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This paper is concerned with providing the maximum principle for a control problem governed by a stochastic evolution system on
a separable Hilbert space. In particular, necessary conditions for optimality for this stochastic optimal control problem are derived
by using the adjoint backward stochastic evolution equation. Moreover, all coefficients appearing in this system are allowed to
depend on the control variable. We achieve our results through the semigroup approach.

1. Introduction

Consider a stochastic controlled problem governed by the
following stochastic evolution equation (SEE):

𝑑𝑋 (𝑡) = (𝐴𝑋 (𝑡) + 𝑏 (𝑋 (𝑡) , ] (𝑡))) 𝑑𝑡

+ 𝜎 (𝑋 (𝑡) , ] (𝑡)) 𝑑𝑊 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑋 (0) = 𝑥
0
.

(1)

We will be interested in trying to minimize the cost func-
tional, which is given by (5), over a set of admissible controls.

This system is driven mainly by a possibly unbounded
linear operator 𝐴 on a separable Hilbert space 𝐻 and a
cylindrical Wiener process 𝑊 on 𝐻. Here, ](⋅) denotes a
control process.

We will derive the maximum principle for this control
problem. More precisely, we will concentrate on providing
necessary conditions for optimality for this optimal control
problem, which gives this minimization. For this purpose
we will apply the theory of backward stochastic evolution
equations (BSEEs) shortly as in (10) in Section 3. These equa-
tions together with backward stochastic differential equations
(BSDEs) have become of great importance in a number of
fields. For example, in [1–7], one can find applications of
BSDEs to stochastic optimal control problems. Some of these
references have also studied the maximum principle to find

either necessary or sufficient conditions for optimality for
stochastic differential equations (SDEs) or stochastic partial
differential equations (SPDEs). Necessary conditions for
optimality of the control process ](⋅) and its corresponding
solution𝑋](⋅) but for the case when the noise term 𝜎 does not
depend on ](𝑡) can be found in [3].

In our work here, we allow 𝜎 to depend on the control
variable and study a stochastic control problem associated
with the former SEE. This control problem is explained
in details in Section 2, and the main theorem is stated in
Section 3 and is proved together with all necessary estimates
in Section 4. Sufficient conditions for optimality for this
optimal control problem can be found in [2]. We refer the
reader also to [1].

On the other hand, we recall that control problems
governed by SPDEs that are driven bymartingales are studied
in [8]. In fact in [8], we derived the maximum principle
(necessary conditions) for optimality of stochastic systems
governed by SPDEs. The technique used there relies heavily
on the variational approach. The reason beyond that is
that the only known way until now to find solutions to
the resulting adjoint BSPDEs is achieved through the same
variational approach and is established in details in [9].Thus,
the semigroup approach to get mild solutions (as done here
in Theorem 2 and in Section 3) cannot be used to study such
adjoint BSPDEs considered in [8]. Moreover, it is not obvious
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how one can allow the control variable ](𝑡) to enter in the
noise term and in particular in the mapping 𝐺 in equation
(1.1) of [8] and obtain a result like Theorem 3. This problem
is still open and is also pointed out in [8, Remark 6.4].

In the present work, we will show how to handle this open
problem in great success, and as we stated earlier, we can and
will allow all coefficients in (1) and especially in the diffusion
term to depend on the control variable ](𝑡). We emphasize
that our work here does not need to go through neither
the technique of Hamilton-Jacobi-Bellman equations nor the
technique of viscosity solutions.We refer the reader to [10] for
this business and to [11] and some of the related references
therein for the semigroup technique. Thus, our results here
are new. In this respect, we thank the anonymous referee for
pointing out the recent and relevant work of Fuhrman et al.
in [12].

2. Statement of the Problem

Let (Ω,F,P) be a complete probability space, and denote by
N the collection of P-null sets ofF. Let {𝑊(𝑡), 0 ≤ 𝑡 ≤ 𝑇} be
a cylindrical Wiener process on𝐻with its completed natural
filtrationF

𝑡
= 𝜎{ℓ ∘ 𝑊(𝑠), 0 ≤ 𝑠 ≤ 𝑡, ℓ ∈ 𝐻

∗
} ∨N, 𝑡 ≥ 0; see

[13] for more details.
For a separable Hilbert space 𝐸, denote by 𝐿2F(0, 𝑇; 𝐸) to

the space of all {F
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} progressively measurable

processes 𝑓 with values in 𝐸 such that

E [∫
𝑇

0

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
2

𝐸
𝑑𝑡] < ∞. (2)

This space is Hilbert with respect to the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = (E [∫

𝑇

0

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
2

𝐸
𝑑𝑡])

1/2

. (3)

Moreover, if 𝑓 ∈ 𝐿
2

F(0, 𝑇; 𝐿2(𝐻)), where 𝐿2(𝐻) is the space
of all Hilbert-Schmidt operators on𝐻, the stochastic integral
∫𝑓(𝑡)𝑑𝑊(𝑡) can be defined and is a continuous stochastic
martingale in𝐻. The norm and inner product on 𝐿

2
(𝐻) will

be denoted, respectively, by ‖ ⋅ ‖
2
and ⟨⋅, ⋅⟩

2
.

Let us assume thatO is a separableHilbert space equipped
with an inner product ⟨⋅, ⋅⟩O and 𝑈 is a convex subset of
O. We say that ](⋅) : [0, 𝑇] × Ω → O is admissible if
](⋅) ∈ 𝐿2F(0, 𝑇;O) and ](𝑡) ∈ 𝑈 a.e., a.s.The set of admissible
controls will be denoted byUad.

Suppose that 𝑏 : 𝐻 × O → 𝐻 and 𝜎 : 𝐻 × O → 𝐿
2
(𝐻)

are two continuous mappings, and consider the following
controlled SEE:

𝑑𝑋 (𝑡) = (𝐴𝑋 (𝑡) + 𝑏 (𝑋 (𝑡) , ] (𝑡))) 𝑑𝑡

+ 𝜎 (𝑋 (𝑡) , ] (𝑡)) 𝑑𝑊 (𝑡) ,

𝑋 (0) = 𝑥
0
,

(4)

where ](⋅) ∈ Uad. A solution (in the sense of the following
theorem) of (4) will be denoted by 𝑋

](⋅) to indicate the
presence of the control process ](⋅).

Let ℓ : 𝐻 × O → R and 𝜙 : 𝐻 → R be two measurable
mappings such that the following cost functional is defined:

𝐽 (] (⋅)) := E [∫
𝑇

0

ℓ (𝑋
](⋅)
(𝑡) , ] (𝑡)) 𝑑𝑡 + 𝜙 (𝑋](⋅)

(𝑇))] ,

] (⋅) ∈ Uad.

(5)

For example, one can take ℓ and 𝜙 to satisfy the assumptions
of Theorem 3 in Section 3.

The optimal control problem of system (4) is to find the
value function

𝐽
∗
:= inf {𝐽 (] (⋅)) : ] (⋅) ∈ Uad} (6)

and an optimal control ]∗(⋅) ∈ Uad such that

𝐽
∗
= 𝐽 (]∗ (⋅)) . (7)

If this happens, the corresponding solution𝑋]∗(⋅) is called an
optimal solution of the stochastic control problem (4)–(7) and
(𝑋

]∗(⋅)
, ]∗(⋅)) is called an optimal pair.

We close this section by the following theorem.

Theorem 1. Assume that 𝐴 is an unbounded linear operator
on 𝐻 that generates a 𝐶

0
-semigroup {𝑆(𝑡), 𝑡 ≥ 0} on 𝐻, 𝑏, 𝜎

are continuously Fréchet differentiable with respect to 𝑥, and
their derivatives 𝑏

𝑥
, 𝜎
𝑥
are uniformly bounded. Then, for every

](⋅) ∈ U
𝑎𝑑

there exists a unique mild solution 𝑋](⋅) on [0, 𝑇]
to (4). That is, 𝑋](⋅) is a progressively measurable stochastic
process such that𝑋(0) = 𝑥

0
, and for all 𝑡 ∈ [0, 𝑇],

𝑋
](⋅)
(𝑡) = 𝑆 (𝑡) 𝑥

0

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑏 (𝑋
](⋅)
(𝑠) , ] (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑋
](⋅)
(𝑠) , ] (𝑠)) 𝑑𝑊 (𝑠) .

(8)

The proof of this theorem can be derived in a similar way to
those in [14, Chapter 7] or [15].

From here on, we will assume that 𝐴 is the infinitesimal
generator of a 𝐶

0
-semigroup {𝑆(𝑡), 𝑡 ≥ 0} on 𝐻. Its adjoint

operator 𝐴∗ : D(𝐴∗) ⊂ 𝐻 → 𝐻 is then the infinitesimal
generator of the adjoint semigroup {𝑆∗(𝑡), 𝑡 ≥ 0} of {𝑆(𝑡), 𝑡 ≥
0}.

3. Stochastic Maximum Principle

It is known from the literature that BSDEs play a fundamental
role in deriving the maximum principle for SDEs. In this
section, we will search for such a role for SEEs like (4). To
prepare for this business, let us first define the Hamiltonian
by the following formula:

H : 𝐻 × O × 𝐻 × 𝐿
2 (𝐻) 󳨀→ R,

H (𝑥, ], 𝑦, 𝑧) := ℓ (𝑥, ]) + ⟨𝑏 (𝑥, ]) , 𝑦⟩
𝐻
+ ⟨𝜎 (𝑥, ]) , 𝑧⟩2.

(9)
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Then, we consider the following BSEE on𝐻:

− 𝑑𝑌
](⋅)
(𝑡) = (𝐴

∗
𝑌
](⋅)
(𝑡)

+∇
𝑥
H (𝑋

](⋅)
(𝑡) , ] (𝑡) , 𝑌](⋅)

(𝑡) , 𝑍
](⋅)
(𝑡))) 𝑑𝑡

− 𝑍
](⋅)
(𝑡) 𝑑𝑊 (𝑡) , 0 ≤ 𝑡 < 𝑇,

𝑌
](⋅)
(𝑇) = ∇𝜙 (𝑋

](⋅)
(𝑇)) ,

(10)

where∇𝜙 denotes the gradient of 𝜙, which is defined by using
the directional derivative 𝐷𝜙(𝑥)(ℎ) of 𝜙 at a point 𝑥 ∈ 𝐻 in
the direction of ℎ ∈ 𝐻, as ⟨∇𝜙(𝑥), ℎ⟩

𝐻
= 𝐷𝜙(𝑥)(ℎ) (= 𝜙

𝑥
(ℎ)).

This equation is the adjoint equation of (4).
As in the previous section, amild solution (or a solution)

of (10) is a pair (𝑌, 𝑍) ∈ 𝐿2F(0, 𝑇;𝐻) × 𝐿
2

F(0, 𝑇; 𝐿2(𝐻)) such
that we have P—a.s. for all 𝑡 ∈ [0, 𝑇]

𝑌
](⋅)
(𝑡) = 𝑆

∗
(𝑇 − 𝑡) ∇𝜙 (𝑋

](⋅)
(𝑇))

+ ∫

𝑇

𝑡

𝑆
∗
(𝑠 − 𝑡) ∇

𝑥
H (𝑋

](⋅)
(𝑠) , ] (𝑠) ,

𝑌
](⋅)
(𝑠) , 𝑍

](⋅)
(𝑠)) 𝑑𝑠

− ∫

𝑇

𝑡

𝑆
∗
(𝑠 − 𝑡) 𝑍

](⋅)
(𝑠) 𝑑𝑊 (𝑠) .

(11)

Theorem 2. Assume that 𝑏, 𝜎, ℓ, and 𝜙 are continuously
Fréchet differentiable with respect to 𝑥, the derivatives
𝑏
𝑥
, 𝜎
𝑥
, 𝜎], and ℓ𝑥 are uniformly bounded, and

󵄨󵄨󵄨󵄨𝜙𝑥
󵄨󵄨󵄨󵄨𝐿(𝐻,𝐻) ≤ 𝑘 (1 + |𝑥|𝐻) (12)

for some constant 𝑘 > 0.
Then, there exists a unique (mild) solution (𝑌](⋅)

, 𝑍
](⋅)
) of

BSEE (10).

The proof of this theorem can be found in [16] or [17].
An alternative proof by using finite dimensional framework
through the Yosida approximation of 𝐴 can be found in [18].

Our main result is the following.

Theorem 3. Suppose that the following two conditions hold.

(i) 𝑏, 𝜎, and ℓ are continuously Fréchet differentiable
with respect to 𝑥, ], 𝜙 is continuously Fréchet
differentiable with respect to 𝑥, the derivatives
𝑏
𝑥
, 𝑏], 𝜎𝑥, 𝜎], ℓ𝑥, and ℓ] are uniformly bounded, and

󵄨󵄨󵄨󵄨𝜙𝑥
󵄨󵄨󵄨󵄨𝐿(𝐻,𝐻) ≤ 𝑘 (1 + |𝑥|𝐻) (13)

for some constant 𝑘 > 0.
(ii) ℓ
𝑥
is Lipschitz with respect to 𝑢 uniformly in 𝑥.

If (𝑋]∗(⋅)
, ]∗(⋅)) is an optimal pair for the control problem

(4)–(7), then there exists a unique solution (𝑌]∗(⋅)
, 𝑍

]∗(⋅)
) to

the corresponding BSEE (10) such that the following inequality
holds:

⟨∇]H (𝑋
]∗(⋅)

(𝑡) , ]∗ (𝑡) , 𝑌]∗(⋅)
(𝑡) ,

𝑍
]∗(⋅)

(𝑡)) , ]∗ (𝑡) − ]⟩
O
≤ 0

a.e. 𝑡 ∈ [0, 𝑇] , a.s. ∀] ∈ 𝑈.

(14)

The proof of this theoremwill be given in Section 4. Now,
to illustrate this theorem, let us present an example.

Example 4. Let 𝐻 and O be two separable Hilbert spaces
as considered earlier, and let 𝑈 = O. We will study in
this example a special case of the control problem (4)–(7).
In particular, given 𝜙 as in Theorem 3, we would like to
minimize the cost functional

𝐽 (] (⋅)) = E [∫
𝑇

0

|] (𝑡)|2O𝑑𝑡] + E [𝜙 (𝑋
](⋅)
(𝑇))] (15)

subject to

𝑑𝑋
](⋅)
(𝑡) = (𝐴𝑋

](⋅)
(𝑡) + 𝐵] (𝑡)) 𝑑𝑡

+ 𝐷] (𝑡) 𝑑𝑊 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑋
](⋅)
(0) = 𝑥0 ∈ 𝐻,

(16)

where 𝐵 is a bounded linear operator from O into𝐻 and𝐷 is
another bounded linear operator from O into 𝐿

2
(𝐻).

The Hamiltonian is then given by the formula:

H (𝑥, ], 𝑦, 𝑧)

= |]|2O + ⟨𝐵], 𝑦⟩𝐻 + ⟨𝐷], 𝑧⟩𝐿2(𝐻),
(17)

where (𝑥, ], 𝑦, 𝑧) ∈ 𝐻×O ×𝐻× 𝐿
2
(𝐻) and the adjoint BSEE

is

− 𝑑𝑌
](⋅)
(𝑡) = 𝐴

∗
𝑌
](⋅)
(𝑡) 𝑑𝑡

− 𝑍
](⋅)
(𝑡) 𝑑𝑊 (𝑡) , 𝑡 ∈ [0, 𝑇) ,

𝑌
](⋅)
(𝑇) = ∇𝜙 (𝑋

](⋅)
(𝑇)) .

(18)

From the construction of the solution of (18), as for
example, in [16, Lemma 3.1], this BSEE attains an explicit
solution:

𝑌
](⋅)
(𝑡) = E [𝑆

∗
(𝑇 − 𝑡) ∇𝜙 (𝑋

](⋅)
(𝑇)) | F

𝑡
] ,

𝑍
](⋅)
(𝑡) = 𝑆

∗
(𝑇 − 𝑡) 𝑅

](⋅)
(𝑡) ,

(19)

where 𝑅](⋅) is the unique element of 𝐿2F(0, 𝑇; 𝐿2(𝐻)) satisfy-
ing

∇𝜙 (𝑋
](⋅)
(𝑇)) = E [∇𝜙 (𝑋

](⋅)
(𝑇))] + ∫

𝑇

0

𝑅
](⋅)
(𝑡) 𝑑𝑊 (𝑡) .

(20)
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On the other hand, for fixed (𝑥, 𝑦, 𝑧), we note that the
function ] 󳨃→ H(𝑥, ], 𝑦, 𝑧) attains its minimum at ] =

(1/2)(𝐵
∗
𝑦 + 𝐷

∗
𝑧) (∈ 𝑈), where 𝐵

∗
: 𝐻 → O and

𝐷
∗
: 𝐿
2
(𝐻) → O are the adjoint operators of 𝐵 and 𝐷,

respectively. So, we elect

]∗ (𝑡, 𝜔) =
1

2
(𝐵
∗
𝑌
]∗(⋅)

(𝑡, 𝜔) + 𝐷
∗
𝑍
]∗(⋅)

(𝑡, 𝜔)) (21)

as a candidate optimal control.
It is easy to see that with these choices all the requirements

of Theorem 3 are verified. Hence, this candidate ]∗(⋅) given
in (21) is an optimal control for the problem (15)-(16), and its
corresponding optimal solution 𝑋]∗(⋅) is the solution of the
following SEE:

𝑑𝑋
]∗(⋅)

(𝑡) = (𝐴𝑋
]∗(⋅)

(𝑡) +
1

2
𝐵 (𝐵
∗
𝑌
]∗(⋅)

(𝑡)

+𝐷
∗
𝑍
]∗(⋅)

(𝑡)) ) 𝑑𝑡

+
1

2
𝐷(𝐵
∗
𝑌
]∗(⋅)

(𝑡)

+𝐷
∗
𝑍
]∗(⋅)

(𝑡)) 𝑑𝑊 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑋
]∗(⋅)

(0) = 𝑥
0
.

(22)

Finally, the value function attains the formula

𝐽
∗
=
1

4
E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨
𝐵
∗
𝑌
]∗(⋅)

(𝑡) +𝐷
∗
𝑍
]∗(⋅)

(𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨

2

O
𝑑𝑡]

+ E [𝜙 (𝑋
]∗(⋅)

(𝑇))] .

(23)

Remark 5. A concrete example in the setting of Example 4
can be constructed by taking 𝐻 = O = 𝐿

2
(R𝑑), 𝑑 ≥ 1,

𝐴 = (1/2)Δ (half-Laplacian), 𝐵 = 𝑖𝑑
𝐻
, 𝐷] := ⟨V, ℎ⟩

𝐻
Q1/2,

and 𝜙(𝑥) = ⟨𝜌, 𝑥⟩
𝐻
, for some fixed elements ℎ, 𝜌 of𝐻 and a

positive definite nuclear operator Q on𝐻.
The computations in this case ofH, 𝑌

∗
, 𝑍
∗
, ]∗(⋅), and 𝑋∗

become direct from the corresponding equations in
Example 4.

4. Proofs

Let ]∗(⋅) be an optimal control, and let 𝑋∗ ≡ 𝑋
]∗(⋅) be

the corresponding solution of (4). Let ](⋅) be an element of
𝐿
2

F(0, 𝑇;O) such that ]
∗
(⋅)+](⋅) ∈ Uad. For a given 0 ≤ 𝜀 ≤ 1,

consider the variational control:

]
𝜀 (𝑡) = ]∗ (𝑡) + 𝜀] (𝑡) , 𝑡 ∈ [0, 𝑇] . (24)

We note that the convexity of 𝑈 implies that ]
𝜀
(⋅) ∈ Uad.

Considering this control ]
𝜀
(⋅), we will let𝑋]

𝜀
(⋅) be the solution

of the SEE (4) corresponding to ]
𝜀
(⋅) and denote it briefly by

𝑋
𝜀
.

Let 𝑝 be the solution of the following linear equation:

𝑑𝑝 (𝑡) = (𝐴𝑝 (𝑡) + 𝑏
𝑥
(𝑋
∗
(𝑡) , ]∗ (𝑡)) 𝑝 (𝑡)

+ 𝑏] (𝑋
∗
(𝑡) , ]∗ (𝑡)) ] (𝑡)) 𝑑𝑡

+ (𝜎
𝑥
(𝑋
∗
(𝑡) , ]∗ (𝑡)) 𝑝 (𝑡)

+ 𝜎] (𝑋
∗
(𝑡) , ]∗ (𝑡)) ] (𝑡)) 𝑑𝑊 (𝑡) ,

𝑝 (0) = 0.

(25)

The following three lemmas contain estimates that will
play a vital role in deriving the desired variational equation
and the maximum principle for our control problem.

Lemma 6. Assume condition (i) of Theorem 3. Then,

sup
𝑡∈[0,𝑇]

E [
󵄨󵄨󵄨󵄨𝑝 (𝑡)

󵄨󵄨󵄨󵄨
2
] < ∞. (26)

Proof. The solution of (25) is given by the formula

𝑝 (𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝑏
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠)

+𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝜎𝑥 (𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠)

+𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)) 𝑑𝑊 (𝑠) .

(27)

By using Minkowski’s inequality (triangle inequality),
Holder’s inequality, Burkholder’s inequality for stochastic
convolution together with assumption (i), and Gronwall’s
inequality, we obtain easily

sup
𝑡∈[0,𝑇]

E [
󵄨󵄨󵄨󵄨𝑝 (𝑡)

󵄨󵄨󵄨󵄨
2
] ≤ 𝐶 (28)

for some constant 𝐶 > 0.

Lemma 7. Assuming condition (i) of Theorem 3, one has

sup
𝑡∈[0,𝑇]

E [
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑋

∗
(𝑡)
󵄨󵄨󵄨󵄨
2
] = 𝑂 (𝜀

2
) . (29)

Proof. Observe first from (8) that

𝑋
𝜀 (𝑡) − 𝑋

∗
(𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝑏 (𝑋𝜀, ]𝜀 (𝑠))

−𝑏 (𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝜎 (𝑋
𝜀
, ]
𝜀
(𝑠))

−𝜎 (𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑊 (𝑠) .

(30)
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Hence,

E [
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑋

∗
(𝑡)
󵄨󵄨󵄨󵄨
2
]

≤ 2𝑀
2
𝑇E [∫

𝑡

0

󵄨󵄨󵄨󵄨𝑏 (𝑋𝜀 (𝑠) , ]𝜀 (𝑠))

−𝑏 (𝑋
∗
(𝑠) , ]∗ (𝑠))󵄨󵄨󵄨󵄨

2
𝑑𝑠]

+2𝑀
2E [∫

𝑡

0

󵄩󵄩󵄩󵄩𝜎 (𝑋𝜀, ]𝜀 (𝑠))

−𝜎 (𝑋
∗
(𝑠) , ]∗ (𝑠))󵄩󵄩󵄩󵄩

2

2
𝑑𝑠] ,

(31)

where𝑀 := sup
𝑡∈[0,𝑇]

‖𝑆(𝑡)‖
𝐿(𝐻,𝐻)

.
Secondly, from condition (i), we get

E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝑏 (𝑋𝜀 (𝑠) , ]𝜀 (𝑠)) − 𝑏 (𝑋
∗
(𝑠) , ]∗ (𝑠))󵄨󵄨󵄨󵄨

2
𝑑𝑠]

≤ 2E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝑏 (𝑋𝜀 (𝑠) , ]𝜀 (𝑠)) − 𝑏 (𝑋
∗
(𝑠) , ]
𝜀
(𝑠))

󵄨󵄨󵄨󵄨
2
𝑑𝑠]

+ 2E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝑏 (𝑋
∗
(𝑠) , ]
𝜀
(𝑠)) − 𝑏 (𝑋

∗
(𝑠) , ]∗ (𝑠))󵄨󵄨󵄨󵄨

2
𝑑𝑠]

= 2E [∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑏̃
𝑥 (𝑠, 𝜀) (𝑋𝜀 (𝑠) − 𝑋

∗
(𝑠))

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

+ 2E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝛿𝜀𝑏 (𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠]

≤ 2𝐶
1
E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑋
∗
(𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠] + 2𝐶

2
𝜀
2
,

(32)

where for 𝑦 ∈ 𝐻

𝑏̃
𝑥
(𝑠, 𝜀) (𝑦)

= ∫

1

0

𝑏
𝑥
(𝑋
∗
(𝑠) + 𝜃 (𝑋

𝜀
(𝑠) − 𝑋

∗
(𝑠)) , ]

𝜀
(𝑠)) (𝑦) 𝑑𝜃,

𝛿
𝜀
𝑏 (𝑠) = 𝑏 (𝑋

∗
(𝑠) , ]
𝜀
(𝑠)) − 𝑏 (𝑋

∗
(𝑠) , ]∗ (𝑠)) ,

(33)

𝐶
1
is a positive constant, and 𝐶

2
is another positive constant

coming thanks to (i) from the following inequality:

E [∫
𝑇

0

󵄨󵄨󵄨󵄨𝛿𝜀𝑏 (𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠]

= E [∫
𝑇

0

󵄨󵄨󵄨󵄨𝑏 (𝑋
∗
(𝑠) , ]𝜀 (𝑠))

−𝑏 (𝑋
∗
(𝑠) , ]∗ (𝑠))󵄨󵄨󵄨󵄨

2
𝑑𝑠]

= E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)

+𝜃 (]
𝜀
(𝑠) − ]∗ (𝑠)))

× (]
𝜀
(𝑠) − ]∗ (𝑠)) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠] ≤ 𝐶
2
𝜀
2
.

(34)

Similarly,

E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝜎 (𝑋𝜀 (𝑠) , ]𝜀 (𝑠)) − 𝜎 (𝑋
∗
(𝑠) , ]∗ (𝑠))󵄨󵄨󵄨󵄨

2
𝑑𝑠]

≤ 2𝐶
3
E [∫
𝑡

0

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑋
∗
(𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠] + 2𝐶

4
𝜀
2
,

(35)

for some positive constants 𝐶
3
, 𝐶
4
.

Finally, by applying (32), (35) in (30) and then using
Gronwall’s inequality, we find that

E [
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑋

∗
(𝑡)
󵄨󵄨󵄨󵄨
2
] ≤ 𝐶
5
𝜀
2 (36)

for some constant𝐶
5
> 0 that depends in particular on𝐶

𝑖
, 𝑖 =

1, . . . , 4, and𝑀. Hence, the proof is complete.

Keeping the notations 𝑏̃
𝑥
and 𝛿

𝜀
𝑏 used in the preceding

proof, let us state the following lemma.

Lemma 8. Let 𝜂
𝜀
(𝑡) = ((𝑋

𝜀
(𝑡)−𝑋

∗
(𝑡))/𝜀)−𝑝(𝑡). Then, under

condition (i) of Theorem 3,

lim
𝜀→0
+

sup
𝑡∈[0,𝑇]

E [
󵄨󵄨󵄨󵄨𝜂𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
] = 0. (37)

Proof. From the corresponding equations (4) and (25), we
deduce that

𝜂
𝜀
(𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [
1

𝜀
(𝑏 (𝑋
𝜀
(𝑠) , ]
𝜀
(𝑠))

−𝑏 (𝑋
∗
(𝑠) , ]𝜀 (𝑠)))

−𝑏
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠) ] 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [
1

𝜀
𝛿
𝜀
𝑏 (𝑠)

−𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) ] 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [
1

𝜀
(𝜎 (𝑋

𝜀 (𝑠) , ]𝜀 (𝑠))

−𝜎 (𝑋
∗
(𝑠) , ]𝜀 (𝑠)))

−𝜎
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠) ] 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [
1

𝜀
𝛿
𝜀
𝜎 (𝑠)

−𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) ] 𝑑𝑠
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= ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [𝑏̃
𝑥
(𝑠, 𝜀) 𝜂

𝜀
(𝑠)

+ (𝑏̃
𝑥
(𝑠, 𝜀)

−𝑏
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑝 (𝑠) ] 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [
1

𝜀
𝛿
𝜀
𝑏 (𝑠)

−𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) ] 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [𝜎̃
𝑥
(𝑠, 𝜀) 𝜂

𝜀
(𝑠) + (𝜎̃

𝑥
(𝑠, 𝜀)

−𝜎
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑝 (𝑠)] 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [
1

𝜀
𝛿
𝜀
𝜎 (𝑠)

−𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) ] 𝑑𝑊 (𝑠) ,

(38)

where
𝛿
𝜀
𝜎 (𝑠) = 𝜎 (𝑋

∗
(𝑠) , ]
𝜀
(𝑠)) − 𝜎 (𝑋

∗
(𝑠) , ]∗ (𝑠)) ,

𝜎̃
𝑥
(𝑠, 𝜀) (𝑦) = ∫

1

0

𝜎
𝑥
(𝑋
∗
(𝑠) + 𝜃 (𝑋

𝜀
(𝑠) − 𝑋

∗
(𝑠)) , ]

𝜀
(𝑠))

× (𝑦) 𝑑𝜃, 𝑦 ∈ 𝐻.

(39)

Consequently, from (i) and as in the proof of Lemma 7, it
follows that

E [
󵄨󵄨󵄨󵄨𝜂𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
] ≤ 𝐶
6
∫

𝑡

0

E [
󵄨󵄨󵄨󵄨𝜂𝜀 (𝑠)

󵄨󵄨󵄨󵄨
2
] 𝑑𝑠 + 𝜌 (𝜀) , (40)

for all 𝑡 ∈ [0, 𝑇], where

𝜌 (𝜀) = 8𝑀𝑇E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
(𝑏̃
𝑥
(𝑠, 𝜀)

−𝑏
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) ) 𝑝 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

+ 8𝑀E [∫
𝑇

0

󵄩󵄩󵄩󵄩 (𝜎̃𝑥 (𝑠, 𝜀)

−𝜎
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑝 (𝑠)󵄩󵄩󵄩󵄩

2

2
𝑑𝑠]

+ 4𝑀𝑇E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜀
𝛿
𝜀
𝑏 (𝑠)

−𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

+ 4𝑀E [∫
𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜀
𝛿
𝜀
𝜎 (𝑠)

−𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

𝑑𝑠] .

(41)

But (i), (28), and the dominated convergence theorem
give

E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
(𝑏̃
𝑥
(𝑠, 𝜀) − 𝑏

𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑝 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

= E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

(𝑏
𝑥
(𝑋
∗
(𝑠)

+𝜃 (𝑋
𝜀 (𝑠) − 𝑋

∗
(𝑠)) , ]𝜀 (𝑠))

−𝑏
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑝 (𝑠) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

≤ ∫

𝑇

0

∫

1

0

E [
󵄨󵄨󵄨󵄨 (𝑏𝑥 (𝑋

∗
(𝑠)

+𝜃 (𝑋
𝜀 (𝑠) − 𝑋

∗
(𝑠)) , ]𝜀 (𝑠))

−𝑏
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)))

×𝑝 (𝑠)
󵄨󵄨󵄨󵄨
2
] 𝑑𝜃 𝑑𝑠 󳨀→ 0,

(42)

as 𝜀 → 0
+.

Similarly, we have

E [∫
𝑇

0

󵄩󵄩󵄩󵄩(𝜎̃𝑥 (𝑠, 𝜀) − 𝜎𝑥 (𝑋
∗
(𝑠))) 𝑝 (𝑠)

󵄩󵄩󵄩󵄩
2

2
𝑑𝑠] 󳨀→ 0, (43)

as 𝜀 → 0
+.

On the other hand, as done for (34),

E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜀
𝛿
𝜀
𝑏 (𝑠)

−𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

≤ ∫

𝑇

0

∫

1

0

E [
󵄨󵄨󵄨󵄨 (𝑏] (𝑋

∗
(𝑠) , ]∗ (𝑠)

+𝜃 (]
𝜀
(𝑠) − ]∗ (𝑠)))

−𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠))) ] (𝑠)󵄨󵄨󵄨󵄨

2
] 𝑑𝜃 𝑑𝑠

󳨀→ 0

(44)

if 𝜀 → 0
+, by using (i) and the dominated convergence

theorem. Similarly,

E [∫
𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜀
𝛿
𝜀
𝜎 (𝑠) − 𝜎] (𝑋

∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

𝑑𝑠] 󳨀→ 0 (45)

if 𝜀 → 0
+.

Finally applying (43)–(45) in (41) shows that
𝜌 (𝜀) 󳨀→ 0, as 𝜀 󳨀→ 0

+
. (46)

Hence, from (40) and Gronwall’s inequality, we obtain

sup
𝑡∈[0,𝑇]

E [
󵄨󵄨󵄨󵄨𝜂𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
] 󳨀→ 0, (47)

as 𝜀 → 0
+.
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The following theorem contains our main variational
equation, which is one of the main tools needed for deriving
the maximum principle stated inTheorem 3.

Theorem 9. Suppose that (i) and (ii) in Theorem 3 hold. For
each 𝜀 > 0, we have

𝐽 (]
𝜀 (⋅)) − 𝐽 (]

∗
(⋅)) = 𝜀E [𝜙𝑥 (𝑋

∗
(𝑇)) 𝑝 (𝑇)]

+ 𝜀E [∫
𝑇

0

ℓ
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠))

× 𝑝 (𝑠) 𝑑𝑠]

+ E [∫
𝑇

0

(ℓ (𝑋
∗
(𝑠) , ]
𝜀
(𝑠))

−ℓ (𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑠]

+ 𝑜 (𝜀) .

(48)

Proof. We can write 𝐽(]
𝜀
(⋅)) − 𝐽(]∗(⋅)) as

𝐽 (]
𝜀 (⋅)) − 𝐽 (]

∗
(⋅)) = 𝐼1 (𝜀) + 𝐼2 (𝜀) , (49)

with

𝐼
1
(𝜀) = E [𝜙 (𝑋

𝜀
(𝑇)) − 𝜙 (𝑋

∗
(𝑇))] ,

𝐼
2 (𝜀) = E [∫

𝑇

0

(ℓ (𝑋
𝜀 (𝑠) , ]𝜀 (𝑠)) − ℓ (𝑋

∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑠] .

(50)

Note that with the help of our assumptions and bymaking
use of Lemmas 8, 7, and 6 and the dominated convergence
theorem, we deduce that

1

𝜀
𝐼
1
(𝜀) =

1

𝜀
E [∫
1

0

𝜙
𝑥
(𝑋
∗
(𝑇) + 𝜃 (𝑋

𝜀
(𝑇)

−𝑋
∗
(𝑇))) (𝑋𝜀 (𝑇) − 𝑋

∗
(𝑇)) 𝑑𝜃]

= E [∫
1

0

𝜙
𝑥
(𝑋
∗
(𝑇) + 𝜃 (𝑋

𝜀
(𝑇) − 𝑋

∗
(𝑇)))

× (𝑝 (𝑇) + 𝜂
𝜀
(𝑇)) 𝑑𝜃]

󳨀→ E [𝜙
𝑥
(𝑋
∗
(𝑇)) 𝑝 (𝑇)] , as 𝜀 󳨀→ 0

+
.

(51)

Hence,

𝐼
1
(𝜀) = 𝜀E [𝜙

𝑥
(𝑋
∗
(𝑇)) 𝑝 (𝑇)] + 𝑜 (𝜀) . (52)

Similarly,

1

𝜀
𝐼
2
(𝜀) =

1

𝜀
E [∫
𝑇

0

(ℓ (𝑋
𝜀
(𝑠) , ]
𝜀
(𝑠)) − ℓ (𝑋

∗
(𝑠) , ]
𝜀
(𝑠))) 𝑑𝑠]

+
1

𝜀
E [∫
𝑇

0

(ℓ (𝑋
∗
(𝑠) , ]
𝜀
(𝑠))

−ℓ (𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑠]

= E [∫
𝑇

0

∫

1

0

ℓ
𝑥
(𝑋
∗

(𝑠)

+𝜃 (𝑋
𝜀 (𝑠) − 𝑋

∗
(𝑠)) , ]𝜀 (𝑠))

× (𝑝 (𝑠) + 𝜂𝜀 (𝑠)) 𝑑𝜃 𝑑𝑠]

+
1

𝜀
E [∫
𝑇

0

(ℓ (𝑋
∗
(𝑠) , ]
𝜀
(𝑠))

−ℓ (𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑠] .

(53)

On the other hand, applying Lemmas 8, 7, and 6 and
using the continuity and boundedness of ℓ

𝑥
in (i), (ii) and the

dominated convergence theorem imply that

E [∫
𝑇

0

∫

1

0

ℓ
𝑥
(𝑋
∗
(𝑠) + 𝜃 (𝑋

𝜀
(𝑠) − 𝑋

∗
(𝑠)) ,

]∗ (𝑠) + 𝜀] (𝑠)) (𝑝 (𝑠) + 𝜂
𝜀
(𝑠)) 𝑑𝜃 𝑑𝑠]

󳨀→ E [∫
𝑇

0

ℓ
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠) 𝑑𝑠] .

(54)

In particular, we obtain

𝐼
2
(𝜀) = 𝜀E [∫

𝑇

0

ℓ
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠) 𝑑𝑠]

+ E [∫
𝑇

0

(ℓ (𝑋
∗
(𝑠) , ]
𝜀
(𝑠))

−ℓ (𝑋
∗
(𝑠) , ]∗ (𝑠))) 𝑑𝑠] + 𝑜 (𝜀) .

(55)

As a result, the theorem follows from (49), (52) and (55).

Let us next introduce an important variational inequality.
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Lemma 10. Let hypotheses (i), (ii) in Theorem 3 hold. Let
(𝑌
∗
, 𝑍
∗
) ≡ (𝑌

]∗(⋅)
, 𝑍

]∗(⋅)
) be the solution of BSEE (10)

corresponding to the optimal pair (𝑋∗, ]∗(⋅)). Then,

𝜀E ⟨𝑌
∗
(𝑇) , 𝑝 (𝑇)⟩

+ 𝜀E [∫
𝑇

0

ℓ
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠) 𝑑𝑠]

+ E [∫
𝑇

0

(𝛿
𝜀
H (𝑠) − ⟨𝛿

𝜀
𝑏 (𝑠) , 𝑌

∗
(𝑠)⟩

−⟨𝛿
𝜀
𝜎(𝑠), 𝑍

∗
(𝑠)⟩
2
) 𝑑𝑠] ≥ 𝑜 (𝜀) ,

(56)

where
𝛿
𝜀
H (𝑠) =H (𝑋

∗
(𝑠) , ]𝜀 (𝑠) , 𝑌

∗
(𝑠) , 𝑍

∗
(𝑠))

−H (𝑋
∗
(𝑠) , ]∗ (𝑠) , 𝑌∗ (𝑠) , 𝑍∗ (𝑠)) .

(57)

Proof. Since ]∗(⋅) is an optimal control, then 𝐽(]
𝜀
(⋅)) −

𝐽(]∗(⋅)) ≥ 0. Hence, the result follows from (48) and (9).

The following duality relation between (25) and (10) is
also needed in order to establish the proof of Theorem 3.

Lemma 11. Under hypothesis (i) in Theorem 3, we have

E ⟨𝑌
∗
(𝑇) , 𝑝 (𝑇)⟩ = −E [∫

𝑇

0

ℓ
𝑥
(𝑋
∗
(𝑠) , ]∗ (𝑠)) 𝑝 (𝑠) 𝑑𝑠]

+ E [∫
𝑇

0

⟨𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) ,

𝑌
∗
(𝑠)⟩ 𝑑𝑠]

+ E [∫
𝑇

0

⟨𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) ,

𝑍
∗
(𝑠)⟩
2
𝑑𝑠] .

(58)

Proof. Theproof is done by usingYosida approximation of the
operator 𝐴 and Itô’s formula for the resulting SDEs and can
be gleaned directly from the proof ofTheorem 2.1 in [18].

We are now ready to establish (or complete in particular)
the proof of Theorem 3.

Proof of Theorem 3. Recall the BSEE (10):

− 𝑑𝑌
](⋅)
(𝑡) = (𝐴

∗
𝑌
](⋅)
(𝑡)

+∇
𝑥
H (𝑋

](⋅)
(𝑡) , ] (𝑡) , 𝑌](⋅)

(𝑡) , 𝑍
](⋅)
(𝑡))) 𝑑𝑡

− 𝑍
](⋅)
(𝑡) 𝑑𝑊 (𝑡) , 0 ≤ 𝑡 < 𝑇,

𝑌
](⋅)
(𝑇) = ∇𝜙 (𝑋

](⋅)
(𝑇)) .

(59)

FromTheorem 2, there exists a unique solution (𝑌∗, 𝑍∗) to it.
Thereby, it remains to prove (15).

Applying (56) and (58) gives

E [∫
𝑇

0

(𝛿
𝜀
H (𝑠)

+ ⟨𝜀𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) − 𝛿𝜀𝑏 (𝑠) , 𝑌

∗
(𝑠)⟩

+ ⟨𝜀𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)

−𝛿
𝜀
𝜎 (𝑠) , 𝑍

∗
(𝑠) ⟩
2
) 𝑑𝑠] ≥ 𝑜 (𝜀) .

(60)

But, as done for (44), by using the continuity and bounded-
ness of 𝑏] in assumption (i) and the dominated convergence
theorem, one can find that

1

𝜀
E [∫
𝑇

0

⟨𝜀𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)

−𝛿
𝜀
𝑏 (𝑠) , 𝑌

∗
(𝑠)⟩ 𝑑𝑠 ]

= −E [∫
𝑇

0

⟨𝑌
∗
(𝑠) , ∫

1

0

(𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)

+𝜃 (]
𝜀 (𝑠) − ]∗ (𝑠)))

− 𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)))

×] (𝑠) 𝑑𝜃 ⟩ 𝑑𝑠] 󳨀→ 0,

(61)

as 𝜀 → 0
+. This means that

E [∫
𝑇

0

⟨𝜀𝑏] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠) − 𝛿

𝜀
𝑏 (𝑠) , 𝑌

∗
(𝑠)⟩ 𝑑𝑠]=𝑜 (𝜀) .

(62)

Similarly,

E [∫
𝑇

0

⟨𝜀𝜎] (𝑋
∗
(𝑠) , ]∗ (𝑠)) ] (𝑠)−𝛿𝜀𝜎 (𝑠) , 𝑍

∗
(𝑠)⟩
2
𝑑𝑠]=𝑜 (𝜀) .

(63)

Now, by applying (62) and (63) in (60), we deduce that

E [∫
𝑇

0

𝛿
𝜀
H (𝑠) 𝑑𝑠] ≥ 𝑜 (𝜀) . (64)

Therefore, by dividing (64) by 𝜀 and letting 𝜀 → 0
+, the

following inequality holds:

E [∫
𝑇

0

⟨∇]H (𝑡, 𝑋
∗
(𝑡) , ]∗ (𝑡) , 𝑌∗ (𝑡) , 𝑍∗ (𝑡)) , ] (𝑡)⟩

O
𝑑𝑡]≥0.

(65)

Finally, (14) follows by arguing, if necessary, as in [19, page
280], for instance.
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