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In the present communication, scattering of elastic waves in fluid-layered solid interfaces is studied. The indirect boundary element
method is used to deal with this wave propagation phenomenon in 2D fluid-layered solid models. The source is represented by
Hankel’s function of second kind and this is always applied in the fluid. Our method is an approximate boundary integral technique
which is based upon an integral representation for scattered elastic waves using single-layer boundary sources. This approach
is typically called indirect because the sources” strengths are calculated as an intermediate step. In addition, this formulation is
regarded as a realization of Huygens’ principle. The results are presented in frequency and time domains. Various aspects related
to the different wave types that emerge from this kind of problems are emphasized. A near interface pulse generates changes in the
pressure field and can be registered by receivers located in the fluid. In order to show the accuracy of our method, we validated the
results with those obtained by the discrete wave number applied to a fluid-solid interface joining two half-spaces, one fluid and the

other an elastic solid.

1. Introduction

In many areas of physics, the study of fluid-solid interfaces
has always attracted interest. For example, important devel-
opments to study the dynamic behavior of an oceanic layer
over an elastic solid by means of analytical solutions can
be seen in the original works of Biot [1] and Ewing et al.
[2], where the attention to Stoneley and Rayleigh waves was
paid. Other applications have been aimed to understand the
behavior of interface waves being focused to ocean bottom
[3, 4]. Carcione and Helle [5] studied the physics related to
these interfaces in a variety of seabed mechanical properties,
from soft sediments to crustal rocks. Analytical results to
show the appearance of Rayleigh waves in oceanic ambient
excited by deep earthquakes were presented, for instance, in
[6,7].

Attenuation and dispersion of interface waves were inves-
tigated in multilayered cases [8-12]. The inverse problem
of determining the mechanical parameters of layered media
in contact with fluids by measuring the variation of the
pressure fields in the fluid was published by Zein et al. [13].
Studies applied to porous media have evidenced the huge
influence of porosity in wave propagation, particularly, when
the medium is partially saturated [14-18]. Attenuation and
dispersion in interface waves due to the presence of fractures
were studied in [11, 19-22]. The use of Green’s functions for
layered acoustic and elastic formations in 3D was applied in
Tadeu and Antdnio [23, 24], which can be used in numerical
modeling.

In the field of numerical methods such as finite element
and finite difference methods, the solution of fluid-solid
interfaces was carried out, for instance, in Zienkiewicz and
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FIGURE 1: Fluid-solid interface solved by means of the DWN technique.

Bettess [25] and Thomas et al. [26], respectively. In addi-
tion, spectral element and pseudospectral formulations have
revealed to be accurate methods for modeling realistic
geometries (see, e.g., Carcione et al. [27]). On the other hand,
Komatitsch et al. [28] developed the spectral element method
to deal with more complex problems and numerous advan-
tages over classical approaches were remarked.

In this communication, the indirect boundary element
method (IBEM) to study the interactions between acoustic
and elastic waves, near a fluid- and elastic-layered solid inter-
face, is applied. Monopole point source, characterized by
Hankel’s function of second kind, is employed to produce an
initial pressure wave in the fluid. This formulation could be
considered as a numerical realization of Huygens’ principle,
in which the diffracted waves are built at the boundary from
which they are radiated. Mathematically speaking, this is
completely equivalent to the well-known Somigliana repre-
sentation theorem. The accuracy of our results for a fluid-
solid interface is verified with respect to those obtained by
means of the discrete wave number (DWN). Observations
previously described by other authors are highlighted. In the
following sections, the formulations of both DWN and IBEM
applied to fluid-solid interfaces are detailed.

2. Formulation of the Problem by Means of
the Discrete Wave Number

The DWN method is one of the techniques to simulate
seismic motion. The seismic waves radiated from a source
could be expressed as an integral in the wavenumber domain.
Moreover, the source is represented as a superposition of
homogenous plane waves propagating in discrete angles
(see, e.g., Bouchon and Aki [29]). In this method, when
denominator of the integrand becomes zero for a particular
wavenumber, then the numerical integration could be a
difficult task. To overcome this problem, an approach to
include complex frequency was suggested as early as the
proposal of the DWN method itself. In what follows, a brief
description of this method applied to fluid-solid interfaces is
shown.

The incident pulse at the fluid, as shown in Figure 1, can
be given as
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where pOF(x) is incident pulse at the fluid, x = {x, x5},

C(w) is scale coefficient for the incident pulse, H(()Z)(-) is
Hankel’s function of second kind and zero order, w is circular
frequency, ¢ is compressional wave velocity in the fluid, r =
r(x) is the distance from the receiver to the source (incident

pulse), k is the wavenumber, and 77 = \/(w?/cF”) — k? with Im

n < 0. If we express k in discrete values, then we have k, =

nAk and 1, = \l(wz/cFZ)—kfl with Imy#, < 0, Ak =

wavenumber increment, and i is the imaginary unit.

If we consider that the entire pressure and displacement
fields in the fluid are expressed as the sum of the free and
diftracted fields, then one has
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FIGURE 2: (a) Fluid-layered solid interface excited by a source in the fluid; (b) mesh used to solve the problem with boundary element.

where pj is density of the fluid, a is the distance between the
source and the interface, and A, represents the diffraction
coefficient for the fluid to be found.

For the solid, we assume that potentials of displace-
ment have the form ¢ = Y B,e 157 and y =

Y C e fx1emn (570 wherey, = 1/(w?/a?) - k2 with Im y, <
0 and v, = /(w?/f?) — k2 with Im v, < 0. « and f3 are the

compressional and shear wave velocities, respectively. Simi-
larly, B, and C,, represent the diffraction coefficients, for the
solid, to be found.

The displacement field for the solid is expressed as u =
(0¢/0x,)— (0y/0x5) and w = (0¢/0x5) + (Oy/0x, ). The stress
field can be obtained from the well-known equation:

0;j (x) = Askk&-j + 2pe;;, (4)

where 0;;(x) is stress tensor, A and y are Lamé’s constants, ¢;;
is strain tensor, and §;; is Kronecker’s delta.

The boundary conditions to be applied to the interface are
u? (x) = ug (x), (5)
for displacements, and

th(x) =0,
R (6)
t; (x)=-p (x),

for tractions.
Once the boundary conditions were applied, the
unknown coefficients A,,, B,, and C, are obtained and then

the whole pressure field in the fluid is finally calculated by
means of (2). The system of equation to be solved is given by
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3. Formulation of the Problem by Means of
the Indirect Boundary Element Method

For the IBEM, the incident pulse (source) in the fluid is also
represented by (1) and applied as shown in Figure 2(a).

Assume that the equation that governs the wave motion
in the fluid is given by

00;; (x) 9%u; (x)

o, o

ij=1,3. (8)

If we consider that stresses in the fluid can be linked to the
pressure generated by the incident pulse, then one can express
this as

0; (0 = —p" 8 ij=13 9)

ij>
Then, the displacement field can be represented by the well-
known form:
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To express the diffracted wave field (for pressure and
displacement, resp.) in the fluid due to the source impacting
the elastic medium, we propose the use of the following
integral representation:

P w=| ¢ wpv@ads, (11)
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where
2
GF (x,£) = %Hﬁf’ ( %) (13)

where W(:) is force density for the fluid, GF () is Green’s
function for the fluid, and ¢; = —0.5 and defines the region
orientation (see explanation for c,, given below).

The complete pressure and displacement field in the fluid,
besides free and diffracted ones, can be written, respectively,
as

PP =p" 0+ ), (14)
uF ) =1 ®+u (x). (15)

Since the source is only applied in the fluid, only diffracted
waves appear in the solid and they can be established as
follows.

Consider a domain V' with a boundary S. If the domain
is occupied by an elastic solid, the displacement field under
harmonic excitation can be expressed, neglecting body forces,
by means of the single-layer boundary integral equation:

ul = | G0 @ s, (16)

where u;(x) is ith component of the displacement at
point X, G;;(x;§) is Greens function, which represent the
displacement produced in the direction i at x due to the
application of a unitary force in direction j at point &,
and ¢;(§) is the force density in the direction j at point &.
The product (pj(f)dSE is the force distribution at the
surface S (the subscripts i, j are limited to be 1 or 3). The
subscript in the differential shows the variable over which the
integration is done. This integral equation can be obtained
from Somigliana’s representation [30]. Furthermore, it was
demonstrated that if </>j(E) is continuous along S, then in
that case, the displacement field is continuous across S [31].

The integral representation (16) permits the calculation
of stresses and tractions by using the direct application
of Hooke’s law and Cauchy’s equation, respectively, except
for singularities on the boundary, that is, when x is equal
to & on the surface S. From a limiting process established on
equilibrium considerations, around an internal vicinity of the
boundary, one can write, for x on S,

H0=ah+ | Txde @, W)
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where t;(x) os the ith component of tractions, ¢, = 0.5 if x
tends to the boundary S “from inside” the region, ¢, = —0.5if
x tends to S “from outside” the region, or ¢, = 0 if x is not at
S. Tij(x; &) is the traction Green’s function, that is, the traction
in the direction i at a point x, linked to the unit vector n;(x),
due to the application of a unitary force in the direction jat &
on S. The 2D Green’s functions for infinite spaces can be seen
in [32, 33].

3.1. Boundary Conditions. From the configuration depicted
in Figure 2(b), it is convenient to partition the domain in
three regions (R, E, and F), for which proper boundary
conditions should be established. These conditions for fluid-
solid interfaces can be written as follows.

For the fluid-solid interface,

us (x) = ul (x), Vxeo,R=0F, (18)
t(x)=0, VxedR, (19)
tN(x)=-p"(x), VxedR (20)

For the continuous solid interface,

t8(x) =t/ (x), Vxe€d,R=0E,
(21)
uf (x) = uf (x), Vxeod,R=0E.

Expressing (18) as a function of the diffracted field (16) for the
solid, and incident and diffracted fields ((10) and (12), resp.)
for the fluid, one obtains:
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The traction free condition (19) is expressed from its integral
form (17), resulting in

1 R R R _
a9l 0+ | T8¢ ©ds; =0, -

Vx € 0,R.

The Equation (20) can be expressed by means of (17), (1), and
(11), and then one has

cdl 0+ | TE D s,
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Vx € 9,F = 0,R.
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Equations (21) express the continuity condition that must
exist between the interface of regions R and E (boundaries
0,R and OE). These are defined as follows:

adf 0+ | TS84 @ ds,

= o (%) + LE T} (%, &) ¢} (£)dS;, (25)
Vx € 0,R = OF,
| chxosf@ds -] cfmos @as,

Vx € O,R = OE.

3.2. Discretization. Here, the discretization of (22) to (26) is
presented. Considering that force densities ¢(x) and ¥(x) are
constant on each boundary element that forms the surfaces of
regions R, E, and F (see Figure 2(b)) and Gaussian integration
(or analytical integration, where Green’s function is singular)
is performed, (22) is rewritten as,

2N N
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Equation (24) can be written as

2N N
Z ‘Pf (gn) t?j (Xl’ En) + Z b (En) gF (xl’En)
n=1 n=1 (32)
- @) (wr -
——c@H? (5). 11N,
9" (x.8,) = j G" (x,8,) dS;. (33)
AS,

5
Equations (25) and (26) lead to
2N N
Z gbzR (En) t:} (xl’ En) - Z ¢zE (En) tg (Xl’ fn) =0,
n=1 n=1
I=1,N,
2N N (34)
Z ¢f (gn) gfj (Xl’En) - Z ¢f (En) gz];: (xl’gn) =0,
n=1 n=1
I=1,N,
where
tﬁ)E (Xl’ fn) = Czaijaln + JAS Tsz’E (xl’En) dSE’
’ (35)

95-’15 (x,8,) = Ls GE’E (%, &,) dS.

n

Equations (27), (30), (32), and (34) form a system of integral
equations to be solved. Once the force densities (¢(x) and
W(x)) were obtained, the whole displacement and pressure
fields in the fluid are found by means of (14) and (15), respec-
tively. For the solid, the complete displacement and traction
fields are calculated applying (16) and (17), respectively. In
the following section, we verify the accuracy of the IBEM
and DWN for several cases applied to an interface that joins
two half-spaces, one fluid and the other solid. Moreover, we
present results for layered models using IBEM. Additional
details on the discretization scheme can be consulted in
[35-38]. Work related to fluid-solid interfaces using IBEM
was also presented in [39], in which general aspects of
wave propagation in fluid-solid media were pointed out. The
novelty of the present paper is related to the application of
the IBEM to model wave propagation in layered solid-fluid
systems. In this sense, this paper deals specifically with fluid-
layered solids and provides the following aspects.

(a) It contains the complete formulation applied to fluid-
layered solid interfaces. Moreover, the paper describes
the precise boundary conditions and discretization
scheme for fluid-layered solid media.

(b) It contains pressure spectra that clearly show the
influence of a fluid-layered medium, according to its
layer thickness.

(c) It presents synthetic seismograms of pressures for sev-
eral interfaces like fluid-sandstone-granite interfaces
and others.

(d) It pointed out the kind of interface waves that emerge
in each case.

(e) Finally, the discussions focused on the diffracted
waves that appear due to the presence of the layer.

These results are shown in the following sections.
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TABLE 1: Material properties (Borejko [34]) for numerical examples.

Case Material o (m/sec) B (m/sec) p (kg/m®)

1 Pitch 2443 1000 1270

2 Limestone 4810 2195 2500

3 Granite 6100 2977 2700

4 Sandstone 2670 1090 2200

5 Sandstone-granite 2670/6100 1090/2977 2200/2700

6 Granite-sandstone 6100/2670 2977/1090 2700/2200
Fluid for all cases 1500 — 1000

2
15
oy 1 INIBEM method
o § Kos - DWN method -
j=)
§ 0.5}
[=™
ol ¥ R
-0.5

0 02 04 06 038 1 12 14 16 18 2

Frequency (Hz) x10
FIGURE 3: Results from IBEM and DWN are shown. Spectrum of
pressures by IBEM, for cases 1 and 2, is plotted with solid (Lime-
stone) and dashed (pitch) lines, while those obtained by DWN are
displayed using asterisk (limestone) and circle (pitch) lines. Here,
good agreement between both methods is also observed.

4. Validation and Application of
the IBEM and DWN Methods

To verify the accuracy of both formulations (IBEM and
DWN), we considered various models with fluid-solid inter-
faces. Borejko [34] developed theoretical and experimental
studies in order to show the emergence of interface waves.
The material properties for his models are described in
Table 1.

For comparison purposes, we chose an interface model
joining two half-spaces, one fluid and the other an elastic
solid, for cases 1 and 2 shown in Table L

As shown in Figure 1, one receiver located at the distances
a = 0.05m and b = 1.00m was considered. In Figure 3,
the spectrum of pressure for such receiver is shown for cases
1 and 2. Results from IBEM are plotted with solid and dashed
lines to represent Limestone and Pitch, respectively. Calcula-
tions from DWN are depicted with circles for case 1 and aster-
isks for case 2. Good agreement can be appreciated between
IBEM and DWN results. It is clear from this figure that the
responses for both materials vary significantly and can be
associated with the relative value of the shear wave velocity
of the solid in comparison with the fluid wave velocity [34].

For shear wave velocities higher than the compressional wave
velocity for the fluid, the spectrum of pressures shows more
simple patterns in comparison with the opposite case, where
some resonant peaks are observed.

In Figure 4, spectra of pressures for four cases (3 to 6)
solved by IBEM are displayed. For the cases 5 and 6, the
thickness of the layer is # = 0.05m and & = 0.10m, for
both cases. For these layered models, h refers to the layer
thickness (e.g., sandstone is the layer for case 5, while granite
is the layer for case 6). Cases 3 and 4 correspond to simple
models (let us refer to them as simple models), in other words,
an interface that joins two half-spaces, one fluid and the
other solid. These cases are plotted using dotted lines (case 3)
and circles (case 4), both shown in Figures 4(a) and 4(b).
In Figure 4(a), the response for case 5 is also included (for
h=0.05mandh =0.10m).

An interesting fact that emerges from the results observed
in Figure 4(a) is that the behavior shown by the layered
model (sandstone-granite) is delimited by the simple models
(granite and sandstone). Besides, at low frequencies the
layered model behavior shows a clear tendency to case 3.
In other words, the material that constitutes the half-space
(see region E in Figure 2(b)) controls this phenomenon
(i.e., granite for case 5 and sandstone for case 6). At high
frequencies the behavior is controlled by the shallow material
(see region R in Figure 2(b)) due to shorter wavelengths,
and then the material that constitutes the half-space has no
influence in the response.

Analogously, the behavior shown by case 6 is delimited
by the simple models (cases 3 and 4). At low frequencies, its
response is very close to that obtained by case 4. In contrast,
at high frequencies, such response is near to case 3 (granite).
For both figures (Figures 4(a) and 4(b)), there is a transition
zone, which depends on the layer thickness (h).

In Figure 5, pressure fields in time domain are shown
for cases 3, 4, and 5 (see Table 1). To this end, a fast Fourier
transform (FFT) algorithm was applied using a Ricker
wavelet as source time function (i.e., the second derivative of
a Gaussian) with a characteristic period of 2.604 x 107 sec;
this source is used in all analyses presented here. All models
were analyzed for frequency increments of 150 Hz, reaching
a final frequency of 19200 Hz. By means of the Fourier
transformation, it is possible to observe different kinds of
waves that emerge.

For all cases, 25 receivers were located in the fluid. The
first one was placed in a distance of b = 1.0m from the
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FIGURE 5: Synthetic seismograms of pressures by IBEM for cases 3 to 5 are shown. (a) Fluid-Sandstone interface, (b) fluid-granite interface,
(¢) fluid-sandstone-granite interface (h = 0.20 m), and (d) fluid-sandstone-granite interface (h = 0.40 m).

source, and the rest of the receivers were placed using a
distance increment of 0.05 m. The distance a = 0.05m (see
Figure 2) for all cases. For case 5 (fluid-sandstone-granite
interface), two layer thicknesses were considered, which are

h = 0.20 m (Figure 5(c)) and h = 0.40 m (Figure 5(d)).

In Figure 5(a), the wave propagation phenomenon for

case 4 (fluid-sandstone interface) is shown. Here, it is possible
to observe the influence of the o (compressional wave velocity
of sandstone, also known as P-wave velocity) represented
as t;; the direct wave that travels in the fluid and that is



perceived by the receivers is shown with t§ and the Scholte’s
interface wave is illustrated using tg.. The super index s
represents “Sandstone,” while f is for “Fluid” Borejko [34]
also found this kind of waves by means of theoretical and
experimental studies. For this case, the velocities measured
were £}, ~ 2600 ms ™, t[J; =1500ms ™", and t§, = 937.5ms .

In Figure 5(b), the wave fronts that emerge from the
fluid-granite interface interactions are depicted. Here, it is
possible to identify wave velocities associated with pseudo
Rayleigh, direct- and Scholte’s waves, which propagate at
tiR = 3076.9ms ., t£ = 1500ms~}, and tgc = 1500 ms .,
respectively. The super index g refers to “Granite” Our results
for these last two cases agree with those obtained by Borejko
[34]. It is important to mention that Scholte’s wave travels at
a velocity close to the direct wave in the fluid and, then, only
one wave front is seen. This was also reported by Borejko [34].

For the interface model (case 5), two layer thicknesses
were studied, as mentioned above. In this case, the influence
of granite is evident. In Figure 5(c) (for i = 0.20 m), the direct

wave represented by ti; and the four fronts associated with
Scholte’s wave velocity (¢ ) are clearly observed. Moreover,

two wave fronts that travel at a velocity of £ = 1090 ms " are
identified. This velocity coincides with 3 (shear wave velocity
for sandstone, also known as S wave velocity). The subindex
s stands for S wave velocity. In Figure 5(d), these same wave
fronts appear, but less interactions are evidently appreciated
due to the considered layer thickness (h = 0.40 m).

5. Conclusions

The indirect boundary element method to study the wave
propagation phenomenon in 2D fluid-layered solid interfaces
was used. This indirect formulation can give to the analyst
a deep physical insight on the generated diffracted waves
because it is closer to the physical reality and can be regarded
as a realization of Huygens’ principle. In any event, it is fully
equivalent to the classical Somigliana representation theo-
rem. In order to verify the accuracy, we tested our method
by comparing results with the analytical solution known
as discrete wave number. A near interface pulse generates
scattered waves that can be registered by receivers located
in the fluid. Results were presented in frequency and time
domains, where some aspects related to different wave types
that emerge from this kind of problems were pointed out. The
results between IBEM and DWN describe the same physics
and are, for engineering purposes, quite approximated.
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