with obstacle (see [2]). In the two papers, the authors were
interested by the existence and multiplicity results of weak
solution even if in [2], Boureanu and Rădulescu have showed
some conditions under which we can get uniqueness of weak
solution. In this paper, we are interested to the existence and
uniqueness of entropy solution. For the proof of the existence
of entropy solution of (1), we follow [27] and derive a priori
estimates for the approximated solutions 𝑢

𝑛
and the partial

derivatives 𝜕𝑢
𝑛
/𝜕𝑥

𝑖
in the Marcinkiewicz spaces M𝑝̃ and

M𝑝̃
𝑖 , respectively (see Section 2 or [27, 28] for definition and

properties of Marcinkiewicz spaces).
The study of anisotropic problems are motivated, for

example, by their applications to the mathematical analysis
of a system of nonlinear partial differential equations arising
in a population dynamics model describing the spread of an
epidemic disease through a heterogeneous habitat.

The paper is organized as follows. In Section 2, we
introduce some notations/functional spaces. In Section 3, we
prove for the problem (1), the existence and uniqueness of
weak solution when the data is bounded, and the existence
and uniqueness of entropy solutionwhen the data is in 𝐿1(Ω).

2. Preliminaries

In this section, we define Lebesgue, Sobolev, and anisotropic
spaces with variable exponent and give some of their
properties (see [29] for more details about Lebesgue and
Sobolev spaces with variable exponent). Roughly speaking,
anistropic Lebesgue and Sobolev spaces are functional spaces
of Lebesgue’s and Sobolev’s type in which different space
directions have different roles.

Given a measurable function 𝑝(⋅) : Ω → [1,∞), we
define the Lebesgue space with variable exponent 𝐿𝑝(⋅)(Ω) as
the set of all measurable functions 𝑢 : Ω → R for which the
convex modular

𝜌
𝑝(⋅)

(𝑢) := ∫
Ω

|𝑢|
𝑝(𝑥)

𝑑𝑥 (15)

is finite. If the exponent is bounded, that is, if 𝑝
+
< ∞, then

the expression

|𝑢|𝑝(⋅) := inf {𝜆 > 0 : 𝜌
𝑝(⋅)

(
𝑢

𝜆
) ≤ 1} (16)

defines a norm in 𝐿𝑝(⋅)(Ω), called the Luxembourg norm.The
space (𝐿𝑝(⋅)(Ω), | ⋅ |

𝑝(⋅)
) is a separable Banach space.Moreover,

if 𝑝
−
> 1, then 𝐿

𝑝(⋅)
(Ω) is uniformly convex, hence reflexive,

and its dual space is isomorphic to 𝐿𝑝
󸀠
(⋅)
(Ω), where 1/𝑝(𝑥) +

1/𝑝
󸀠
(𝑥) = 1. Finally, we have the Hölder type inequality.
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Proposition 1 (generalized Hölder inequality, see [10]). (i)
For any 𝑢 ∈ 𝐿

𝑝(⋅)
(Ω) and V ∈ 𝐿

𝑝
󸀠
(⋅)
(Ω), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑢 V 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (

1

𝑝
−

+
1

𝑝󸀠
−

) |𝑢|𝑝(⋅)|V|𝑝󸀠(⋅). (17)

(ii) If 𝑝
1
, 𝑝

2
∈ C

+
(Ω), 𝑝

1
(𝑥) ≤ 𝑝

2
(𝑥) for any 𝑥 ∈ Ω, then

𝐿
𝑝2(𝑥)(Ω) 󳨅→ 𝐿

𝑝1(𝑥)(Ω) and the imbedding is continuous.

Moreover, the application𝜌
𝑝(⋅)

: 𝐿
𝑝(⋅)

(Ω) → R called the
𝑝(⋅)-modular of the 𝐿𝑝(⋅)(Ω) space is very useful in handling
these Lebesgue spaces with variable exponent. Indeed we
have the following properties (see [10]). If 𝑢 ∈ 𝐿

𝑝(⋅)
(Ω) and

𝑝 < ∞ then

|𝑢|𝑝(⋅) < 1 󳨐⇒ |𝑢|
𝑝
+

𝑝(⋅)
≤ 𝜌

𝑝(⋅)
(𝑢) ≤ |𝑢|

𝑝
−

𝑝(⋅)
, (18)

|𝑢|𝑝(⋅) > 1 󳨐⇒ |𝑢|
𝑝
−

𝑝(⋅)
≤ 𝜌

𝑝(⋅)
(𝑢) ≤ |𝑢|

𝑝
+

𝑝(⋅)
, (19)

|𝑢|𝑝(⋅) < 1 (= 1; > 1) 󳨐⇒ 𝜌
𝑝(⋅)

(𝑢) < 1 (= 1; > 1) , (20)

|𝑢|
𝑝(⋅)

󳨀→ 0 (󳨀→ ∞) ⇐⇒ 𝜌
𝑝(⋅)

(𝑢) 󳨀→ 0 (󳨀→ ∞) . (21)

If, in addition, (𝑢
𝑛
)
𝑛
⊂ 𝐿

𝑝(⋅)
(Ω), then

lim
𝑛→∞

|𝑢
𝑛
− 𝑢|

𝑝(⋅)
= 0 ⇔ lim

𝑛→∞
𝜌
𝑝(⋅)

(𝑢
𝑛
− 𝑢) =

0 ⇔ (𝑢
𝑛
)
𝑛
converges to 𝑢 in measure and lim

𝑛→∞
𝜌
𝑝(⋅)

(𝑢
𝑛
) =

𝜌
𝑝(⋅)

(𝑢).
Now, let us introduce the definition of the isotropic

Sobolev space with variable exponent,𝑊1,𝑝(⋅)
(Ω).

We set

𝑊
1,𝑝(⋅)

(Ω) := {𝑢 ∈ 𝐿
𝑝(⋅)

(Ω) : |∇𝑢| ∈ 𝐿
𝑝(⋅)

(Ω)} , (22)

which is a Banach space equipped with the norm

‖𝑢‖1,𝑝(⋅) := |𝑢|𝑝(⋅) + |∇𝑢|𝑝(⋅). (23)

Now, we present a natural generalization of the variable
exponent Sobolev space𝑊1,𝑝(⋅)

(Ω) that will enable us to study
the problem (1) with sufficient accuracy.

The anisotropic variable exponent Sobolev space𝑊1,𝑝⃗(⋅)
(Ω)

is defined as follows:

𝑊
1,𝑝⃗(⋅)

(Ω)

= {𝑢 ∈ 𝐿
𝑝𝑀(⋅)

(Ω) ;
𝜕𝑢

𝜕𝑥
𝑖

∈ 𝐿
𝑝𝑖(⋅)

(Ω) , ∀𝑖 ∈ {1, . . . , 𝑁}} .

(24)

Endowed with the norm

‖𝑢‖
𝑝⃗(⋅)

:= |𝑢|𝑝𝑀(⋅)
+

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

, (25)

the space (𝑊1,𝑝⃗(⋅)
(Ω), ‖ ⋅ ‖

𝑝⃗(⋅)
) is a reflexive Banach space (see

[11, Theorems 2.1 and 2.2]).
We have the following result.

Theorem 2 (see [11, Corollary 2.1]). Let Ω ⊂ R𝑁
(𝑁 ≥ 3) be

a bounded open set and for all 𝑖 ∈ {1, . . . , 𝑁}, 𝑝
𝑖
∈ 𝐿

∞
(Ω),

𝑝
𝑖
(𝑥) ≥ 1 a.e. in Ω. Then, for any 𝑟 ∈ 𝐿

∞
(Ω) with 𝑟(𝑥) ≥ 1

a.e. in Ω such that

ess inf
𝑥∈Ω

(𝑝
𝑀
(𝑥) − 𝑟 (𝑥)) > 0, (26)

we have the compact embedding

𝑊
1,𝑝⃗(⋅)

(Ω) 󳨅→ 𝐿
𝑟(⋅)

(Ω) . (27)

Next, we define

T
1,𝑝⃗(⋅)

(Ω) = {𝑢 : Ω → R; 𝑇
𝑘
(𝑢) ∈ 𝑊

1,𝑝⃗(⋅)
(Ω) , ∀𝑘 > 0} .

(28)

Finally, in this paper, we will use the Marcinkiewicz spaces
M𝑞

(Ω) (1 < 𝑞 < ∞) with constant exponent. Note that
the Marcinkiewicz spaces M𝑞(⋅)

(Ω) in the variable exponent
setting were introduced for the first time by Sanchon and
Urbano (see [23]).

Marcinkiewicz spaces M𝑞
(Ω) (1 < 𝑞 < ∞) contain the

measurable functions ℎ : Ω → R for which the distribution
function

𝜆
ℎ
(𝛾) =

󵄨󵄨󵄨󵄨{𝑥 ∈ Ω : |ℎ (𝑥)| > 𝛾}
󵄨󵄨󵄨󵄨 , 𝛾 ≥ 0 (29)

satisfies an estimate of the form

𝜆
ℎ
(𝛾) ≤ 𝐶𝛾

−𝑞
, for some finite constant 𝐶 > 0. (30)

The spaceM𝑞
(Ω) is a Banach space under the norm

‖ℎ‖
∗

M𝑞(Ω) = sup
𝑡>0

𝑡
1/𝑞

(
1

𝑡
∫

𝑡

0

ℎ
∗
(𝑠) 𝑑𝑠) , (31)

where ℎ∗ denotes the nonincreasing rearrangement of ℎ:

ℎ
∗
(𝑡) = inf {𝛾 > 0 : 𝜆

ℎ
(𝛾) ≤ 𝑡} . (32)

We will use the following pseudonorm

‖ℎ‖M𝑞(Ω) = inf {𝐶 : 𝜆
ℎ
(𝛾) ≤ 𝐶𝛾

−𝑞
, ∀𝛾 > 0} , (33)

which is equivalent to the norm ‖ℎ‖
∗

M𝑞(Ω) (see [27]).
We need the following Lemma (see [28, Lemma A.2]).

Lemma 3. Let 1 ≤ 𝑞 < 𝑝 < +∞. Then, for every measurable
function 𝑢 on Ω, we have

(i) ((𝑝 − 1)
𝑝
/𝑝

𝑝+1
)‖𝑢‖

𝑝

M𝑝(Ω)
≤ sup

𝜆>0

{𝜆
𝑝 meas[𝑥 ∈ Ω :

|𝑢(𝑥)| > 𝜆]} ≤ ‖𝑢‖
𝑝

M𝑝(Ω)
.

Moreover,
(ii) ∫

𝐾
|𝑢|

𝑞
𝑑𝑥 ≤ (𝑝/(𝑝 − 𝑞)) (𝑝/𝑞)

𝑞/𝑝
‖𝑢‖

𝑞

M𝑝(Ω)

(meas(𝐾))
𝑝−𝑞/𝑝, for every measurable subset 𝐾 ⊂ Ω.

In particular,M𝑝
(Ω) ⊂ L𝑞loc(Ω) with continuous injection

and 𝑢 ∈ M𝑝
(Ω) implies |𝑢|𝑞 ∈ M𝑝/𝑞

(Ω).
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The following result is due to Troisi (see [30]).

Theorem 4. Let 𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑁
∈ [1, +∞); 𝑔 ∈ 𝑊

1,(𝑝1 ,𝑝2,...,𝑝𝑁)

(Ω) and let

𝑞 = 𝑝
∗ if 𝑝∗ < 𝑁,

𝑞 ∈ [1, +∞) if 𝑝∗ ≥ 𝑁.

(34)

Then, there exists a constant 𝐶 > 0 depending on
𝑁,𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑁
if 𝑝 < 𝑁 and also on 𝑞 and meas(Ω) if

𝑝 ≥ 𝑁 such that

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞(Ω)

≤ 𝐶

𝑁

∏

𝑖=1

[
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝𝑀 (Ω)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑔

𝜕𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (Ω)

]

1/𝑁

, (35)

where 𝑝
𝑀

= max {𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑁
} and 1/𝑝 = (1/𝑁)

∑
𝑁

𝑖=1
(1/𝑝

𝑖
).

We will use through the paper, the truncation function 𝑇
𝛾

at height (𝛾 > 0), that is

𝑇
𝛾
(𝑠) = {

𝑠 if |𝑠| ≤ 𝛾,

𝛾 sign (𝑠) if |𝑠| > 𝛾.
(36)

We need the following lemma.

Lemma 5. Let 𝑔 be a nonnegative function in 𝑊
1,𝑝⃗(⋅)

(Ω).
Assume 𝑝 < 𝑁 and there exists a constant 𝐶 > 0 such that

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇
𝛾
(𝑔)

󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑀

𝑑𝑥 +

𝑁

∑

𝑖=1

∫
{|𝑔|≤𝛾}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑔

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥

≤ 𝐶 (𝛾 + 1) , ∀𝛾 > 0.

(37)

Then, there exists a constant 𝐷, depending on 𝐶, such that
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩M𝑝̃(Ω)

≤ 𝐷, (38)

where 𝑝̃ = 𝑁(𝑝 − 1)/(𝑁 − 𝑝).

Proof. Consider the following

Step 1 (||𝑇
𝛾
(𝑔)||

𝐿
𝑝
−

𝑀 (Ω)
≤ 1). Then, obviously we have

‖𝑔‖M𝑝̃(Ω) ≤ 𝐷, for some positive constant 𝐷. Indeed, since
1 < 𝑝̃ ≤ 𝑝 ≤ 𝑝

−

𝑀
, according to Proposition 1 there exists a

positive constant 𝐶 such that
󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝̃(Ω)
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
−

𝑀 (Ω)
≤ 𝐶. (39)

It follows that there exists a positive constant𝐷 such that
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩M𝑝̃(Ω)

≤ 𝐷. (40)

Step 2 (||𝑇
𝛾
(𝑔)||

𝐿
𝑝
−

𝑀 (Ω)
> 1). We get from (37)

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩

𝑝
−

𝑀

𝐿
𝑝
−

𝑀 (Ω)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇
𝛾
(𝑔)

𝜕𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝐿
𝑝
−

𝑖 (Ω)

≤ 𝐶 (𝛾 + 1) . (41)

Not also that

(
󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
−

𝑀 (Ω)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇
𝛾
(𝑔)

𝜕𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
−

𝑖 (Ω)

)

𝑝
−

𝑖

≤ 2
(𝑝
−

𝑖
−1)

(
󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝐿
𝑝
−

𝑀 (Ω)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇
𝛾
(𝑔)

𝜕𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝐿
𝑝
−

𝑖 (Ω)

)

≤ 2
(𝑝
−

𝑖
−1)

(
󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩

𝑝
−

𝑀

𝐿
𝑝
−

𝑀 (Ω)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇
𝛾
(𝑔)

𝜕𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝐿
𝑝
−

𝑖 (Ω)

) .

(42)

Therefore, by using (35), we obtain for 𝛾 > 1,

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛾
(𝑔)

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(Ω)
≤ 𝐶

𝑁

∏

𝑖=1

[2
(𝑝
−

𝑖
−1)/𝑁𝑝

−

𝑖 𝛾
1/𝑁𝑝
−

𝑖 ]

≤ 𝐷𝛾
∑
𝑁

𝑖=1
(1/𝑁𝑝

−

𝑖
)
= 𝐷𝛾

1/𝑝
.

(43)

It follows that

∫
{|𝑔|>𝛾}

󵄨󵄨󵄨󵄨󵄨
𝑇
𝛾
(𝑔)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥 ≤ 𝐷𝛾
𝑞/𝑝 (44)

which is equivalent to

𝛾
𝑞meas ({󵄨󵄨󵄨󵄨𝑔

󵄨󵄨󵄨󵄨 > 𝛾}) ≤ 𝐷𝛾
𝑞/𝑝

. (45)

Therefore,

meas ({󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 > 𝛾}) ≤ 𝐷𝛾

−𝑞(𝑝−1)/𝑝
. (46)

Since, 𝑞 = 𝑝
∗
= 𝑁𝑝/(𝑁 − 𝑝) we get

meas ({󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 > 𝛾}) ≤ 𝐷𝛾

−𝑁(𝑝−1)/(𝑁−𝑝) (47)

which implies that ‖𝑔‖M𝑝̃(Ω) ≤ 𝐷.
For 0 < 𝛾 ≤ 1 we have

meas ({󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 > 𝛾}) ≤ meas (Ω) ≤ meas (Ω) 𝛾

−𝑝̃
. (48)

So,
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩M𝑝̃(Ω)

≤ 𝐷. (49)

We need the following well-known results.

Theorem 6 (see [31, Theorem 6.2.1]). Let 𝑋 be a reflexive
Banach space and let 𝑓 : 𝑀 ⊂ 𝑋 → R be Gateaux
differentiable over the closed set 𝑀. Then, the following are
equivalent.

(i) 𝑓 is convex over𝑀.
(ii) We have

𝑓 (𝑢) − 𝑓 (V) ≥ ⟨𝑓
󸀠
(V) , 𝑢 − V⟩

𝑋
∗
×𝑋

∀𝑢, V ∈ 𝑀,

(50)

where𝑋∗ denotes the dual of the space𝑋.
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(iii) The first Gateaux derivative is monotone, that is,

⟨𝑓
󸀠
(𝑢) − 𝑓

󸀠
(V) , 𝑢 − V⟩

𝑋
∗
×𝑋

≥ 0

∀𝑢, V ∈ 𝑀.

(51)

(iv) The second Gateaux derivative of 𝑓 exists and it is
positive, that is,

⟨𝑓
󸀠󸀠
(𝑢) ∘ V, V⟩

𝑋
∗
×𝑋

≥ 0 ∀V ∈ 𝑀. (52)

Theorem 7 (see [32, Theorem 1.2]). Suppose 𝑋 is a reflexive
Banach space with norm || ⋅ ||

𝑋
, and let 𝑀 ⊂ 𝑋 be a weakly

closed subset of 𝑋. Suppose Ψ : 𝑀 ⊂ 𝑋 → R ∪ {∞} is
coercive and (sequentially) weakly lower semicontinuous on M
with respect to 𝑋, that is, suppose the following conditions are
fulfilled.

(i) Ψ(𝑢) → ∞ as ‖𝑢‖
𝑋

→ ∞, 𝑢 ∈ 𝑀.
(ii) For any 𝑢 ∈ 𝑀, any subsequence (𝑢

𝑚
) in 𝑀 such that

𝑢
𝑚
⇀ 𝑢 weakly in𝑋 there holds

Ψ (𝑢) ≤ lim inf
𝑚→∞

Ψ (𝑢
𝑚
) . (53)

Then,Ψ is bounded from below and attains its infinimun in𝑀.

3. Main Results

In the sequel, we denote 𝑊1,𝑝⃗(⋅)
(Ω) = 𝐸 and ‖ ⋅ ‖

𝑊
1,𝑝⃗(⋅)

(Ω)
=

‖ ⋅ ‖
𝐸
.

3.1. Weak Solutions. Let us define first the notion of weak
solution.

Definition 8. Let 𝑢 : Ω → R be a measurable function, we
say that 𝑢 is a weak solution of problem (1) if 𝑢 belongs to
𝑊

1,𝑝⃗(⋅)
(Ω) and satisfies the following equation:

∫
Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕V

𝜕𝑥
𝑖

𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢V𝑑𝑥 − ∫

Ω

𝑓 (𝑥) V𝑑𝑥 = 0,

(54)

for every V ∈ 𝑊
1,𝑝⃗(⋅)

(Ω).
We associate to problem (1) the energy functional 𝐼 : 𝐸 →

R, defined by

𝐼 (𝑢) = ∫
Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥

+ ∫
Ω

1

𝑝
𝑀
(𝑥)

|𝑢|
𝑝𝑀(𝑥) 𝑑𝑥 − ∫

Ω

𝑓 (𝑥) 𝑢𝑑𝑥.

(55)

To simplify our writing, we denote by Λ : 𝐸 → R the
functional

Λ (𝑢) = ∫
Ω

𝑁

∑

𝑖=1

𝐴
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥. (56)

We recall the following result (see [15, Lemma 3.4]).

Lemma 9. The functional Λ is well-defined on 𝐸. In addition,
Λ is of classC1

(𝐸,R) and

⟨Λ
󸀠
(𝑢) , V⟩ = ∫

Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕V

𝜕𝑥
𝑖

𝑑𝑥, (57)

for all 𝑢, V ∈ 𝐸.

Due to Lemma 9, a standard calculus leads to the facts
that 𝐼 is well-defined on 𝐸 and 𝐼 ∈ C1

(𝐸,R) with the
derivative given by

⟨𝐼
󸀠
(𝑢) , V⟩ = ∫

Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕V

𝜕𝑥
𝑖

𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢V𝑑𝑥 − ∫

Ω

𝑓 (𝑥) V𝑑𝑥

(58)

for all 𝑢, V ∈ 𝐸. Obviously, the weak solutions of (1) are the
critical points of 𝐼; so by means of Theorem 7, we intend to
prove the existence of critical points in order to deduce the
existence of weak solutions.

Theorem 10. Assume (4)–(8) and 𝑓 ∈ 𝐿
∞
(Ω). Then, there

exists a unique weak solution of problem (1).

Let us start the proof by establishing some useful lemmas.

Lemma 11. If hypotheses (4)–(8) are fulfilled, then the func-
tional 𝐼 is coercive.

Proof. Let 𝑢 ∈ 𝐸 be such that ||𝑢||
𝐸

→ ∞. Using (7), we
deduce that

Λ (𝑢) ≥
1

𝑝
+

𝑀

𝑁

∑

𝑖=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥. (59)

We make the following notations:

I
1
= {𝑖 ∈ {1, . . . , 𝑁} :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿𝑝𝑖(⋅)(Ω)

≤ 1} ,

I
2
= {𝑖 ∈ {1, . . . , 𝑁} :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿𝑝𝑖(⋅)(Ω)

> 1} .

(60)

We then have

Λ (𝑢) ≥
1

𝑝
+

𝑀

∑

𝑖∈I1

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+
1

𝑝
+

𝑀

∑

𝑖∈I2

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥.

(61)
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Using (19), (20), and (21), we have

Λ (𝑢) ≥
1

𝑝
+

𝑀

∑

𝑖∈I1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
+

𝑖

𝑝𝑖(⋅)

+
1

𝑝
+

𝑀

∑

𝑖∈I2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑝𝑖(⋅)

≥
1

𝑝
+

𝑀

∑

𝑖∈I2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑝𝑖(⋅)

≥
1

𝑝
+

𝑀

∑

𝑖∈I2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑚

𝑝𝑖(⋅)

≥
1

𝑝
+

𝑀

(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑚

𝑝𝑖(⋅)

− ∑

𝑖∈I1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑚

𝑝𝑖(⋅)

)

≥
1

𝑝
+

𝑀

(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑚

𝑝𝑖(⋅)

− 𝑁) .

(62)

By the generalized mean inequality or the Jensen’s inequality
applied to the convex function 𝑧 : R+

→ R+
, 𝑧(𝑡) =

𝑡
𝑝
−

𝑚 , 𝑝
−

𝑚
> 1, we get

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑚

𝑝𝑖(⋅)

≥
1

𝑁𝑝
−

𝑚
−1
(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

)

𝑝
−

𝑚

, (63)

thus,

Λ (𝑢) ≥
1

𝑝
+

𝑀

[

[

1

𝑁𝑝
−

𝑚
−1
(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

)

𝑝
−

𝑚

− 𝑁]

]

. (64)

Case 1 (|𝑢|
𝑝𝑀(.)

≥ 1). We have

𝐼 (𝑢) ≥
1

𝑝
+

𝑀

[

[

1

𝑁𝑝
−

𝑚
−1
(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

)

𝑝
−

𝑚

− 𝑁]

]

+
1

𝑝
+

𝑀

|𝑢|
𝑝
−

𝑀

𝑝𝑀(⋅)
−
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐿1(Ω)

≥
1

𝑝
+

𝑀

[

[

1

𝑁𝑝
−

𝑚
−1
(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

)

𝑝
−

𝑚

+ |𝑢|
𝑝
−

𝑚

𝑝𝑀(⋅)

]

]

− 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐸 −

𝑁

𝑝
+

𝑀

≥
1

2𝑝
−

𝑚
−1𝑝

+

𝑀

min(1, 1

𝑁𝑝
−

𝑚
−1
)

⋅ [

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

+ |𝑢|𝑝𝑀(⋅)
]

𝑝
−

𝑚

− 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐸 −

𝑁

𝑝
+

𝑀

.

(65)

Therefore,

𝐼 (𝑢) ≥
1

2𝑝
−

𝑚
−1𝑝

+

𝑀

min(1, 1

𝑁𝑝
−

𝑚
−1
) ‖𝑢‖

𝑝
−

𝑚

𝐸

− 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐸 −

𝑁

𝑝
+

𝑀

.

(66)

Case 2 (|𝑢|
𝑝𝑀(⋅)

< 1). Then |𝑢|
𝑝
−

𝑚

𝑝𝑀(⋅)
− 1 < 0, and we get

𝐼 (𝑢)

≥
1

𝑝
+

𝑀

[

[

1

𝑁𝑝
−

𝑚
−1
(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

)

𝑝
−

𝑚

+ |𝑢|
𝑝
−

𝑚

𝑝𝑀(⋅)
− 𝑁 − 1]

]

−
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐿1(Ω)

≥
1

𝑝
+

𝑀

[

[

1

𝑁𝑝
−

𝑚
−1
(

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

)

𝑝
−

𝑚

+ |𝑢|
𝑝
−

𝑚

𝑝𝑀(⋅)

]

]

− 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐸 −

𝑁 + 1

𝑝
+

𝑀

≥
1

2𝑝
−

𝑚
−1𝑝

+

𝑀

min(1, 1

𝑁𝑝
−

𝑚
−1
)[

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

+ |𝑢|𝑝𝑀(⋅)
]

𝑝
−

𝑚

− 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐸 −

𝑁 + 1

𝑝
+

𝑀

.

(67)

So, we obtain

𝐼 (𝑢) ≥
1

2𝑝
−

𝑚
−1𝑝

+

𝑀

min(1, 1

𝑁𝑝
−

𝑚
−1
) ‖𝑢‖

𝑝
−

𝑚

𝐸

− 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢‖𝐸 −

𝑁 + 1

𝑝
+

𝑀

.

(68)

Then, letting ‖𝑢‖
𝐸
goes to infinity in (66) and (68), we

conclude that 𝐼(𝑢) reaches infinity. Thus, 𝐼 is coercive.

Lemma 12. The functional 𝐼 is weakly lower semicontinuous.

Proof. By [33, Corollary III.8], it is enough to show that 𝐼 is
lower semicontinuous. To this aim, fix 𝑢 ∈ 𝐸 and 𝜖 > 0.
Since for every 𝑖 ∈ {1, . . . , 𝑁}, 𝑎

𝑖
(𝑥, ⋅) is monotone,Theorem 6

yields

𝐴
𝑖
(𝑥,

𝜕V

𝜕𝑥
𝑖

) − 𝐴
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

) ≥ 𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)(
𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

)

󳨐⇒

𝑁

∑

𝑖=1

∫
𝜔

𝐴
𝑖
(𝑥,

𝜕V

𝜕𝑥
𝑖

)𝑑𝑥 ≥

𝑁

∑

𝑖=1

∫
𝜔

𝐴
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥

+

𝑁

∑

𝑖=1

∫
𝜔

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)(
𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥
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󳨐⇒ 𝐼 (V) ≥ 𝐼 (𝑢) +

𝑁

∑

𝑖=1

∫
𝜔

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)(
𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥

+ ∫
𝜔

1

𝑝
𝑀
(𝑥)

(|V|
𝑝𝑀(𝑥) − |𝑢|

𝑝𝑀(𝑥)) 𝑑𝑥

+ ∫
𝜔

𝑓 (𝑥) (𝑢 − V) 𝑑𝑥.

(69)

Since the map 𝑡 󳨃→ 𝑡
𝑝𝑀(𝑥), 𝑡 > 0 is convex, again by

Theorem 6, we have

|V|
𝑝𝑀(𝑥) − |𝑢|

𝑝𝑀(𝑥) ≥ 𝑝
𝑀
(𝑥) |𝑢|

𝑝𝑀(𝑥)−2𝑢 (V − 𝑢) , (70)

then (69) becomes

𝐼 (V) ≥ 𝐼 (𝑢) +

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)(
𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢 (V − 𝑢) 𝑑𝑥

+ ∫
Ω

𝑓 (𝑥) (𝑢 − V) 𝑑𝑥.

(71)

Consider the second term in the right-hand side of (71). By
(5) and Hölder type inequality, we have

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)(
𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

)𝑑𝑥

≥ −

𝑁

∑

𝑖=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

≥ −max {𝐶
1
, . . . , 𝐶

𝑁
}

⋅

𝑁

∑

𝑖=1

∫
Ω

(𝑗
𝑖
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

≥ −𝐾

𝑁

∑

𝑖=1

∫
Ω

𝑗
𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

− 𝐾

𝑁

∑

𝑖=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

≥ −𝐾
󸀠

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑗𝑖
󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

− 𝐾
󸀠

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

≥ −𝐾
󸀠max

𝑖

{
󵄨󵄨󵄨󵄨𝑗𝑖
󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅)
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅)

}

⋅

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

≥ −𝐶
1

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

−
𝜕V

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅)

.

(72)

For the fourth term in the right-hand side of (71), we have

∫
Ω

𝑓 (𝑥) (𝑢 − V) 𝑑𝑥 ≥ − ∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 |𝑢 − V| 𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(Ω)‖
𝑢 − V‖𝐿1(Ω)

≥ − 𝐶
2‖𝑢 − V‖𝐸.

(73)

The third term in the right-hand side of (71) gives by using
Hölder type inequality

∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢 (V − 𝑢) 𝑑𝑥

≥ −∫
Ω

|𝑢|
𝑝𝑀(𝑥)−1

|𝑢 − V| 𝑑𝑥

≥ −𝐶
󸀠󵄨󵄨󵄨󵄨󵄨
|𝑢|

𝑝𝑀(𝑥)−1
󵄨󵄨󵄨󵄨󵄨𝑃󸀠
𝑀
(⋅)
|𝑢 − V|𝑝𝑀(⋅)

≥ −𝐶
3|𝑢 − V|𝑝𝑀(⋅).

(74)

Gathering these inequalities, it follows that

𝐼 (V) ≥ 𝐼 (𝑢) − 𝐶‖𝑢 − V‖𝐸 ≥ 𝐼 (𝑢) − 𝜖, (75)

for every V ∈ 𝐸 such that ‖𝑢 − V‖
𝐸
< 𝜖/𝐶. Thus, 𝐼 is lower

semicontinuous.

Proof of Theorem 10. Consider the following

Step 1. Existence of weak solutions.The proof follows directly
from Lemmas 11 and 12 andTheorem 7.
Step 2. Uniqueness of weak solution. Let 𝑢, V ∈ 𝐸 be twoweak
solutions of problem (1). Choosing a test function in (54), 𝜑 =

V−𝑢 for theweak solution𝑢 and𝜑 = 𝑢−V for theweak solution
V, we get

∫
Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕 (V − 𝑢)

𝜕𝑥
𝑖

𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢 (V − 𝑢) 𝑑𝑥

− ∫
Ω

𝑓 (𝑥) (V − 𝑢) 𝑑𝑥 = 0,

(76)

∫
Ω

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕V

𝜕𝑥
𝑖

)
𝜕 (𝑢 − V)

𝜕𝑥
𝑖

𝑑𝑥

+ ∫
Ω

|V|
𝑝𝑀(𝑥)−2V (𝑢 − V) 𝑑𝑥

− ∫
Ω

𝑓 (𝑥) (𝑢 − V) 𝑑𝑥 = 0.

(77)

Summing up (76) and (77), we obtain

∫
Ω

𝑁

∑

𝑖=1

(𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

) − 𝑎
𝑖
(𝑥,

𝜕V

𝜕𝑥
𝑖

))
𝜕 (𝑢 − V)

𝜕𝑥
𝑖

𝑑𝑥

+ ∫
Ω

1

𝑝
𝑀
(𝑥)

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 − |V|

𝑝𝑀(𝑥)−2V) (𝑢 − V) 𝑑𝑥 = 0.

(78)
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Thus, by the monotonicity of the functions 𝑎
𝑖
(𝑥, ⋅) and 𝑡 󳨃→

|𝑡|
𝑝𝑀(𝑥)−2𝑡, we deduce that 𝑢 = V almost everywhere.

3.2. Entropy Solutions. First of all, we define a space in which
we will look for entropy solutions. We define the space
T1,𝑝⃗(⋅)

(Ω) as the set of everymeasurable function 𝑢 : Ω → R

which satisfies for every 𝑘 > 0, 𝑇
𝑘
(𝑢) ∈ 𝑊

1,𝑝⃗(⋅)
(Ω).

Lemma 13 (see [34, 35]). Let 𝑢 ∈ T1,𝑝⃗(⋅)
(Ω).Then, there exists

a unique measurable function V
𝑖
: Ω → R such that

V
𝑖
𝜒
{|𝑢|<𝑘}

=
𝜕𝑇

𝑘
(𝑢)

𝜕𝑥
𝑖

for 𝑎.𝑒. 𝑥 ∈ Ω, ∀𝑘 > 0, 𝑖 ∈ {1, . . . , 𝑁} ,

(79)

where 𝜒
𝐴
denotes the characteristic function of a measurable

set 𝐴. The functions V
𝑖
are called the weak partial gradients

of 𝑢 and are still denoted 𝜕𝑢/𝜕𝑥
𝑖
. Moreover, if 𝑢 belongs to

𝑊
1,𝑝⃗(⋅)

(Ω), then V
𝑖
∈ 𝐿

𝑝𝑖(⋅)(Ω) and coincides with the standard
distributional gradient of 𝑢, that is, V

𝑖
= 𝜕𝑢/𝜕𝑥

𝑖
.

Definition 14. We define the space T
1,𝑝⃗(⋅)

H
(Ω) as the set of

function 𝑢 ∈ T1,𝑝⃗(⋅)
(Ω) such that there exists a sequence

(𝑢
𝑛
)
𝑛
⊂ 𝑊

1,𝑝⃗(⋅)
(Ω) satisfying

(a) 𝑢
𝑛
→ 𝑢 a.e. inΩ,

(b) 𝜕𝑇
𝑘
(𝑢
𝑛
)/𝜕𝑥

𝑖
→ 𝜕𝑇

𝑘
(𝑢)/𝜕𝑥

𝑖
in 𝐿

1
(Ω), for all 𝑘 > 0.

Definition 15. Ameasurable function 𝑢 is an entropy solution
of (1) if 𝑢 ∈ T

1,𝑝⃗(⋅)

H
(Ω) and for every 𝑘 > 0,

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢 − 𝜑) 𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥

≤ ∫
Ω

𝑓 (𝑥) 𝑇
𝑘
(𝑢 − 𝜑) 𝑑𝑥,

(80)

for all 𝜑 ∈ 𝑊
1,𝑝⃗(⋅)

(Ω) ∩ 𝐿
∞
(Ω).

Our main result in this section is the following.

Theorem 16. Assume (4)–(8) and 𝑓 ∈ 𝐿
1
(Ω). Then, there

exists a unique entropy solution 𝑢 to problem (1).

Proof. The proof of this Theorem will be done in three steps.

Step 1 (a priori estimates).

Lemma 17. Assume (4)–(8) and f ∈ L1(Ω). Let u be an entropy
solution of (1). If there exists a positive constant M such that

𝑁

∑

𝑖=1

∫
{|𝑢|>𝑡}

𝑡
𝑞𝑖(𝑥)𝑑𝑥 ≤ 𝑀, ∀𝑡 > 0, (81)

then
𝑁

∑

𝑖=1

∫
{|(𝜕/𝜕𝑥𝑖)𝑢|

𝛼𝑖(⋅)>𝑡}

𝑡
𝑞𝑖(𝑥)𝑑𝑥 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1

+𝑀 ∀𝑡 > 0, (82)

where 𝛼i(⋅) = pi(⋅)/(qi(⋅) + 1), for all i = 1, . . . ,N.

Proof. Take 𝜑 = 0 in (80), we have
𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢)) ⋅

𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢) 𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢) 𝑑𝑥 ≤ ∫

Ω

𝑓 (𝑥) 𝑇
𝑡
(𝑢) 𝑑𝑥.

(83)

Since the second term in the previous inequality is nonnega-
tive, it follows that

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢)) ⋅

𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢) 𝑑𝑥

≤ ∫
Ω

𝑓 (𝑥) 𝑇
𝑡
(𝑢) 𝑑𝑥.

(84)

According to (7), we deduce that
𝑁

∑

𝑖=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤ 𝑡
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
, ∀𝑡 > 0. (85)

Therefore, defining 𝜓 := 𝑇
𝑡
(𝑢)/𝑡, we have for all 𝑡 > 0,

𝑁

∑

𝑖=1

∫
Ω

𝑡
𝑝𝑖(𝑥)−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝜓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

=

𝑁

∑

𝑖=1

1

𝑡
∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
.

(86)

From the previous inequality, the definition of 𝛼
𝑖
(⋅) and (81),

we have
𝑁

∑

𝑖=1

∫
{|(𝜕/𝜕𝑥𝑖)𝑢|

𝛼𝑖(⋅)>𝑡}

𝑡
𝑞𝑖(𝑥)𝑑𝑥

≤

𝑁

∑

𝑖=1

∫
{|(𝜕/𝜕𝑥𝑖)𝑢|

𝛼𝑖(⋅)>𝑡}∩{|𝑢|≤𝑡}

𝑡
𝑞𝑖(𝑥)𝑑𝑥

+

𝑁

∑

𝑖=1

∫
{|𝑢|>𝑡}

𝑡
𝑞𝑖(𝑥)𝑑𝑥

≤

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑡}

𝑡
𝑞𝑖(𝑥)(

󵄨󵄨󵄨󵄨(𝜕/𝜕𝑥𝑖) 𝑢
󵄨󵄨󵄨󵄨

𝛼𝑖(𝑥)

𝑡
)

𝑝𝑖(𝑥)/𝛼𝑖(𝑥)

𝑑𝑥 +𝑀

≤

𝑁

∑

𝑖=1

∫
{|(𝜕/𝜕𝑥𝑖)𝑢|

𝛼𝑖(⋅)>𝑡; |𝑢|≤𝑡}

𝑡
𝑞𝑖(𝑥)−(𝑝𝑖(𝑥)/𝛼𝑖(𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 +𝑀

≤

𝑁

∑

𝑖=1

1

𝑡
∫
{|(𝜕/𝜕𝑥𝑖)𝑢|

𝛼𝑖(⋅)>𝑡; |𝑢|≤𝑡}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

+𝑀 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
+𝑀.

(87)
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Lemma 18. Assume (4)–(8) and f ∈ L1(Ω). Let u be an entropy
solution of (1), then

1

ℎ

𝑁

∑

𝑖=1

∫
{|𝑢|≤ℎ}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
ℎ
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤ 𝑀 (88)

for every h > 0, with M a positive constant. Moreover, we have
󵄩󵄩󵄩󵄩󵄩
|𝑢|

𝑝𝑀(𝑥)−2𝑢
󵄩󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩󵄩
|𝑢|

𝑝𝑀(𝑥)−1
󵄩󵄩󵄩󵄩󵄩1

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
(89)

and there exists a constant D > 0 which depends on f and Ω

such that

meas {|𝑢| > ℎ} ≤
𝐷

ℎ
𝑃
−

𝑀
−1
, ∀ℎ > 0. (90)

Proof. Taking 𝜑 = 0 in the entropy inequality (80) and using
(7), we obtain

𝑁

∑

𝑖=1

∫
{|𝑢|≤ℎ}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
ℎ
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤ ℎ
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
≤ 𝑀ℎ,

∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

ℎ
(𝑢) 𝑑𝑥 ≤ ℎ

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1
,

(91)

for all ℎ > 0. This yields

∫
{|𝑢|>ℎ}

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

ℎ
(𝑢) 𝑑𝑥 ≤ ℎ

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1
. (92)

As 𝑢𝑇
ℎ
(𝑢)𝜒

{|𝑢|>ℎ}
= ℎ|𝑢|𝜒

{|𝑢|>ℎ}
, we get from the previous

inequality by using Fatou’s lemma

∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2

|𝑢| 𝑑𝑥 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
. (93)

Now, since |𝑇
ℎ
(𝑢)| ≤ |𝑢| we have

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−1

𝑑𝑥 ≤ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−1𝑑𝑥 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1
. (94)

We deduce that

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
−1

𝑑𝑥 ≤ 𝐷 (𝑓,Ω) . (95)

Indeed,

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
−1

𝑑𝑥

≤ ∫
{|𝑇ℎ(𝑢)|≤1}

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
−1

𝑑𝑥

+ ∫
{|𝑇ℎ(𝑢)|>1}

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
−1

𝑑𝑥

≤ meas (Ω) + ∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−1

𝑑𝑥

≤ meas (Ω) +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
.

(96)

From aforementioned, we get

∫
{|𝑢|>ℎ}

󵄨󵄨󵄨󵄨𝑇ℎ (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
−1

𝑑𝑥 ≤ 𝐷 (𝑓,Ω) . (97)

Therefore,

ℎ
𝑝
−

𝑀
−1meas {|𝑢| > ℎ} ≤ 𝐷 (𝑓,Ω) (98)

which implies

meas {|𝑢| > ℎ} ≤
𝐷 (𝑓,Ω)

ℎ
𝑝
−

𝑀
−1

. (99)

Lemma 19. If u is an entropy solution of (1) then there exists
a constant C > 0 such that

∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑢)
󵄨󵄨󵄨󵄨

𝑃
−

𝑀
𝑑𝑥 +

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥 ≤ 𝐶 (𝑘 + 1) ,

∀𝑘 > 0.

(100)

Proof. Taking 𝜑 = 0 in the entropy inequality (80) and using
(7), we get

∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑘
(𝑢) 𝑑𝑥

+

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤ 𝑘
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
.

(101)

Note that

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥

=

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘,|𝜕𝑢/𝜕𝑥𝑖|≤1}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥

+

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘,|𝜕𝑢/𝜕𝑥𝑖|>1}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥

≤ 𝑁meas (Ω) +

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘,|𝜕𝑢/𝜕𝑥𝑖|>1}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≤ 𝑁meas (Ω) +

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥,

∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
𝑑𝑥

≤ ∫
{|𝑇𝑘(𝑢)|≤1}

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
𝑑𝑥 + ∫

{|𝑇𝑘(𝑢)|>1}

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑢)
󵄨󵄨󵄨󵄨

𝑝
−

𝑀
𝑑𝑥

≤ meas (Ω) + ∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑢)
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)

𝑑𝑥

≤ meas (Ω) + ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑘
(𝑢) 𝑑𝑥.

(102)
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Therefore, we deduce according to (101) that

∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑢)
󵄨󵄨󵄨󵄨

𝑃
−

𝑀
𝑑𝑥 +

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥

≤ (𝑁 + 1)meas (Ω) + 𝑘
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
, ∀𝑘 > 0.

(103)

Lemma 20. If u is an entropy solution of (1) then

𝜌
𝑝
󸀠
(⋅)
(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1

𝜒
𝐹
) ≤ 𝐶, ∀𝑖 = 1, . . . , 𝑁, (104)

where F = {h < |u| ≤ h + t}, h > 0, t > 0.

Proof. Taking 𝜑 = 𝑇
ℎ
(𝑢) as a test function in the entropy

inequality (80), we get

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

𝑇
𝑡
(𝑢 − 𝑇

ℎ
(𝑢)) 𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢 − 𝑇

ℎ
(𝑢)) 𝑑𝑥

≤ ∫
Ω

𝑓 (𝑥) 𝑇
𝑡
(𝑢 − 𝑇

ℎ
(𝑢)) 𝑑𝑥.

(105)

It follows by using (7) that

∫
𝐹

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤ 𝑡
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
. (106)

Therefore,

𝜌
𝑝
󸀠
(⋅)
(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1

𝜒
𝐹
) ≤ 𝐶, ∀𝑖 = 1, . . . , 𝑁. (107)

Lemma 21. If u is an entropy solution of (1) then

lim
ℎ→+∞

∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 𝜒{|𝑢|>ℎ−𝑡}𝑑𝑥 = 0, (108)

where h > 0, t > 0.

Proof. By Lemma 18, we deduce that

lim
ℎ→+∞

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 𝜒{|𝑢|>ℎ−𝑡} = 0 (109)

and as𝑓 ∈ 𝐿
1
(Ω), it follows by using the Lebesgue dominated

convergence theorem that

lim
ℎ→+∞

∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 𝜒{|𝑢|>ℎ−𝑡}𝑑𝑥 = 0. (110)

The proof of the following lemma can be found in [1].

Lemma 22. Assume (4)–(8) and f ∈ L1(Ω). Let u be an
entropy solution of (1), then

meas{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> ℎ} ≤
𝐷
󸀠

ℎ
1/(𝑃
−

𝑀
)
󸀠
, ∀ℎ ≥ 1, ∀𝑖 = 1, . . . , 𝑁,

(111)

where D󸀠 is a positive constant which depends on f and p−M.

Step 2 (uniqueness of entropy solution). The proof of the
uniqueness of entropy solutions follows the same techniques
by Ouaro [20] (see also [35]). Indeed, let ℎ > 0 and 𝑢, V be
two entropy solutions of (1). We write the entropy inequality
(54) corresponding to the solution 𝑢, with 𝑇

ℎ
(V) as test

function, and to the solution V, with 𝑇
ℎ
(𝑢) as test function.

Upon addition, we get

∫
{|𝑢−𝑇ℎ(V)|≤𝑡}

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢)

⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − 𝑇
ℎ
(V)) 𝑑𝑥

+ ∫
{|V−𝑇ℎ(𝑢)|≤𝑡}

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

V)

⋅
𝜕

𝜕𝑥
𝑖

(V − 𝑇
ℎ
(𝑢)) 𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢 − 𝑇

ℎ
(V)) 𝑑𝑥

+ ∫
Ω

|V|
𝑝𝑀(𝑥)−2V𝑇

𝑡
(V − 𝑇

ℎ
(𝑢)) 𝑑𝑥

≤ ∫
Ω

𝑓 (𝑥) (𝑇
𝑡
(𝑢 − 𝑇

ℎ
(V)) + 𝑇

𝑡
(V − 𝑇

ℎ
(𝑢))) 𝑑𝑥.

(112)

Define

𝐸
1
:= {|𝑢 − V| ≤ 𝑡, |V| ≤ ℎ} ,

𝐸
2
:= 𝐸

1
∩ {|𝑢| ≤ ℎ} ,

𝐸
3
:= 𝐸

1
∩ {|𝑢| > ℎ} .

(113)

We start with the first integral in (112). By (7), we have

∫
{|𝑢−𝑇ℎV|≤𝑡}

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − 𝑇
ℎ
(V)) 𝑑𝑥

≥ ∫
𝐸2

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − V) 𝑑𝑥

− ∫
𝐸3

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

V𝑑𝑥.

(114)
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Using (5) and Proposition 1, we estimate the last integral in
(114) as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐸3

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

V𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
1
∫
𝐸3

𝑁

∑

𝑖=1

(𝑗
𝑖
(𝑥) +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

≤ 𝐶

𝑁

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝑗
󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅)
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅),{ℎ<|𝑢|≤ℎ+𝑡}

)

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑖(⋅),{ℎ−𝑡<|V|≤ℎ}

,

(115)

where
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝󸀠
𝑖
(⋅),{ℎ<|𝑢|≤ℎ+𝑡}

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−1
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
󸀠

𝑖
(⋅)
({ℎ<|𝑢|≤ℎ+𝑡})

.

(116)

For all 𝑖 = 1, . . . , 𝑁, the quantity (|𝑗
𝑖
|
𝑝
󸀠

𝑖
(⋅)

+

||(𝜕/𝜕𝑥
𝑖
)𝑢|

𝑝𝑖(𝑥)−1|
𝑝
󸀠

𝑖
(⋅),{ℎ<|𝑢|≤ℎ+𝑡}

) is finite according to relations
(18), (19) and Lemma 20.The quantity |(𝜕/𝜕𝑥

𝑖
)V|

𝑝𝑖(⋅),{ℎ−𝑡<|V|≤ℎ}

converges to zero as ℎ goes to infinity according to Lemma 21.
Then, the last expression in (115) converges to zero as ℎ tends
to infinity. Therefore, from (114), we obtain

∫
{|𝑢−𝑇ℎV|≤𝑡}

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − 𝑇
ℎ
(V)) 𝑑𝑥

≥ 𝐼
ℎ
+ ∫

𝐸2

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) ⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − V) 𝑑𝑥,

(117)

where 𝐼
ℎ
converges to zero as ℎ tends to infinity. We may

adopt the same procedure to treat the second term in (112)
to obtain

∫
{|V−𝑇ℎ(𝑢)|≤𝑡}

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

V) ⋅
𝜕

𝜕𝑥
𝑖

(V − 𝑇
ℎ
(𝑢)) 𝑑𝑥

≥ 𝐽
ℎ
− ∫

𝐸2

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

V) ⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − V) 𝑑𝑥,

(118)

where 𝐽
ℎ
converges to zero as ℎ tends to infinity.

For the two other terms in the left-hand side of (112), we
denote

𝐾
ℎ
= ∫

Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢 − 𝑇

ℎ
(V)) 𝑑𝑥

+ ∫
Ω

|V|
𝑝𝑀(𝑥)−2V𝑇

𝑡
(V − 𝑇

ℎ
(𝑢)) 𝑑𝑥.

(119)

We have |𝑢|𝑝𝑀(𝑥)−2𝑢𝑇
𝑡
(𝑢 − 𝑇

ℎ
(V)) → |𝑢|

𝑝𝑀(𝑥)−2𝑢𝑇
𝑡
(𝑢 − V) a.e.

as ℎ goes to infinity and

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢 − 𝑇

ℎ
(V)) |≤ 𝑡|𝑢|

𝑝𝑀(𝑥)−2𝑢 ∈ 𝐿
1
(Ω) . (120)

Then, by the Lebesgue dominated convergence theorem, we
obtain

∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢 − 𝑇

ℎ
(V)) 𝑑𝑥

󳨀→ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑡
(𝑢 − V) 𝑑𝑥, as ℎ 󳨀→ ∞.

(121)

In the same way, we get

∫
Ω

|V|
𝑝𝑀(𝑥)−2V𝑇

𝑡
(V − 𝑇

ℎ
(𝑢)) 𝑑𝑥

󳨀→ ∫
Ω

|V|
𝑝𝑀(𝑥)−2V𝑇

𝑡
(V − 𝑢) 𝑑𝑥, as ℎ 󳨀→ ∞.

(122)

Therefore,

lim
ℎ→∞

𝐾
ℎ
= ∫

Ω

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 − |V|

𝑝𝑀(𝑥)−2V) 𝑇
𝑡
(𝑢 − V) 𝑑𝑥.

(123)

Furthermore, consider the right-hand side of inequality
(112). We have

lim
ℎ→∞

∫
Ω

𝑓 (𝑥) (𝑇
𝑡
(𝑢 − 𝑇

ℎ
(V)) + 𝑇

𝑡
(V − 𝑇

ℎ
(𝑢))) 𝑑𝑥 = 0.

(124)

Indeed,

𝑓 (𝑥) (𝑇
𝑡
(𝑢 − 𝑇

ℎ
(V)) + 𝑇

𝑡
(V − 𝑇

ℎ
(𝑢)))

󳨀→ 𝑓 (𝑥) (𝑇
𝑡
(𝑢 − V) + 𝑇

𝑡
(V − 𝑢)) = 0

a.e. in Ω as ℎ 󳨀→ ∞,

󵄨󵄨󵄨󵄨𝑓 (𝑥) (𝑇
𝑡
(𝑢 − 𝑇

ℎ
(V)) + 𝑇

𝑡
(V − 𝑇

ℎ
(𝑢)))

󵄨󵄨󵄨󵄨

≤ 2𝑡
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ∈ 𝐿
1
(Ω) ,

(125)

so that we are able to apply the Lebesgue dominated conver-
gence theorem. Then, we deduce from relations (112)–(124)
after passing to the limit as ℎ → ∞ in (112) the following:

𝑁

∑

𝑖=1

∫
{|𝑢−V|≤𝑡}

(𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢) − 𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

V)) ⋅
𝜕

𝜕𝑥
𝑖

(𝑢 − V)

+ ∫
Ω

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 − |V|

𝑝𝑀(𝑥)−2V) 𝑇
𝑡
(𝑢 − V) ≤ 0.

(126)

Using (6) and as 𝑡 󳨃→ |𝑡|
𝑝𝑀(𝑥)−2𝑡 is monotone, we deduce from

(126) that

∫
Ω

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 − |V|

𝑝𝑀(𝑥)−2V) 𝑇
𝑡
(𝑢 − V) 𝑑𝑥 ≤ 0. (127)

Since 𝑝−
𝑀

> 1, the following relation is true for any 𝜉, 𝜂 ∈ R,
𝜉 ̸= 𝜂 (cf. [12])

(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜉 −
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜂) (𝜉 − 𝜂) > 0. (128)
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Therefore, from (127), we get that (|𝑢|𝑝𝑀(𝑥)−2𝑢 − |V|𝑝𝑀(𝑥)−2V)
𝑇
𝑡
(𝑢 − V) = 0 a.e. inΩ, which means that for all 𝑡 ∈ R+, there

existsΩ
𝑡
⊂ Ωwith meas (Ω

𝑡
) = 0 such that for all 𝑥 ∈ Ω\Ω

𝑡
,

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 − |V|

𝑝𝑀(𝑥)−2V) 𝑇
𝑡
(𝑢 − V) = 0. (129)

Therefore,

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 − |V|

𝑝𝑀(𝑥)−2V) (𝑢 − V) = 0,

∀𝑥 ∈ Ω \ ⋃

𝑡∈N∗

Ω
𝑡
.

(130)

Now, using (128) and (130), we obtain

𝑢
1
= 𝑢

2
a.e. in Ω. (131)

Step 3 (Existence of entropy solutions). Let (𝑓
𝑛
)
𝑛∈N∗ be a

sequence of bounded functions, strongly converging to 𝑓 ∈

𝐿
1
(Ω) and such that

󵄩󵄩󵄩󵄩𝑓𝑛
󵄩󵄩󵄩󵄩1

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
, ∀𝑛 ∈ N

∗
. (132)

We consider the problem

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥
𝑖

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢
𝑛
) +

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
= 𝑓

𝑛
in Ω,

𝑁

∑

𝑖=1

𝑎
𝑖
(𝑥,

𝜕

𝜕𝑥
𝑖

𝑢
𝑛
)𝜈

𝑖
= 0 on 𝜕Ω.

(133)

It follows from Theorem 10 that problem (133) admits a
unique weak solution 𝑢

𝑛
∈ 𝑊

1,𝑝⃗(⋅)
(Ω) which satisfies

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕𝑢
𝑛

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝜑𝑑𝑥 + ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
𝜑𝑑𝑥

= ∫
Ω

𝑓
𝑛
(𝑥) 𝜑𝑑𝑥,

(134)

for all 𝜑 ∈ 𝑊
1,𝑝⃗(⋅)

(Ω).
Our interest is to prove that these approximated solutions

𝑢
𝑛
tend, as 𝑛 goes to infinity, to ameasurable function 𝑢which

is an entropy solution of the problem (1). We announce the
following important lemma, useful to get some convergence
results.

Lemma 23. If un is a weak solution of (126) then there exist
some constants C

1
,C

2
> 0 such that

(i) ‖𝑢
𝑛
‖M𝑝̃(Ω) ≤ 𝐶

1
,

(ii) ‖𝜕𝑢
𝑛
/𝜕𝑥

𝑖
‖
M
𝑝
−

𝑖
𝑞/𝑝
(Ω)

≤ 𝐶
2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, . . . , 𝑁.

Proof. (i) is a consequence of Lemmas 19 and 5 by using
𝑇
𝑘
(𝑢
𝑛
) for all 𝑘 > 0 as a test function in (134).

(ii) We first use 𝑇
𝛾
(𝑢
𝑛
) for all 𝛾 > 0 as a test function in

(134) to get

𝑁

∑

𝑖=1

∫
{|𝑢|≤𝛾}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥 ≤ 𝐶 (𝛾 + 1) . (135)

Then, let 𝜆
|𝜕𝑢𝑛/𝜕𝑥𝑖|

(𝛼) = meas{𝑥 ∈ Ω : |𝜕𝑢
𝑛
/𝜕𝑥

𝑖
| > 𝛼} for all

𝑖 = 1, . . . , 𝑁, we have for any 𝛼 > 1, 𝛾 > 0,

𝜆
|𝜕𝑢𝑛/𝜕𝑥𝑖|

(𝛼) ≤ meas{𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑛

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝛼,
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨 ≤ 𝛾}

+meas{𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑛

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝛼,
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨 > 𝛾}

≤ ∫
{|𝜕𝑢𝑛/𝜕𝑥𝑖|>𝛼,|𝑢𝑛|≤𝛾}

(
1

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑛

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑝
−

𝑖

𝑑𝑥 + 𝜆
|𝑢𝑛|

(𝛾)

≤
1

𝛼
𝑝
−

𝑖

∫
{|𝑢𝑛|≤𝛾}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑛

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
−

𝑖

𝑑𝑥 + 𝜆
|𝑢𝑛|

(𝛾) .

(136)

Using (135) and (i), we get

𝜆
|𝜕𝑢𝑛/𝜕𝑥𝑖|

(𝛼) ≤ 𝐶(
𝛾

𝛼
𝑝
−

𝑖

+ 𝛾
−𝑝̃
) , (137)

from which we deduce (ii).
By lemmas 3 and 23, it follows that (𝑢

𝑛
)
𝑛∈N∗ is uniformly

bounded in 𝐿
𝑠0(Ω) for some 1 ≤ 𝑠

0
< 𝑝̃, and in the same

way, (|𝜕𝑢
𝑛
/𝜕𝑥

𝑖
|)
𝑛∈N∗ is uniformly bounded in 𝐿𝑠𝑖(Ω) for some

1 ≤ 𝑠
𝑖
< 𝑝̃

𝑖
. From this, we get that the sequence (𝑢

𝑛
)
𝑛∈N∗ is

uniformly bounded in𝑊1,𝑠
(Ω), where 𝑠 = min(𝑠

0
, 𝑠
1
, . . . , 𝑠

𝑁
).

Consequently, we can extract a subsequence, still denoted
(𝑢
𝑛
) satisfying

𝑢
𝑛
󳨀→ 𝑢 a.e. in Ω, in 𝐿

𝑠
(Ω) ,

𝑢
𝑛
⇀ 𝑢 in 𝑊

1,𝑠
(Ω) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑛

𝜕𝑥
𝑖

−
𝜕𝑢

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⇀ H
𝑖
(𝑥) in 𝐿

𝑠
(Ω) , ∀𝑖 = 1, . . . , 𝑁.

(138)

By the same way as in the proof of [16, Lemma 3.5] (see also
[27]), we prove that

H
𝑖
(𝑥) = 0 a.e. 𝑥 ∈ Ω ∀𝑖 = 1, . . . , 𝑁. (139)

We deduce from (139) that

𝑎
𝑖
(𝑥,

𝜕𝑢
𝑛

𝜕𝑥
𝑖

)

󳨀→ 𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

) a.e. in Ω, in 𝐿
1
(Ω) , ∀𝑖 = 1, . . . , 𝑁.

(140)

In order to pass to the limit in relation (134), we need also
the following convergence results which can be proved by the
same way as in [1].
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Proposition 24. Assume (4)–(8), 𝑓 ∈ 𝐿
1
(Ω) and (132). Let

𝑢
𝑛
∈ 𝑊

1,𝑝⃗(⋅)
(Ω) be the solution of (133). The sequence (𝑢

𝑛
)
𝑛∈N

is Cauchy in measure. In particular, there exists a measurable
function 𝑢 and a subsequence still denoted by 𝑢

𝑛
such that

𝑢
𝑛
→ 𝑢 in measure.

Proposition 25. Assume (4)–(8), 𝑓 ∈ 𝐿
1
(Ω) and (132).

Let 𝑢
𝑛

∈ 𝑊
1,𝑝⃗(⋅)

(Ω) be the solution of (133). The following
assertions hold.

(i) For all 𝑖 = 1, . . . , 𝑁, 𝜕𝑢
𝑛
/𝜕𝑥

𝑖
converges in measure to

the weak partial gradient of 𝑢.
(ii) For all 𝑖 = 1, . . . , 𝑁 and all 𝑘 > 0, 𝑎

𝑖
(𝑥, 𝜕𝑇

𝑘
(𝑢
𝑛
)/𝜕𝑥

𝑖
)

converges to 𝑎
𝑖
(𝑥, 𝜕𝑇

𝑘
(𝑢
𝑛
)/𝜕𝑥

𝑖
) in 𝐿

1
(Ω) strongly and

in 𝐿
𝑝
󸀠

𝑖
(⋅)
(Ω) weakly.

We can now pass to the limit in (134). To this end, let 𝜑 ∈

𝑊
1,𝑝⃗(⋅)

(Ω)∩𝐿
∞
(Ω). For any 𝑘 > 0, choose 𝑇

𝑘
(𝑢
𝑛
−𝜑) as a test

function in (134), we get

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕𝑢
𝑛

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

+ ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

= ∫
Ω

𝑓
𝑛
(𝑥) 𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥.

(141)

For the right-hand side of (141), the convergence is obvious
since 𝑓

𝑛
converges strongly to 𝑓 in 𝐿

1
(Ω), and 𝑇

𝑘
(𝑢
𝑛
− 𝜑)

converges weakly-∗ to 𝑇
𝑘
(𝑢 − 𝜑) in 𝐿

∞
(Ω) and a.e in Ω.

For the second term of (141), we have

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

= ∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑)𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

+ ∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥.

(142)

The quantity (|𝑢
𝑛
|
𝑝𝑀(𝑥)−2𝑢

𝑛
− |𝜑|

𝑝𝑀(𝑥)−2𝜑)𝑇
𝑘
(𝑢
𝑛
− 𝜑) is

nonnegative and since for all 𝑥 ∈ Ω, 𝑠 󳨃→ |𝑠|
𝑝𝑀(𝑥)−2𝑠 is

continuous; we get

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑)𝑇
𝑘
(𝑢

𝑛
− 𝜑)

󳨀→ (|𝑢|
𝑝𝑀(𝑥)−2𝑢 −

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑)𝑇
𝑘
(𝑢 − 𝜑) a.e. in Ω.

(143)

Then, it follows by Fatou’s Lemma that

lim inf
𝑛→+∞

∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑)𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

≥ ∫
Ω

(|𝑢|
𝑝𝑀(𝑥)−2𝑢 −

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑)𝑇
𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(144)

Let us show that |𝜑|𝑝𝑀(𝑥)−2𝜑 ∈ 𝐿
1
(Ω).

We have

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 = ∫

Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−1

𝑑𝑥

≤ ∫
Ω

(
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

)
𝑝𝑀(𝑥)−1

𝑑𝑥.

(145)

If ‖𝜑‖
∞

≤ 1, then ∫
Ω
||𝜑|

𝑝𝑀(𝑥)−2𝜑|𝑑𝑥 ≤ meas(Ω) < +∞.
If ‖𝜑‖

∞
> 1, then

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ ∫

Ω

(
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

)
𝑝
+

𝑀
−1

𝑑𝑥

= (
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

)
𝑝
+

𝑀
−1meas (Ω) < +∞.

(146)

Hence, |𝜑|𝑝𝑀(𝑥)−2𝜑 ∈ 𝐿
1
(Ω).

Since𝑇
𝑘
(𝑢
𝑛
−𝜑) converges weakly-∗ to𝑇

𝑘
(𝑢−𝜑) in𝐿∞(Ω)

and |𝜑|
𝑝𝑀(𝑥)−2𝜑 ∈ 𝐿

1
(Ω), it follows that

lim
𝑛→+∞

∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑𝑇
𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

= ∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝𝑀(𝑥)−2

𝜑𝑇
𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(147)

For the first term of (141), we write it as follows:

𝑁

∑

𝑖=1

∫
{|𝑢𝑛−𝜑|≤𝑘}

𝑎
𝑖
(𝑥,

𝜕𝑢
𝑛

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝑢
𝑛
𝑑𝑥

−

𝑁

∑

𝑖=1

∫
{|𝑢𝑛−𝜑|≤𝑘}

𝑎
𝑖
(𝑥,

𝜕𝑢
𝑛

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝜑𝑑𝑥.

(148)

The first term of (148) is nonnegative by (7), then by Fatou’s
Lemma and (138), we get

𝑁

∑

𝑖=1

∫
{|𝑢−𝜑|≤𝑘}

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝑢𝑑𝑥

≤ lim inf
𝑛→∞

𝑁

∑

𝑖=1

∫
{|𝑢𝑛−𝜑|≤𝑘}

𝑎
𝑖
(𝑥,

𝜕𝑢
𝑛

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝑢
𝑛
𝑑𝑥.

(149)

According to Proposition 25, the second term of (148) con-
verges to

𝑁

∑

𝑖=1

∫
{|𝑢−𝜑|≤𝑘}

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝜑𝑑𝑥. (150)

Combining the previous convergence results, we obtain

𝑁

∑

𝑖=1

∫
Ω

𝑎
𝑖
(𝑥,

𝜕𝑢

𝜕𝑥
𝑖

)
𝜕

𝜕𝑥
𝑖

𝑇
𝑘
(𝑢 − 𝜑) 𝑑𝑥

+ ∫
Ω

|𝑢|
𝑝𝑀(𝑥)−2𝑢𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥

≤ ∫
Ω

𝑓 (𝑥) 𝑇
𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(151)
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lection Mathématiques Appliquées pour la Mâıtrise, Masson,
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