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We study the existence of periodic orbit for a differential system describing the effects of indirect predation over two preys. Besides
discussing a generalized version of themodel, we present some remarks and numerical experiments for the nonautonomous version
of the two models.

1. Introduction

The role of indirect effects in biology has been extensively
studied in the last decades (see [1–7]); for example, in the case
of predation (see [8]), the predator can alter the morphology
(see [9]) or the behavior of the preys. The preys, in order to
reduce the possibility of contacts with the predators, could
modify their normal conduct by reducing their activity or
by hiding themselves for long time. There are many types of
indirect effects (see [3] for a detailed discussion). Another
interesting case is the refuge indirect effect (see [10] for an
example); anyway it is of great interest trying to describe the
indirect interactions in population dynamics. In [11] a model
was proposed including indirect effects, modeling the effects
of predator Daphnia over two groups of Phytoplankton of
different morphology (see [12, 13]), having Phosphorous as
resource (see [13] or [7]).The system takes the following form

𝑍
󸀠
= 𝑍 (−𝑒 + 𝑢

𝑐
𝐶 + 𝑢
𝑔
𝐺) ,

𝐶
󸀠
= 𝐶 (𝑎

𝑐
𝑃 − 𝑢
𝑐
𝑍) − 𝑚𝐶𝑍,

𝐺
󸀠
= 𝐺 (𝑎

𝑔
𝑃 − 𝑢
𝑔
𝑍) + 𝑚𝐶𝑍,

𝑃
󸀠
= 𝑃 (−𝑎

𝑔
𝐺 − 𝑎
𝑐
𝐶) + 𝑒𝑍,

(1)

where 𝑢
𝑔
, 𝑢
𝑐
, 𝑎
𝑐
, 𝑎
𝑔
, 𝑒, 𝑚 ∈ R are positive parameters and

where (𝑍, 𝐶, 𝐺, 𝑃) ⊂ R4
+
.

In the previous system 𝑍 represents the density of popu-
lation of a predator (Daphnia or Zooplankton) that predates
the preys (Phytoplankton) 𝐶 and 𝐺 that are of different size,
in particular 𝐶 being of a smaller size than 𝐺. The variable
𝑃 represents the amount of resources (Phosphorous) for the
preys𝐶 and𝐺.The system admits a constant of motion 𝐼(𝑡) =
𝑍+𝐶+𝐺+𝑃, and then we can reduce the degree of freedom
of the problem by fixing a value of the first integral, 𝐼(𝑡) = 𝐼

0
.

The system can be rewritten in the following way:

𝑍
󸀠
= 𝑍 (−𝑒 + 𝑢

𝑐
𝐶 + 𝑢
𝑔
𝐺) ,

𝐶
󸀠
= 𝐶 [𝑎

𝑐
𝐼
0
− (𝑎
𝑐
+ 𝑢
𝑐
) 𝑍 − 𝑎

𝑐
𝐶 − 𝑎
𝑐
𝐺] − 𝑚𝐶𝑍,

𝐺
󸀠
= 𝐺 [𝑎

𝑔
𝐼
0
− (𝑎
𝑔
+ 𝑢
𝑔
)𝑍 − 𝑎

𝑔
𝐶 − 𝑎
𝑔
𝐺] + 𝑚𝐶𝑍.

(2)

The dynamics of system (2) have been studied in [14] by using
PersistenceTheory (see [15, 16]) and in particular an acyclicity
approach. It has been shown that in absence (i.e., 𝑚 = 0) of
the terms that describe indirect effects, the system (2) does
not admits coexistence of the three populations, while for𝑚 >

0 and for an appropriate choice of the parameters, the system
admits coexistence. The paper [14] suggests the importance
of indirect effects in describing cases of coexistence with the
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parameter 𝑚 being a bifurcation parameter for coexistence.
In particular under the hypotheses

𝐼
0
> max{ 𝑒

𝑢
𝑐

,
𝑒

𝑢
𝑔

} , (3)

𝑀 = 𝑎
𝑐
𝑢
𝑔
− 𝑎
𝑔
𝑢
𝑐
− 𝑎
𝑔
𝑚 > 0, (4)

the system is uniformly persistent. Under the previous
hypotheses the system admits an attractor A that lies at
positive distance from 𝜕R3

+
and inside the set

Δ = {(𝑍, 𝐶, 𝐺) ∈ R
3

+
: 𝑍 + 𝐶 + 𝐺 ≤ 𝐼

0
} . (5)

In particular the boundary fixed point

𝑃
0
= (0, 0, 0) , 𝑃

2
= (0, 𝐼

0
, 0) , 𝑃

3
= (0, 0, 𝐼

0
) ,

𝑃
4
= (

𝑎
𝑔

𝑎
𝑔
+ 𝑢
𝑔

[𝐼
0
−

𝑒

𝑢
𝑔

] , 0,
𝑒

𝑢
𝑔

)

(6)

and the segment of fixed point

𝑆 := {(𝑍, 𝐶, 𝐺) ∈ R
3
: 𝑍 = 0, 𝐶 + 𝐺 = 𝐼

0
} (7)

are all instable and their stable and centralmanifolds are all on
𝜕𝑅
3

+
. Under the hypotheses (3)-(4) the set Δ always contains

an interior fixed point 𝑄 = (𝑍
𝑄
, 𝐶
𝑄
, 𝐺
𝑄
) as follows:

𝐺
𝑄
= {

𝑒/𝑢
𝑐

𝑀/𝑎
𝑐
𝑚 + 𝑢

𝑔
/𝑢
𝑐

} ,

𝐶
𝑄
=

𝑀

𝑎
𝑐
𝑚
{

𝑒/𝑢
𝑐

𝑀/𝑎
𝑐
𝑚 + 𝑢

𝑔
/𝑢
𝑐

} ,

𝑍
𝑄
=

𝑎
𝑐

𝑚
𝑐

{𝐼
0
− (

𝑀

𝑚𝑎
𝑐

+ 1)(
𝑒/𝑢
𝑐

𝑀/𝑎
𝑐
𝑚 + 𝑢

𝑔
/𝑢
𝑐

)} ,

(8)

whose stability character has not been investigated in [14].
The matrix 𝐴(𝑄) of the linearized system at 𝑄 is

(

0 𝑢
𝑐
𝑍
𝑄

𝑢
𝑔
𝑍
𝑄

−
𝑚
𝑐
𝑀

𝑚𝑎
𝑐

𝐷 −
𝑀

𝑚
𝐷 −

𝑀

𝑚
𝐷

−

𝑎
𝑔
𝑚
𝑐

𝑎
𝑐

𝐷
𝑚

𝑚
𝑐

𝑎
𝑐
{𝐼
0
−

𝑚
𝑔

𝑚
𝐷} −

𝑀

𝑎
𝑐

𝑍
𝑄
− 𝑎
𝑔
𝐷

), (9)

where𝑚
𝑐
= 𝑚+𝑎

𝑐
+𝑢
𝑐
and𝑚

𝑔
= 𝑚+𝑎

𝑔
+𝑢
𝑔
and𝐷 = 𝐺

𝑄
. By

numerical experiments (see [14]) it was pointed out that the
attractorA should take the following forms:

(1) the interior fixed point 𝑄;
(2) a periodic orbit;
(3) a bidimensional (possibly chaotic) set.

In this work we are concerned with the proof of existence
of periodic orbits (see [17, 18] for examples in the classical
case), and we will use Hopf bifurcation theory in order to
prove existence of periodic orbits. Since the system depends

on 7 parameters, the conditions to have Hopf bifurcation are
quite complicated and for sake of simplicity we also present
a particular case in which all the parameters are fixed but 𝐼

0
.

In general cases we can use the following remark to facilitate
our analysis.

Remark 1. The trace of thematrix𝐴(𝑄) satisfies the following
inequality

Tr (𝐴 (𝑄)) = −
𝑀

𝑎
𝑐

𝑍
𝑄
− 𝐺
𝑄
(𝑎
𝑔
+
𝑀

𝑚
) < 0; (10)

then at least one eigenvalue has negative real part and as a
consequence fold-Hopf bifurcation is not possible.

The rest of the paper is organized as follows. In Section 2
we present general condition to have Hopf bifurcation, while
in Section 3 we give an example fixing all the parameters
except for 𝐼

0
. In Section 4 we consider a nonautonomous

version of the model and present several numerical exper-
iments in order to study the structure of the attractor. In
the last case we discuss a generalized version of the model,
both autonomous and nonautonomous, and present some
numerical experiments.

2. Condition for Hopf Bifurcation

We consider the characteristic polynomial of thematrix𝐴(𝑄)
as follows:

𝑥
3
+ 𝛼𝑥
2
+ 𝛽𝑥 + 𝛾 = 0, (11)

where
𝛼 = − Tr [𝐴 (𝑄)]

=
𝑀

𝑚
𝑐

{𝐼
0
− 𝐷[(

𝑀

𝑎
𝑐
𝑚
+ 1) −

𝑚
𝑐
𝑎
𝑔

𝑀
−
𝑚
𝑐

𝑚
]} ,

𝛽 = 𝑍 (𝐴 (𝑄))

=
𝑀𝐷

𝑚
{𝐼
0
− (

𝑀

𝑎
𝑐
𝑚
+ 1)𝐷}

× {𝑢
𝑐
+
𝑀

𝑚
𝑐

+

𝑢
𝑔
𝑎
𝑔
𝑚

𝑀
+
𝑚𝑎
𝑐

𝑚
𝑐

} ,

𝛾 = −Det [𝐴 (𝑄)] =
𝑒𝑀𝑎
𝑐

𝑚
𝑐

{𝐼
0
− (

𝑀

𝑎
𝑐
𝑚
+ 1)𝐷}

2

.

(12)

A necessary condition for Hopf bifurcation is that each of the
previous coefficients has to be positive. It easy to verify that
𝛼, 𝛽, 𝛾 > 0 if

𝐼
0
> (

𝑀

𝑎
𝑐
𝑚
+ 1)𝐷, (13)

and the last inequality follows from hypothesis (3).
From Hurwitz-Routh criterion we need to study the sign

of the term

𝛼𝛽 − 𝛾 =
𝑀

𝑚
𝑐

𝐵{𝐼
0
− (

𝑀

𝑎
𝑐
𝑚
+ 1)𝐷} . (14)
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The sign of the previous term depends only on the factor 𝐵;
in details we have

𝐵 = {𝐼
0
− 𝐷[𝐴 −

𝑚
𝑐
𝑎
𝑔

𝑀
−
𝑚
𝑐

𝑚
]}𝐹 − 𝑒𝑎

𝑐
{𝐼
0
− 𝐴𝐷}

= (𝐹 − 𝑒𝑎
𝑐
) (𝐼
0
− 𝐼
∗

0
) ,

(15)

where

𝐴 = (
𝑀

𝑎
𝑐
𝑚
+ 1) ,

𝐹 =
𝑀𝐷

𝑚
{𝑢
𝑐
+
𝑀

𝑚
𝑐

+

𝑢
𝑔
𝑎
𝑔
𝑚

𝑀
+
𝑚𝑎
𝑐

𝑚
𝑐

} ,

𝐼
∗

0
= 𝐴𝐷 − 𝐷

𝐹 (𝑚
𝑐
𝑎
𝑔
/𝑀 + 𝑚

𝑐
/𝑚)

𝐹 − 𝑒𝑎
𝑐

.

(16)

From the hypothesis (3) we already have 𝐼
0
> 𝐴𝐷; then if

𝐹 − 𝑒𝑎
𝑐
> 0, (17)

we have that 𝛼𝛽 − 𝛾 > 0 for any 𝐼
0
> 𝐴𝐷, and this implies

that the real parts of the eigenvalues are all negative and so
the fixed point 𝑄 is asymptotically stable. Moreover, all the
persistence solutions converge to the fixed point 𝑄.

On the contrary if

𝐹 − 𝑒𝑎
𝑐
< 0, (18)

we have that 𝛼𝛽 − 𝛾 > 0 for any 𝐼
0
∈ (1, 𝐼

∗

0
). In this case the

eigenvalues have all negative real parts and the fixed point𝑄 is
asymptotically stable. If 𝐼

0
> 𝐼
∗

0
, then 𝛼𝛽−𝛾 becomes negative

and the fixed point 𝑄 loses stability. Moreover a periodic
orbit appears thanks to Hopf bifurcation theorem (with 𝐼∗

0
as

the bifurcation value). Recalling that all the boundary fixed
points are instable and repulsive (see [14]), we can conclude
that the attractor consists of the periodic orbit generated by
Hopf bifurcation. Since the system is uniformly persistent
under hypotheses (3)-(4), we expect that the periodic orbit
is persistent. We summarize as follows.

Proposition 2. Suppose that (3) and (4) hold.Then thematrix
𝐴(𝑄) has one negative and two purely imaginary eigenvalues if
and only if 𝐼

0
= 𝐼
∗

0
and condition (18) holds.

Thanks to Hopf bifurcation theorem, a periodic orbit
appears. In order to illustrate this result, in the next section
we will consider an example of existence of limit cycle.

3. An Example of Existence of a Limit Cycle

In this section we present an example of the results of
Section 2.We prove the existence of a limit cycle by consider-
ing 𝐼
0
as a bifurcation parameter and fixing the values of the

others parameters.
We set

𝑢
𝑐
= 𝑢
𝑔
= 𝑒 = 𝑎

𝑔
= 𝑚 = 1, 𝑎

𝑐
= 3. (19)

We will choose 𝐼
0
in order to satisfy hypothesis (3) while

hypothesis (4) is already satisfied as

𝐼
0
> 1, 𝑀 = 1 > 0. (20)

The fixed point 𝑄 has the following coordinates:

(𝑍
𝑄
, 𝐶
𝑄
, 𝐺
𝑄
) = {

3

5
(𝐼
0
− 1) ,

1

4
,
3

4
} , (21)

and it then exists for 𝐼
0
> 1 which is verified by hypothesis

(3). The Jacobian matrix at point 𝑄 is the following:

𝐴 (𝑄) =(

0
3

5
(𝐼
0
− 1)

3

5
(𝐼
0
− 1)

−
5

4
−
3

4
−
3

4

−
5

4

3

5
(𝐼
0
−
9

4
) −

1

5
(𝐼
0
+
11

4
)

). (22)

The characteristic polynomial of the matrix 𝐴(𝑄) takes the
form

𝜆
3
+ 𝛼𝜆
2
+ 𝛽𝜆 + 𝛾 = 0, (23)

where

𝛼 =
1

5
{𝐼
0
+
13

2
} > 0,

𝛽 =
21

10
{𝐼
0
− 1} > 0,

𝛾 =
3

5
{𝐼
0
− 1}
2

> 0,

(24)

and where the three inequalities follow from hypothesis (3).
We use Hurwitz-Routh criterion to study the sign of the real
parts of the eigenvalues. In particular we are interested in the
sign of the term

𝛼𝛽 − 𝛾 = −
9

50
{𝐼
0
− 1} {𝐼

0
−
37

2
} , (25)

which is positive for 𝐼
0
∈ (1, 37/2) and negative for 𝐼

0
> 37/2.

Then Hopf bifurcation occurs at

𝐼
𝐻

0
=
37

2
, (26)

and this gives the existence of a family of periodic orbits.
In particular if 𝐼

0
satisfies hypothesis (3) and 𝐼

0
< 𝐼
𝐻

0
, we

have three eigenvalues with negative real part and then the
fixed point is stable and A = 𝑄 (see Figure 1). In the case in
which 𝐼

0
> 𝐼
𝐻

0
we have one eigenvalue with negative real part

and two eigenvalues with positive real part. In this case the
attractor is a periodic orbit (see Figure 2). For 𝐼

0
= 𝐼
𝐻

0
the

eigenvalues are

𝜆
1
= −5, 𝜆

2,3
= ±𝑖

7√3

2
. (27)

The period of the limit cycle is 𝑇 = 2𝜋/𝜔, where 𝜔 = 7√3/2

as represented in Figure 3.
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Figure 1: The solution of the system with 𝐼
0
< 𝐼
𝐻

0
. The attractor is

the fixed point 𝑄.
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Figure 2: The solution of the system with 𝐼
0
> 𝐼
𝐻

0
. The attractor is a

periodic orbit.

We derive the equation of the central manifold in order
to investigate the character of the bifurcation. We rewrite the
systems with parameters as in (19) as follows:

𝑍
󸀠
= 𝑍 (−1 + 𝐶 + 𝐺) ,

𝐶
󸀠
= 𝐶 (3𝐼

0
− 5𝑍 − 3𝐶 − 3𝐺) ,

𝐺
󸀠
= 𝐺 (𝐼

0
− 2𝑍 − 𝐶 − 𝐺) + 𝐶𝑍.

(28)

We consider the following change of coordinates:

𝑍 = 𝑥
1
+
3

5
(𝐼
𝐻

0
− 1) ,

𝐶 = 𝑥
2
+
1

4
,

𝐺 = 𝑥
3
+
3

4
,

(29)

and we rewrite the system

𝑥
󸀠

1
= (𝑥
1
+
21

2
) (𝑥
2
+ 𝑥
3
) ,

𝑥
󸀠

2
= −(𝑥

2
+
1

4
) (5𝑥
1
+ 3𝑥
2
+ 3𝑥
3
) ,

𝑥
󸀠

3
= (𝑥
3
+
3

4
) (−

7

2
− 2𝑥
1
− 𝑥
2
− 𝑥
3
)

+ (𝑥
2
+
1

4
) (𝑥
1
+
21

2
) .

(30)

in matrix form

(

𝑥
󸀠

1

𝑥
󸀠

2

𝑥
󸀠

3

) = 𝐴 (𝑄)(

𝑥
1

𝑥
2

𝑥
3

)

+(

𝑥
1
(𝑥
2
+ 𝑥
3
)

−𝑥
2
(5𝑥
1
+ 3𝑥
2
+ 3𝑥
3
)

(𝑥
1
𝑥
2
− 2𝑥
1
𝑥
3
− 𝑥
2
𝑥
3
− 𝑥
2

3
)

) ,

(31)

where the matrix 𝐴(𝑄) is calculated at 𝐼
0
= 𝐼
𝐻

0
. Let V

1
,

V
2
, V
3
be the eigenvectors of 𝐴(𝑄). Consider the following

transformations:

V󸀠
1
= V
1
= (−

84

55
, −

3

11
, 1) ,

V󸀠
2
=
V
2
+ V
3

2
= (

1

2
,
1

2
, 1) ,

V󸀠
3
=
V
2
− V
3

2𝑖
= (−

3

2

√3,
1

2√3
, 0)

(32)

and the change of variable

(

𝑋
1

𝑋
2

𝑋
3

) = 𝑃(

𝑥
1

𝑥
2

𝑥
3

) , (33)

where 𝑃 is the matrix with vectors V󸀠
1
, V󸀠
2
, V󸀠
3
as columns.Then

the system becomes

(

𝑋̇
1

𝑋̇
2

𝑋̇
3

) = 𝑃
−1
𝐴 (𝑄) 𝑃(

𝑋
1

𝑋
2

𝑋
3

)

+ 𝑃
−1
(

𝑥
1
(𝑥
2
+ 𝑥
3
)

−𝑥
2
(5𝑥
1
+ 3𝑥
2
+ 3𝑥
3
)

(𝑥
1
𝑥
2
− 2𝑥
1
𝑥
3
− 𝑥
2
𝑥
3
− 𝑥
2

3
)

) ;

(34)
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Figure 3: The period of the limit cycle for 𝐼
0
= 𝐼
𝐻

0
, 𝑇 = 4𝜋/7√3 ≃ 1.03.
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0.5
1

0.5

1

(b)

12 14 16
0.5
1

0.5
1

(c)

Figure 4: The solutions for 𝐼
0
= 7, 14, 28, respectively.

that is

(

𝑋̇
1

𝑋̇
2

𝑋̇
3

) =(

−5 0 0

0 0
7√3

2

0 −
7√3

2
0

)(

𝑋
1

𝑋
2

𝑋
3

) + (

𝑓
1

𝑓
2

𝑓
3

) , (35)

where

𝑓
1
=
55 (𝑋

1
+ 9𝑋
2
− 5𝑋
3
)

244036

× {((−55 + 85√3)𝑋
1
− (495 + 223√3)𝑋

2

+3 (−73 + 23√3)𝑋
3
)} ,

𝑓
2
=
55𝑋
1
+ 495𝑋

2
+ 219𝑋

3

244036

× {5 (22 + 51√3)𝑋
1
+ (990 − 669√3)𝑋

2

+ (−2032 + 207√3)𝑋
3
} ,

𝑓
3
=

1

244036
{−25 (988 + 187√3)𝑋

2

1

+ 3 (−131404 + 36795√3)𝑋
2

2

+ 2 (60021 − 102821√3)𝑋
2
𝑋
3

+ 3 (15314 + 17687√3)𝑋
2

3

− 10𝑋
1
((−5928 + 2981√3)𝑋

2

+ (3211 − 6157√3)𝑋
3
)} .

(36)

We consider a 2-dimensional center manifold of the type

𝑋
1
= ℎ (𝑋

2
, 𝑋
3
) = 𝑎𝑋

2

2
+ 𝑏𝑋
2
𝑋
3
+ 𝑐𝑋
2

3
. (37)

Using the first equation of the system, we get

𝑋̇
1
= − 5𝑋

2

2
(𝑎 +

99 (495 + 223√3)

244036
)

− 5𝑋
2

3
(𝑐 +

165 (−73 + 23√3)

244036
)

+ 5𝑋
2
𝑋
3
(−𝑏 +

11 (1851√3 + 504)

244036
) ,

(38)

while using (37) and the equations of the systems, we get

𝑋̇
1
= 7√3(−

𝑏

2
𝑋
2

2
+
𝑏

2
𝑋
2

3
+ (𝑎 − 𝑐)𝑋

2
𝑋
3
) . (39)
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Figure 5: The solution for 𝐼
0
= 35, 82, 177, respectively.
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Figure 6: The solutions 𝑍, 𝐶, 𝐺 as function of time 𝐼
0
= 177.

Equaling the coefficients, we get

−5(𝑎 +

99 (495 + 223√3)

244036
) = −7√3

𝑏

2
,

−5(𝑐 +

165 (−73 + 23√3)

244036
) = 7√3

𝑏

2
,

5(−𝑏 +

11 (1851√3 + 504)

244036
) = 7√3 (𝑎 − 𝑐) ,

(40)

with solutions

𝑎 = −

99 (58035 + 47606√3)

83948384
,

𝑏 =

495√3 (5345 + 1386√3)

41974192
,

𝑐 = −

33 (211175 + 126878√3)

83948384
.

(41)

The system restricted on the central manifold takes the form

(
𝑋̇
2

𝑋̇
3

) = (

0
2133

160
√3815

−
2133

160
√3815 0

)(
𝑋
2

𝑋
3

)

+ (

𝑔
2
(𝑋
2
, 𝑋
3
)

𝑔
3
(𝑋
2
, 𝑋
3
)
) ,

(42)

where 𝑔
2
(𝑋
2
, 𝑋
3
) = 𝑓

2
(ℎ(𝑋
2
, 𝑋
3
), 𝑋
2
, 𝑋
3
), 𝑔
3
(𝑋
2
, 𝑋
3
) =

𝑓
3
(ℎ(𝑋
2
, 𝑋
3
), 𝑋
2
, 𝑋
3
). As remarked in the previous section

the periodic orbit should persist and should be stable for
𝐼
0
≥ 𝐼
𝐻

0
.

The first Lyapunov coefficient [19, page 99] can be
calculated as

𝑙
1
(0) =

−32340518937237 + 21544969548257√3

501917482026688

≃ − 0.0099149,

(43)

and this confirm that the Hopf bifurcation is supercritical.

4. The Nonautonomous Case

Since indirect effects can be of seasonal type (see [14]), it
is interesting to study the case in which the constant 𝑚 is
replaced by the time-dependent term:

𝑚 |sin 𝑡| . (44)

We consider values of the parameters for which a periodic
orbit exists and make the substitution (44) in the indirect
effects terms of the system

𝑍
󸀠
= 𝑍 (−𝑒 + 𝑢

𝑐
𝐶 + 𝑢
𝑔
𝐺) ,

𝐶
󸀠
= 𝐶 [𝑎

𝑐
𝐼
0
− (𝑎
𝑐
+ 𝑢
𝑐
) 𝑍 − 𝑎

𝑐
𝐶 − 𝑎
𝑐
𝐺] − 𝑚 |sin 𝑡| 𝐶𝑍,

𝐺
󸀠
= 𝐺 [𝑎

𝑔
𝐼
0
− (𝑎
𝑔
+ 𝑢
𝑔
)𝑍 − 𝑎

𝑔
𝐶 − 𝑎
𝑔
𝐺] + 𝑚 |sin 𝑡| 𝐶𝑍.

(45)

We consider some numerical experiments which show that
not only the periodic orbit persists but also sort of period
bifurcation phenomena occur.

For simplicity we fix all the parameters but 𝐼
0
as follows:

𝑢
𝑔
= 𝑢
𝑐
= 𝑚 = 𝑒 = 𝑎

𝑔
= 1, 𝑎

𝑐
= 3. (46)



Abstract and Applied Analysis 7

101 102 103 104 105

3.6

3.8

4

4.2

(a)

101 102 103 104 105

21

22

23

24

25

(b)

101 102 103 104 105

100

110

120

130

140

(c)

Figure 7: The period of the function 𝑍 for 𝐼
0
= 7, 35, 177.
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Figure 8: The attractor for 𝐼
0
= 30.

In Figure 4 we represent the solution for 𝐼
0
= 7, 14, 28

while in Figure 5 for 𝐼
0
= 35, 82, 177. We note that as 𝐼

0

increases, the period of the solution increases, and in Figure 6
we represent the solutions𝑍,𝐶,𝐺 as function of time for 𝐼

0
=

177 showing different frequencies of oscillations. It would be
interesting to analyze this phenomenon in details together
with the possibility to have chaotic motion. In Figure 7 we
compare the period and oscillations of the function 𝑍(𝑡) for
𝐼
0
= 7, 35, 177.

5. A Generalized Model

In this section we consider a slighter modification of the
model, both in the autonomous and nonautonomous cases.
If we sum the second and the third equations of the system,
we get

𝐶̇ + 𝐺̇ = (𝑎
𝑐
𝐶 + 𝑎
𝐺
𝐺) (𝐼
0
− 𝑍 − 𝐶 − 𝐺) − 𝑍 (𝑢

𝑐
𝐶 + 𝑢
𝑔
𝐺) ;

(47)

then the indirect effects terms disappear and so indirect
effects do not change the total amount of the preys 𝐶 +𝐺 but
only the proportion between them. A simple generalization
of the model consists in considering different values of the

30
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34

0.5
1

1.5
2

1

2

3

4
5

Figure 9: The attractor for 𝐼
0
= 40.

parameter 𝑚, that is, 𝑚
1
and 𝑚

2
, respectively, in the second

and the third equations of the system

𝑍
󸀠
= 𝑍 (−𝑒 + 𝑢

𝑐
𝐶 + 𝑢
𝑔
𝐺) ,

𝐶
󸀠
= 𝐶 [𝑎

𝑐
𝐼
0
− (𝑎
𝑐
+ 𝑢
𝑐
) 𝑍 − 𝑎

𝑐
𝐶 − 𝑎
𝑐
𝐺] − 𝑚

1
𝐶𝑍,

𝐺
󸀠
= 𝐺 [𝑎

𝑔
𝐼
0
− (𝑎
𝑔
+ 𝑢
𝑔
)𝑍 − 𝑎

𝑔
𝐶 − 𝑎
𝑔
𝐺] + 𝑚

2
𝐶𝑍.

(48)

The dynamical behavior of the system (48) is very similar to
the case𝑚

1
= 𝑚
2
(see [14] for details). In particular it has the

same boundary fixed points with the same stability character.
Then we can state the following without giving the details of
computation.

Theorem 3. The system (48) admits coexistence for any
positive solution if the following two conditions are satisfied:

𝐼
0
> {

𝑒

𝑢
𝑐

,
𝑒

𝑢
𝑔

} ,

𝑀
1
= 𝑎
𝑐
𝑢
𝑔
− 𝑎
𝑔
𝑢
𝑐
− 𝑎
𝑔
𝑚
1
> 0.

(49)

We note that the previous conditions do not depend on
the parameter 𝑚

2
. The differences between the two models
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Figure 10: The solutions 𝑍, 𝐶, 𝐺 as function of time for 𝐼
0
= 40.
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Figure 11: The attractor for 𝐼
0
= 50.

appear in the coordinate of the fixed point 𝑄 = (𝑍
𝑄̃
, 𝐶
𝑄̃
, 𝐺
𝑄̃
)

as follows:

𝐺
𝑄̃
= {

𝑒/𝑢
𝑐

𝑀
1
/𝑎
𝑐
𝑚
2
+ 𝑢
𝑔
/𝑢
𝑐

} ,

𝐶
𝑄̃
=

𝑀
1

𝑎
𝑐
𝑚
2

{
𝑒/𝑢
𝑐

𝑀
1
/𝑎
𝑐
𝑚
2
+ 𝑢
𝑔
/𝑢
𝑐

} ,

𝑍
𝑄̃
=

𝑎
𝑐

𝑚1
𝑐

{𝐼
0
− (

𝑀
1

𝑚
2
𝑎
𝑐

+ 1)(
𝑒/𝑢
𝑐

𝑀
1
/𝑎
𝑐
𝑚
2
+ 𝑢
𝑔
/𝑢
𝑐

)} ,

(50)

where 𝑚
1

𝑐
= 𝑎
𝑐
+ 𝑢
𝑐
+ 𝑚
1
. In particular, as for the

original system, if the hypotheses of the previous theorem are
satisfied, the interior fixed point 𝑄 always exists.

The parameter 𝑚
2
plays a role only in the stability of the

point𝑄 and as a consequence in the structure of the attractor.
By the same method of Section 2 it is possible to derive a
condition similar to (18) for Hopf bifurcation.

Proposition 4. Suppose that (49) hold.Then the matrix𝐴(𝑄)
has one negative and two purely imaginary eigenvalues if and
only if 𝐼

0
= 𝐼
∗

0
and

𝐹 − 𝑒𝑎
𝑐
< 0, (51)

where

𝐹 =
𝑀
1

𝑚
2

(
𝑒/𝑢
𝑐

𝑀
1
/𝑎
𝑐
𝑚
2
+ 𝑢
𝑔
/𝑢
𝑐

)

× {𝑢
𝑐
+
𝑀
1

𝑚1
𝑐

+

𝑢
𝑔
𝑎
𝑔
𝑚
2

𝑀
1

+
𝑚
2
𝑎
𝑐

𝑚1
𝑐

} ,

𝐷 = 𝐺
𝑄̃
,

𝐴 = (
𝑀
1

𝑎
𝑐
𝑚
2

+ 1) ,

𝐼
∗

0
= 𝐴𝐷 − 𝐷

𝐹 (𝑚
1

𝑐
𝑎
𝑔
/𝑀
1
+ 𝑚
1

𝑐
/𝑚
2
)

𝐹 − 𝑒𝑎
𝑐

.

(52)

We note that inequality (51) depends on𝑚
1
and𝑚

2
.

From the previous discussionwe remark that the behavior
of the system (48) is qualitative, the same of that of the system
(2).

Numerical simulations suggest that the nonautonomous
version of system (48) presents peculiar features. We put
𝑚
1
| sin 𝑡| and 𝑚

2
| sin 𝑡|, respectively, in the second and third

equations of the system. If 𝑚
1

> 𝑚
2
, the numerical

experiments showed a behavior of the system similar to that
described in the previous section (i.e., the case 𝑚

1
= 𝑚
2
). If

𝑚
2
> 𝑚
1
, we have that

𝐶̇ + 𝐺̇ = (𝑎
𝑐
𝐶 + 𝑎
𝐺
𝐺) (𝐼
0
− 𝑍 − 𝐶 − 𝐺)

− 𝑍 (𝑢
𝑐
𝐶 + 𝑢
𝑔
𝐺) + (𝑚

2
− 𝑚
1
) |sin 𝑡| ,

(53)

then, since the last term is nonnegative, we expect a more
complicated behavior of the solutions.
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Figure 12: The solutions 𝑍, 𝐶, 𝐺 as function of time for 𝐼
0
= 50.

We present some simulations to described the dynamics
of this case. We consider the following values of the parame-
ters:

𝑎
𝑐
= 5, 𝑎

𝑔
=

1

10
, 𝑚

1
=
4

5
, 𝑚

2
=
3

2

𝑢
𝑐
=

8

10
, 𝑢

𝑔
=

2

10
, 𝑒 = 1,

𝑍 (0) = 𝐶 (0) = 𝐺 (0) =
2

3
.

(54)

For 𝐼
0
≥ 1.3 the attractor is a periodic orbit, and in Figure 8

we represent the case 𝐼
0
= 30. The most interesting case is

when 𝐼
0
= 40 where a new structure appears; see Figures 9

and 10.
For higher value of 𝐼

0
we obtain an attractor similar to

what we have found in the previous section but with a more
complicated geometry. In Figures 11 and 12 we represent,
respectively, the attractor and the function𝑍,𝐶,𝐺 for 𝐼

0
= 50.

The numerical experiments suggest that indirect effects
encourage an oscillatory behavior of the system and, as a
consequence, they are useful to describe real cases of coexis-
tence (see [20]). It could be interesting to investigate in details
the nonautonomous case, in particular the phenomenon of
period doubling and the existence of chaoticmotion (see [20–
22] for examples for the classical case).
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aplicada) of Pontificia Universidad Javeriana of Cali, Colom-
bia.

References

[1] B. Bolker, M. Holyoak, V. Křivan, L. Rowe, and O. Schmitz,
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