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This paper introduces a new approach to design Model-Free Adaptive Controller (MFAC) using adaptive fuzzy procedure as a
feedback linearization based on output error. The basic idea is to transfer the control signal to an appropriate surface and then,
depending on the output error of system, the control signal changes around this surface. Some examples are provided as well to
illustrate the efficiency of the proposed approach. The obtained simulation results have shown good performances of the proposed
controller.

1. Introduction

Classical control method is based onmathematical equations
of the system; however, this method suffers from some draw-
backs. For example, in thismethod the performance of system
can be affected by unmodeled dynamics of system and/or by
large delays. Model-Free Adaptive Control (MFAC), as a part
of modern control theory, shows superiorities compared to
model-based methods. MFAC is an adaptive control method
and needs no information about system model. It only uses
𝐼/𝑂 data for controller design and therefore it is a nonlinear
controller designed without the need to mathematical model
of controlled system [1–3].

In 1994, Han and Wang introduced model-free topic and
proved the stability of MFAC controllers. In 1993-1994, Hou
Zhongsheng represented applications of these controllers.
With using pseudo-Jacobian matrix, nonlinear systems are
replaced to near the rail line of controlled system and then
the 𝐼/𝑂 data of controlled system are used to design MFAC
controller [4].

In 1995, Jagannathan suggested a fuzzy stable controller
for a limited class of nonlinear system in the form of 𝑥(𝑘 +
1) = 𝑓(𝑥(𝑘)) + 𝑢(𝑘), where 𝑓(𝑥) is the unknown nonlinear
function. In 1996, this controller was used for general class
of nonlinear system in the form of 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) +

𝑔(𝑥(𝑘))𝑢(𝑘) [5].

Another idea is introduced in 2000 [6], which uses a
neural network as an adaptive controller for stabilization of
system.Their proposed algorithmdoes not need any complex
tuning and can be applied to any controllable multiinput
systems.

Compared with other adaptive control schemes, the
MFAC approach has several advantages, which make this
method suitable for control applications. First, MFAC just
depends on the real-timemeasurement data of the controlled
plant. Second, MFAC does not require any other testing
signals and any training process. Third, MFAC is simple and
easily implementable with small computational burden and
has strong robustness. Fourth,MFACapproach does not need
a specific controller for each specific process. Finally, the
MFAC has been successfully implemented in many practical
applications, for example, chemical industry, linear motor
control, injectionmodeling process, PH value control, and so
on [4].

The main contribution of this work is to introduce a
new MFAC approach based on output error and feedback
linearization. The proposed model has rapid monotonic
tracking error convergence, robust stability, and good distur-
bance rejection.

The rest of the paper is organized as follows: in Section 2,
adaptive fuzzy control based on feedback linearization is
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described. The proposed model-free adaptive controller and
its Lyapunov stability are represented in Sections 3 and
4, respectively; in Section 5 simulation results are given to
highlight advantages of MFAC method. Finally conclusion is
stated in Section 6.

2. Feedback Linearization by Means of
Adaptive Fuzzy Controller

In feedback linearization method, control law is determined
in such a way that nonlinear terms eliminate the system
dynamic and replace it with appropriate reference input as
seen below: (for simplifying 𝑥(𝑡) = 𝑥),

�̇� (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑡) → 𝑢 (𝑡)

= 𝑔
−1

(𝑥) (−𝑓 (𝑥) + 𝑣 (𝑡)) .

(1)

Conceptually, Adaptive Feedback Linearization (AFL)
method is the same as nonadaptive counterpart but AFL
uses adaptation law for updating controller parameter to
enhance system performance. Notice that both methods
should have complete description of system dynamic but
our proposed method does not need any information of
system dynamic. Due to the fact that it is difficult to obtain
a mathematical model of the system and typically there exist
some numerical approximations, the object of this paper is
to control systems just with 𝐼/𝑂 data in order to improve
system performance. In order to reach this goal it is required
to estimate unknown nonlinear function of system dynamic
𝑓(𝑥) and 𝑔(𝑥) with 𝑓(𝑥) and 𝑔(𝑥) or estimate control
law 𝑢(𝑡) with �̂�(𝑥). Estimation algorithm in this approach
utilizes basic fuzzy membership function. As an instance for
estimating 𝑓(𝑥), we have

𝑓 (𝑥) → 𝑓 (𝑥) =
∑
𝑝

𝑖=0

𝑐
𝑖

𝜇
𝑖

∑
𝑝

𝑖=0

𝜇
𝑖

, (2)

where 𝑝 is the number of fuzzy roles, 𝜇
𝑖

(𝑥) is membership
function for 𝑖th fuzzy role, also 𝑐

𝑖

is and the result of 𝑖th
fuzzy role for system that is generally considered as linear
combination of some series of continuous functions such as
𝑧(𝑥):

𝑧
𝑘

(𝑥) ∈ 𝑅, 𝑘 = 1, 2, . . . , 𝑚 − 1,

𝑐
𝑖

= 𝑎
𝑖,0

+ 𝑎
𝑖,𝑖

𝑧
1

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
𝑖,𝑚−1

𝑧
𝑚−1

(𝑥) ,

(3)

𝑧 = [1 𝑧
1

(𝑥) 𝑧
2

(𝑥) ⋅ ⋅ ⋅ 𝑧
𝑚−1

(𝑥)]
𝑇

,

𝐴
𝑇

=
[
[

[

𝑎
1,0

𝑎
1,1

⋅ ⋅ ⋅ 𝑎
1,𝑚−1

...
...

𝑎
𝑝,0

𝑎
𝑝,1

⋅ ⋅ ⋅ 𝑎
𝑝,𝑚−1

]
]

]

,

𝑐 = 𝑧
𝑇

𝐴.

(4)

Using (3), (4), 𝑓(𝑥) can be rewritten as

𝜉 =

[𝜇
1

𝜇
2

⋅ ⋅ ⋅ 𝜇
𝑝

]

∑
𝑝

𝑖=0

𝜇
𝑖

,

𝑓 (𝑥) = 𝑧
𝑇

⋅ 𝐴 ⋅ 𝜁 + 𝜀 (𝑥) ⇒ 𝑓 (𝑥) = 𝑧
𝑇

⋅ 𝐴 ⋅ 𝜁,

(5)

where 𝜀(𝑥) is the approximation error of fuzzy approach.𝐴(𝑡)
is updated by the adaptation law below:

�̇� (𝑡) = −𝑄
−1

⋅ 𝑧 ⋅ 𝜉
𝑇

⋅ es. (6)

𝑄 is a constant coefficient that usually is selected small. es is
the difference between output 𝑥 and reference output 𝑥ref:

es = 𝑥 − 𝑥ref. (7)

It should be pointed that AFC guarantees that 𝐴(𝑡)

approaches to its desired value, 𝐴∗(𝑡).
Notice that the initial values of 𝐴(𝑡) can be chosen as

𝐴(0) = 0 or any selected value by information that is
acquired from system dynamic or even can be determined
from another available control approach; for instance, the
columns of 𝐴(0) can be taken as 𝑘

𝑓

(𝑘
𝑓

is obtained from
state feedback method 𝑢 = −𝑘

𝑓

𝑥) or, for example, if we want
to estimate 𝑓(𝑥) function, the columns of 𝐴(0) are better to
contain coefficients of system states of 𝑓(𝑥) [7]. Fuzzy rules
are expressed as follows:

If 𝑋 is 𝐹
𝑖

then 𝑐
𝑖

= 𝑓
𝑖

(𝑧) . (8)

𝑓
𝑖

(𝑧) is related to 𝑖th row of 𝑧𝑇𝐴 matrix. So the unknown
nonlinear function 𝑓(𝑥) is estimated as 𝑓(𝑥) by fuzzy
approach.

Adaptive-fuzzy control method has been divided to two
parts: direct and indirect approachs; this paper uses indirect
method.

2.1. Indirect Adaptive Fuzzy Controller (IAFC). First, consider
the affine system equations given below:

�̇� (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑡) ,

�̇� (𝑡) = (𝛼 (𝑡) + 𝛼 (𝑥)) + (𝛽 (𝑡) + 𝛽 (𝑥)) ∗ 𝑢 (𝑡) .

(9)

𝛼(𝑥), 𝛽(𝑥) are known parts of system dynamic (which are
obtained from experimental and numerical methods), and
𝛼(𝑡), 𝛽(𝑡) are system equations that must be identified.
Considering the above discussions, 𝛼(𝑥) and 𝛽(𝑥) can be
obtained as

𝛼 (𝑥) = 𝑧
𝑇

𝛼

⋅ 𝐴
∗

𝛼

⋅ 𝜉
𝛼

+ 𝑑
𝛼

(𝑥) ,

𝛽 (𝑥) = 𝑧
𝑇

𝛽

⋅ 𝐴
∗

𝛽

⋅ 𝜉
𝛽

+ 𝑑
𝛽

(𝑥) .

(10)

𝑑
𝛼

(𝑥), 𝑑
𝛽

(𝑥) are approximated errors between real system
and fuzzy system with upper bound values |𝑑

𝛼

(𝑥)| ≤ 𝐷
𝛼

(𝑥),
|𝑑
𝛽

(𝑥)| ≤ 𝐷
𝛽

(𝑥) (𝐷
𝛼

(𝑥), 𝐷
𝛽

(𝑥) are known values). So
estimation of system parameters can be rewritten as follows:

�̂� (𝑥) = 𝑧
𝑇

𝛼

⋅ 𝐴
𝛼

⋅ 𝜉
𝛼

,

𝛽 (𝑥) = 𝑧
𝑇

𝛽

⋅ 𝐴
𝛽

⋅ 𝜉
𝛽

.

(11)
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𝐴
𝛼

, 𝐴
𝛽

are matrices that will be updated adaptively with the
following updating laws:

�̇�
𝛼

(𝑡) = −𝑄
−1

⋅ 𝑧 ⋅ 𝜉
𝑇

𝛼

⋅ es,

�̇�
𝛽

(𝑡) = −𝑄
−1

⋅ 𝑧 ⋅ 𝜉
𝑇

𝛽

⋅ es ⋅ 𝑢 (𝑡)
(12)

and finally the control law is described as follows:

𝑢 (𝑡) =
1

𝛽 (𝑡) + 𝛽 (𝑥)

(− [𝛼 (𝑡) + �̂� (𝑥)] + 𝑣 (𝑡)) . (13)

2.2. Direct Adaptive Fuzzy Controller (DAFC). Control law
𝑢(𝑡) in feedback linearization method can be obtained as
follows:

𝑢 (𝑡) =
1

𝛽 (𝑥)
(−𝛼 (𝑥) + 𝑣 (𝑡)) . (14)

The goal is to estimate 𝑢(𝑡), with consideration of basic fuzzy
function as seen below:

�̂� (𝑡) = 𝑧
𝑇

𝑢

⋅ 𝐴
∗

𝑢

⋅ 𝜉
𝑢

+ 𝑑
𝑢

(𝑥) , (15)

where �̂�(𝑡) is the estimated signal and 𝑑
𝑢

(𝑥) is the error
between the described 𝑢 by fuzzymethod and desired (appro-
priate) 𝑢∗; this error is restricted by upper known bound
|𝑑
𝑢

(𝑥)| ≤ 𝐷
𝑢

(𝑥); since practically it is difficult to define
𝐷
𝑢

(𝑥), so its value is specified and adjusted in designing
process repetition; this adjustment procedure continues until
the performance of controller indicates that 𝐷

𝑢

(𝑥) comes
close to proper value. Finally updating law 𝐴

𝑢

(𝑡) is obtained
as follows:

�̇�
𝑢

(𝑡) = −𝑄
−1

𝑢

⋅ 𝑧
𝑇

𝑢

⋅ 𝜉
𝑢

⋅ es. (16)

The initial value of 𝐴
𝑢

(𝑡)may be considered as 𝐴
𝑢

(0) = 0.

Remark 1. Thismethod is suitable for minimum phase plants
and also has the following limitation for 𝛽(𝑥):

−∞ < 𝛽
1

< 𝛽 (𝑥) < 𝛽
2

< ∞. (17)

3. Proposed Approach

In the previous section, an adaptive fuzzy controller using
fuzzy basis functions is described for stabilizing the con-
trolled system. In our introducedmethod, the same approach
has been employed but our method does not need to utilize
fuzzy basis functions for estimating system parameters.
Instead, three proposed rules based on output errors are
considered to control the plant.

Consider a system with general form

�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) 𝑢 (𝑡) . (18)

At first, nonlinear functions 𝑓 and 𝑔 must be estimated in
such a way that controller does not rely on system dynamic.
It should be noted that in this paper, the system is considered
continues time but the output is sampled and these sampled

points are used in proposed controller. The estimations of
system dynamic can be defined as

𝑓 (𝑘) = �̂�
𝑇

𝑓

(𝑘) ,

𝑔 (𝑘) = �̂�
𝑇

𝑔

(𝑘) .

(19)

And the updating values of �̂�
𝑔

, �̂�
𝑓

are given by

�̂�
𝑓

(𝑘 + 1) = �̂�
𝑓

(𝑘) + 𝛼𝑟
𝑇

(𝑘 + 1) ,

�̂�
𝑔

(𝑘 + 1) = {
�̂�
𝑔

(𝑘) + 𝛽𝑢
𝑐

(𝑘) 𝑟
𝑇

(𝑘 + 1) 𝐼 = 1

�̂�
𝑔

(𝑘) 𝐼 = 0,

(20)

where 𝛼
𝑓

, 𝛼
𝑔

are constant coefficients with respect to �̂�
𝑓

,
�̂�
𝑔

. It should also be noted that usually these parameters do
not need to be changed for different system dynamics. The
value of 𝐼 will be defined in (27); 𝑟(𝑡) is the so-called “filtered
tracking error” which is the sum of errors as defined below:

𝑟 (𝑘) = 𝑒
𝑛

(𝑘) + 𝜆
1

𝑒
𝑛−1

(𝑘) + ⋅ ⋅ ⋅ + 𝜆
𝑛−1

𝑒
2

(𝑘) + 𝜆
𝑛

𝑒
1

(𝑘) ,

𝑒
1

(𝑘) = 𝑦 (𝑘) − 𝑦
𝑑

(𝑘) ,

𝑒
2

(𝑘) = 𝑦 (𝑘) − 𝑦
𝑑

(𝑘 + 1) ,

...

𝑒
𝑛

(𝑘) = 𝑦 (𝑘) − 𝑦
𝑑

(𝑘 + 𝑛 − 1) ,

(21)

where {𝜆
𝑖

}, 𝑖 = 1, . . . , 𝑛 are coefficients of the predictive error.
And𝑦

𝑑

is the desired output. For eliminating nonlinear terms
of system dynamic, feedback linearization method has been
exploited; for this purpose, 𝑢(𝑘) is chosen as follows:

𝑢 (𝑘) = 𝑔
−1

(𝑘) (−𝑓 (𝑘) + 𝑣 (𝑘)) , (22)

where 𝑣(𝑘) is defined by

𝑣 (𝑘) = 𝑘
𝑣

𝑟 (𝑘) + 𝑦
𝑑

(𝑘 + 𝑛) −

𝑝−2

∑

𝑖=0

𝜆
𝑖+1

𝑒
𝑛−𝑖

(𝑘) . (23)

In (23), 𝑘
𝑣

is the tracking error coefficient. By choosing
appropriate 𝑘

𝑣

, 𝑟(𝑘) is converged into zero and at last it
causes 𝑣(𝑘) to be restricted. In other words, if the bigger 𝑘

𝑣

is opted, better performance of output and quick tendency
to the desired value are achieved while increasing the control
signal 𝑢; it should be noted that if 𝑘

𝑣

is chosen very large, it
can make the system unstable.

As it is seen from (22), the problem of singularity occurs
when 𝑔 is near zero and the control signal can become
unbounded. To solve this problem, separate controller com-
prising two parts is proposed in the following form:

𝑢 (𝑘)

=

{{{

{{{

{

𝑢
𝑐

(𝑘) + .5 (𝑢
𝑟

(𝑘) − 𝑢
𝑐

(𝑘)) exp (𝛾 (𝑢𝑐 (𝑘)
 − 𝑠))

𝐼 = 1,

𝑢
𝑟

(𝑘) − .5 (𝑢
𝑟

(𝑘) − 𝑢
𝑐

(𝑘)) exp (−𝛾 (𝑢𝑐 (𝑘)
 − 𝑠))

𝐼 = 0.

(24)
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In the above equation, 𝑠 is a constant value that its amount
impacts on control signal 𝑢. 𝑢

𝑐

, 𝑢
𝑟

are defined as

𝑢
𝑐

(𝑘) = 𝑔
−1

(𝑘) (−𝑓 (𝑘) + 𝑣 (𝑘)) , (25)

𝑢
𝑟

(𝑘) = −𝜇
𝑢𝑐 (𝑘)

 sign
(𝑟 (𝑘))

𝑔
, (26)

where 𝜇 is robust control signal coefficient that the decreasing
or increasing of this coefficient affects quantity of final control
signal 𝑢, and also 𝑔 is a constant value that its small amount
decreases the effect of 𝑢

𝑟

on final control signal 𝑢; that is, 𝑢
𝑟

will become more effective factor for determining 𝑢; and 𝐼 is
given by the equation below:

𝐼 = {
1
𝑔 (𝑘)

 > 𝑔,
𝑢𝑐 (𝑘)

 < 𝑠

0, otherwise.
(27)

Here, 𝑔 is lower bound of 𝑔. Proper selection of 𝑔 prevents 𝑔
to be singular.

Remark 2. 𝛾, 𝜇, and 𝑠 are designing parameters with the
following conditions [5]: 𝛾 < ln(2/𝑠), 𝜇 > 0, 𝑠 > 0.

Remark 3. If 𝑢
𝑐

is greater than 1/𝛾, it is assumed to be equal
to 1/𝛾.

The major principles of proposed MFA controller are
constructed based on the three following experimental rules,
which make controller produce appropriate control signal:

𝑢 (𝑘) =

{{{{{{{

{{{{{{{

{

𝑢 (𝑘 − 1) , if 𝑒1 (𝑘)
 < 𝜀,

𝑒1 (𝑘 − 1)
 < 𝜀,

𝑒1 (𝑘)
 ≤

𝑒1 (𝑘 − 1)


−𝑢 (𝑘 − 1) , if 𝑒1 (𝑘)
 < 𝜀,

𝑒1 (𝑘 − 1)
 < 𝜀,

𝑒1 (𝑘)
 >

𝑒1 (𝑘 − 1)


−𝜂𝑢 (𝑘 − 1) , if 𝑒1 (𝑘)
 >

𝑒1 (𝑘 − 1)
 ,

(28)

where 𝜀 is threshold value for changing final control signal
𝑢 in the above rules. These laws utilize appropriate last level
control signal (if error becomes less than specified value that
is called 𝜀) for using at next level. Indeed, if error at time 𝑘 and
𝑘 − 1 becomes less than 𝜀 and also error at time 𝑘 is greater
than the previous time, the controller applies negative value
of previous control signal for current time.

Regarding adaptive fuzzy controllers [5, 7] that esti-
mate unknown nonlinear functions of the system by fuzzy
algorithm and when new reference input is applied to the
system, this estimation becomes better. But the sensitivity of
proposed controller on estimation of nonlinear functions is
less than that of AFCmethod.This is because output error has
significant role in control effort rather than significant role of
estimation in AFC.

4. Lyapunov Stability for the Proposed Model-
Free Adaptive Controller

Let the Lyapunov function candidate 𝑉 be given by [8]

𝑉 = 𝑟
𝑇

(𝑘) 𝑟 (𝑘) +
1

𝛼
tr (�̃�𝑇
𝑓

(𝑘) �̃�
𝑓

(𝑘))

+
1

𝛽
tr (�̃�𝑇
𝑔

(𝑘) �̃�
𝑔

(𝑘)) .

(29)

(a) For the first region, 𝐼 = 1.
At first we should obtain the difference of Lyapunov

function in 𝑘 and 𝑘 + 1 level. So general Lyapunov function
Δ𝑉 = Δ𝑉

1

+ Δ𝑉
2

+ Δ𝑉
3

can be acquired as follows:

Δ𝑉
1

= 𝑟
𝑇

(𝑘 + 1) 𝑟 (𝑘 + 1) − 𝑟
𝑇

(𝑘) 𝑟 (𝑘) ,

Δ𝑉
2

=
1

𝛼
tr (�̃�𝑇
𝑓

(𝑘 + 1) �̃�
𝑓

(𝑘 + 1) − �̃�
𝑇

𝑓

(𝑘) �̃�
𝑓

(𝑘)) ,

Δ𝑉
3

=
1

𝛽
tr (�̃�𝑇
𝑔

(𝑘 + 1) �̃�
𝑔

(𝑘 + 1) − �̃�
𝑇

𝑔

(𝑘) �̃�
𝑔

(𝑘)) .

(30)

If we prove thatΔ𝑉 ≤ 0, it will demonstrate that �̃�
𝑔

, �̃�
𝑓

, and 𝑟
are bounded and they are able to stabilize system. Δ𝑉

1

, Δ𝑉
2

,
and Δ𝑉

3

are obtained as follows:

Δ𝑉
1

= −𝑟
𝑇

(𝑘) (𝐼 − 𝑘
𝑇

𝑣

𝑘
𝑣

) 𝑟 (𝑘)

+ 2(𝑘
𝑣

𝑟 (𝑘))
𝑇

(�̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)

+ (�̃�
𝑇

𝑓

)
𝑇

�̃�
𝑇

𝑓

+ (�̃�
𝑇

𝑔

𝑢
𝑐

)
𝑇

(�̃�
𝑇

𝑔

𝑢
𝑐

)

+ (𝑔𝑢
𝑑

)
𝑇

𝑔𝑢
𝑑

+ 𝜀
𝑇

𝜀


+ 2�̃�
𝑓

(�̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)

+ 2(�̃�
𝑇

𝑔

𝑢
𝑐

)
𝑇

(𝑔𝑢
𝑑

+ 𝜀


) + 2(𝑔𝑢
𝑑

)
𝑇

𝜀


,

Δ𝑉
2

= − (2 − 𝛼) (�̃�
𝑇

𝑓

)
𝑇

�̃�
𝑇

𝑓

+ 𝛼(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

× (𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)

− 2 (1 − 𝛼) �̃�
𝑓

(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


) ,

Δ𝑉
3

= − (2 − 𝛽) (�̃�
𝑇

𝑔

𝑢
𝑐

)
𝑇

(�̃�
𝑇

𝑔

𝑢
𝑐

)

+ 𝛽(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

× (𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


)

− 2 (1 − 𝛽) (�̃�
𝑇

𝑔

𝑢
𝑐

)
𝑇

(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


) .

(31)

With combination of the above three Lyapunov functions,
(32) is established

Δ𝑉 = −𝑟
𝑇

(𝑘) (𝐼 − 𝑘
𝑇

𝑣

𝑘
𝑣

) 𝑟 (𝑘) − (1 − 𝛼) (�̃�
𝑇

𝑓

)
𝑇

�̃�
𝑇

𝑓

+ 2(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
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+ 𝛼(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

× (𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)

+ 2𝛼�̃�
𝑓

(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝑔𝑢
𝑑

+ 𝜀


)

− (1 − 𝛽) (�̃�
𝑇

𝑔

𝑢
𝑐

)
𝑇

(�̃�
𝑇

𝑔

𝑢
𝑐

)

+ 𝛽(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

× (𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


)

+ 2𝛽(�̃�
𝑇

𝑔

𝑢
𝑐

)
𝑇

(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


) .

(32)

By simplifying (32) and using the below definition,

𝜂 = {
𝛼 + 𝛽

𝑢𝑐


2

𝐼 = 1,

𝛼 𝐼 = 0.
(33)

Inequality (34) is acquired as follows:

Δ𝑉 ≤ −𝑟
𝑇

(𝑘) (𝐼 − (1 + 𝜂) 𝑘
𝑇

𝑣

𝑘
𝑣

) 𝑟 (𝑘)

+ 2𝜂(𝑘
𝑣

𝑟 (𝑘))
𝑇

(𝑔𝑢
𝑑

+ 𝜀


)

+ (1 + 𝜂) (𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑔𝑢
𝑑

+ 𝜀


)

− (1 − 𝜂)



�̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

+
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)

(34)

with assuming that 𝑘
𝑣max is the maximum value of 𝑘

𝑣

and by
resimplifying (34), inequality (35) is stated as given below:

Δ𝑉 ≤ − (𝐼 − 𝑎
1

𝑘
2

𝑣max) ‖𝑟 (𝑘)‖
2

+ 2𝑎
2

𝑘
𝑣max ‖𝑟 (𝑘)‖ (𝑔𝑢𝑑 + 𝜀



)

+ 𝑎
1

(𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑔𝑢
𝑑

+ 𝜀


)

− (1 − 𝜂)



�̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

,

(35)

where 𝑎
1

and 𝑎
2

are described as

𝑎
1

= 1 + 𝜂 +
𝜂

1 − 𝜂
, 𝑎

2

= 𝜂 +
𝜂

1 − 𝜂
. (36)

By considering Lemma A.4 in Appendix A,


𝑔 (𝑢 − 𝑢

𝐶

) + 𝜀
𝑓

+ 𝜀
𝑔

𝑢
𝑐

+ 𝑑

=

𝑔𝑢
𝑑

+ 𝜀



≤ 𝑐
0

+ 𝑐
1

‖𝑟 (𝑘)‖ .

(37)

And with substituting inequality (37) in (35),

Δ𝑉 ≤ − (𝐼 − 𝑎
1

𝑘
2

𝑣max) ‖𝑟 (𝑘)‖
2

+ 2𝑎
2

𝑘
𝑣max ‖𝑟 (𝑘)‖ (𝑐0 + 𝑐1 ‖𝑟 (𝑘)‖)

+ 𝑎
1

(𝑐
0

+ 𝑐
1

‖𝑟 (𝑘)‖)
𝑇

(𝑐
0

+ 𝑐
1

‖𝑟 (𝑘)‖)

− (1 − 𝜂)



�̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

.

(38)

With simplifying the above inequality, the below equation is
obtained:

Δ𝑉 ≤ − (𝐼 − 𝑎
3

) ‖𝑟 (𝑘)‖
2

+ 2𝑎
4

‖𝑟 (𝑘)‖ + 𝑎
5

− (1 − 𝜂)



�̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

,

(39)

where 𝑎
3

, 𝑎
4

, and 𝑎
5

are defined as

𝑎
3

= 𝑎
1

𝑘
2

𝑣max + 2𝑎2𝑐1𝑘𝑣max + 𝑎1𝑐
2

1

,

𝑎
4

= 𝑎
2

𝑐
0

𝑘
𝑣max + 𝑎1𝑐0𝑐1,

𝑎
5

= 𝑎
1

𝑐
2

0

.

(40)

By assuming that 𝜂 < 1, the below statement becomes
negative:

− (1 − 𝜂)



�̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

< 0.

(41)

As regards 𝛼 > 0, 𝛽 > 0, 𝜂 becomes positive too and
finally 𝑎

1

, 𝑎
2

, 𝑎
3

, 𝑎
4

, 𝑎
5

> 0 totally; the first term in (39) {−(𝐼 −
𝑎
3

)‖𝑟(𝑘)‖
2

+ 2𝑎
4

‖𝑟(𝑘)‖ + 𝑎
5

} becomes nonpositive, if it obeys
the below condition:

‖𝑟 (𝑘)‖ > 𝛿
𝑟1

(42)

in which 𝛿
𝑟1

is acquired from the below inequality:

𝛿𝑟1
 >

𝑎
5

+ √𝑎
2

5

+ 𝑎
6

(1 − 𝑎
4

)

(1 − 𝑎
4

)
. (43)

Thus, both terms of inequality (39) have nonpositive values
and finally Δ𝑉 ≤ 0.

(b) For the second region, 𝐼 = 0.



6 Abstract and Applied Analysis

In this region the proposed Lyapunov functions Δ𝑉
1

,

Δ𝑉
2

, and Δ𝑉
3

are obtained like (30) and they are stated as
follows:

Δ𝑉
1

= −𝑟
𝑇

(𝑘) (𝐼 − 𝑘
𝑇

𝑣

𝑘
𝑣

) 𝑟 (𝑘)

+ 2(𝑘
𝑣

𝑟 (𝑘))
𝑇

(�̃�
𝑇

𝑓

+ 𝑔𝑢
𝑑

+ 𝜀


) + (�̃�
𝑇

𝑓

)
𝑇

�̃�
𝑇

𝑓

+ (𝑔𝑢
𝑑

)
𝑇

𝑔𝑢
𝑑

+ 𝜀
𝑇

𝜀


+ 2�̃�
𝑓

(𝑔𝑢
𝑑

+ 𝜀


) + 2(𝑔𝑢
𝑑

)
𝑇

𝜀


,

Δ𝑉
2

= − (2 − 𝛼) (�̃�
𝑇

𝑓

)
𝑇

�̃�
𝑇

𝑓

+ 𝛼(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)

− 2 (1 − 𝛼) �̃�
𝑓

(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


) ,

Δ𝑉
3

= 0.

(44)

By combination of the above three equations (and definition
of 𝜂), the statement is demonstrated below:

Δ𝑉 = − 𝑟
𝑇

(𝑘) (𝐼 − 𝑘
𝑇

𝑣

𝑘
𝑣

) 𝑟 (𝑘)

+ 2(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑔𝑢
𝑑

+ 𝜀


)

+
1

1 − 𝛼
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)

− (1 − 𝜂)



�̃�
𝑇

𝑓

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

(45)

with the consideration of Lemma A.4
𝑔𝑢 − 𝑔𝑢𝐶

 ≤ 𝑑0 + 𝑑1 ‖𝑟 (𝑘)‖ . (46)

By substituting inequality (46) in (45),

Δ𝑉 ≤ − (𝐼 − 𝑏
0

) ‖𝑟 (𝑘)‖
2

+ 2𝑏
1

‖𝑟 (𝑘)‖ + 𝑏
2

− (1 − 𝜂)



�̃�
𝑇

𝑓

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2 (47)

in which 𝑏
0

, 𝑏
1

, and 𝑏
2

are as follows:

𝑏
0

= 𝑘
2

𝑣max + 2𝑑1 (𝑑1 + 𝑘𝑣max) +
(𝑑
1

+ 𝑘
𝑣max)
2

1 − 𝛼
,

𝑏
1

= 2 (𝑑
0

+ 𝜀


) 𝑑
1

+
4 − 2𝛼

1 − 𝛼
(𝑑
0

+ 𝜀


) (𝑑
1

+ 𝑘
𝑣max) ,

𝑏
2

=
3 − 2𝛼

1 − 𝛼
(𝑑
0

+ 𝜀


)
2

.

(48)

By the assumption that 𝜂 < 1, the statement below becomes
negative:

− (1 − 𝜂)



�̃�
𝑇

𝑓

−
𝜂

1 − 𝜂
(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)



2

< 0. (49)

As regards𝛼 > 0, 𝛽 > 0, 𝜂 becomes positive too andfinally 𝑏
0

,

𝑏
1

, 𝑏
2

> 0.The first term in (39) {−(𝐼−𝑏
0

)‖𝑟(𝑘)‖
2

+2𝑏
1

‖𝑟(𝑘)‖+

𝑏
2

} becomes nonpositive, if it obeys the below condition:

‖𝑟 (𝑘)‖ > 𝛿
𝑟2

(50)

in which 𝛿
𝑟2

is obtained from the relation below:

𝛿𝑟2
 >

𝑏
1

+ √𝑏
2

1

+ 𝑏
2

(1 − 𝑏
0

)

(1 − 𝑏
0

)
. (51)

As a result, both terms of inequality (47) have nonpositive
values which means Δ𝑉 ≤ 0. And finally if ||𝑟(𝑘)|| >

max(𝛿
𝑟1

, 𝛿
𝑟2

) Lyapunov function becomes negative.

5. Implementation of MFA Controller

Example 4. Consider MIMO system with 2 input-2 output
system state equations which are given below [8]:

�̇�
1

(𝑡) = 𝑥
2

(𝑡) + (1 + 𝑥
2

(𝑡)
2

) 𝑢
1

(𝑡) + 𝑑
1

(𝑡) ,

�̇�
2

(𝑡) = − 𝑥
1

(𝑡) − (0.1 − exp (−𝑥
1

(𝑡)
2

− 𝑥
2

(𝑡)
2

)) 𝑥
2

(𝑡)

+ (1 + 𝑥
1

(𝑡)
2

) 𝑢
2

(𝑡) + 𝑑
2

(𝑡) ,

𝑦
1

(𝑡) = 𝑥
1

(𝑡) + 𝑛
1

(𝑡) , 𝑦
2

(𝑡) = 𝑥
2

(𝑡) + 𝑛
2

(𝑡) ,

𝑛 (𝑡) = measurement noise,

𝑑
1

(𝑡) , 𝑑
2

(𝑡) = disturbance.
(52)

Select control parameters as follows:

𝜇 = 10, 𝛼 = .1, 𝛽 = .1, 𝑠 = 2, 𝛾 = .05,

𝑔 = .8, 𝑘
𝑣

= [10 0; 0 10] , 𝜆
1

= .001, 𝜀 = .01,

𝜂 = 0, �̂�
𝑓

= [.1 .1] , �̂�
𝑔

= [1 0; 0 1] .

(53)

Simulation results of MIMO system without disturbances
𝑑
1

(𝑡), 𝑑
2

(𝑡) = 0 are demonstrated in Figure 1. In Figure 2
external disturbances are applied to the system with power
𝑑
1

(𝑡) = 0.4, 𝑑
2

(𝑡) = 0.4, and finally, the system with existence
of white Gaussian measurement noise (power 0.0001) and
external disturbance is shown in Figure 3; also desired inputs
are assumed: 𝑦

1𝑑

= 1,𝑦
2𝑑

= cos(2𝜋𝑡).

The aim of using this MIMO system which is brought
by [8] (along with two control signals) is surveying coupling
effect in multiinput multioutput systems. As it is understood
from the result of Figure 1 caused by MFA controller and the
result of AFC in [8], it can be said that system outputs of
MFA controller do not have any overshoot in its response
but in AFC, this problem is observed. As it is seen from
Figure 2, MFA controller rejects disturbance without any
noticeable effort in control signals and in the outputs. Also
it can be deduced from Figure 3 that the measurement noise
has intense effect on system outputs and control signals



Abstract and Applied Analysis 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

System output 1
Desired output 1

O
ut

pu
t1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

System output 2
Desired output 2

O
ut

pu
t2

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

0

10

20

30

40

50

60

70

Time (s)

C
on

tro
l p

ow
er

 1

(c)

C
on

tro
l p

ow
er

 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−80

−60

−40

−20

0

20

40

60

80

(d)

Figure 1: Simulation results for MIMO system without disturbance. (a), (b) system outputs 1 and 2. (c), (d) control signals 𝑢 relative to inputs
1 and 2.

(approximately became twice) but it should be noted that the
proposed controller is able to track desired output and yet
remains stable. As it is demonstrated in Figures 1, 2, and 3,
the disadvantage of this controller is oscillating control signal.
Profits of MFAC in addition of good (also rapid) tracking
and system stabilizing are decreasing settling time of output
response.

Example 5. The second system under study is Maglev train
which is shown in Figure 4. Using the notations given in
Figure 4, the vertical dynamics is described by [9].

System state equations are described as follows:

𝑚
𝑑
2

𝑧 (𝑡)

𝑑𝑡2
= −𝐹 (𝑖, 𝑧, 𝑡) + 𝑓

𝑑

+ 𝑚𝑔

= −
𝜇
0

𝑁
2

𝑎
𝑚

4
[
𝑖 (𝑡)

𝑧 (𝑡)
]

2

+ 𝑓
𝑑

+ 𝑚𝑔,

𝑑𝑖 (𝑡)

𝑑𝑡
=
𝑖 (𝑡)

𝑧 (𝑡)

𝑑𝑧 (𝑡)

𝑑𝑡

−
2

𝜇
0

𝑁2𝑎
𝑚

𝑧 (𝑡) (𝑅
𝑚

𝑖 (𝑡) − 𝑢 (𝑡)) .

(54)

Here 𝑧 is the distance between rail and train, 𝑖 is the current of
windings, 𝑚 is the train mass, 𝑓

𝑑

is the force of disturbance,
𝜇
0

is the permeability coefficient which equals 4𝜋 ∗ 10−7, 𝑁
the number of turns in winding, 𝑎

𝑚

is the section surface of
windings, and 𝑅

𝑚

is the wire resistance in windings.

Consider the state vector as below; thus the above
equations convert to new state equations:

�̇�
1

(𝑡) = 𝑥
2

(𝑡) ,

�̇�
2

(𝑡) = −
𝜇
0

𝑁
2

𝑎
𝑚

4𝑚
[
𝑥
3

(𝑡)

𝑥
1

(𝑡)
]

2

+
1

𝑚
𝑤 + 𝑔,

�̇�
3

(𝑡) = −
2𝑅
𝑚

𝜇
0

𝑁2𝑎
𝑚

𝑥
3

(𝑡) 𝑥
1

(𝑡) +
𝑥
2

(𝑡) 𝑥
3

(𝑡)

𝑥
1

(𝑡)

+
2𝑥
1

(𝑡) 𝑢 (𝑡)

𝜇
0

𝑁2𝑎
𝑚

,

𝑦 (𝑡) = 𝑥
2

(𝑡) + 𝑛 (𝑡) ,

𝑛 (𝑡) = measurement noise,
𝑤 (𝑡) = external disturbance.

(55)
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Figure 2: Simulation results for MIMO system with disturbance. (a), (b) system outputs 1 and 2. (c), (d) control signals 𝑢 relative to inputs 1
and 2.

Maglev trains work in one of two ways; both methods are
based on the same concept but involve different approaches.

(1) Electromagnetic Suspension is based on magnetic
attraction; it is very complex and somewhat unstable.

(2) Electrodynamic Suspension is based on the repulsion
ofmagnets.Themagnetic levitation force balances the
weight of the car at a stable position. Controlling EMS
is more difficult than EDS train, because normality of
this dynamic state is unstable.

Magnetic trains have two important issues, levitation
and propulsion; the target of controller is first: goes up
train to desired level along with guarantee stabilizing against
some uncertainty such as wind and changing train mass in
boltroads. And second adjust train speed at the working
frequency of magnets. In this paper just levitation part
(important section of train in controlling) is discussed. The
train in this example goes from 10mm to 16mm level. By

considering these assumption values for train and controller
as follows,

𝑚 = 1.5 kg, 𝑁 = 280 turns, 𝑎
𝑚

= 102.4m2,

𝑅
𝑚

= 1.1Ω, 𝜇 = 32, 𝛼 = .1, 𝛽 = .1,

𝑠 = 140, 𝛾 = .01, 𝑔 = .9, 𝑘
𝑣

= 1, 𝜆
1

= 0,

𝜀 = .0001, 𝜂 = 1, �̂�
𝑓

= − 4, �̂�
𝑔

= 1.

(56)

The result of simulating without considering disturbance
has been displayed in Figure 5; in Figure 6, input step as
external disturbance with amplitude 𝑑(𝑡) = 1 is applied
to the system; for Figure 7, sinusoidal measurement noise
with amplitude .1mm in presence of disturbance is con-
sidered. Also white Gaussian noise in existence of external
disturbance is applied to the system with power 8 × 10−9
(it is considered small because 𝐼/𝑂 amplitude is small)
which is shown in Figure 8. The purpose of presenting
this system is studying on sort of complicated practical
system dynamics such as Maglev in which they have some



Abstract and Applied Analysis 9

Time (s)

O
ut

pu
t 1

System output 1
Desired output 1

0 0.51 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

(a)

Time (s)

O
ut

pu
t 2

System output 2
Desired output 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

(b)

0
10
20
30
40
50
60

Time (s)

C
on

tro
l p

ow
er

 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−30

−20

−10

(c)

0

20

40

60

80

Time (s)

C
on

tro
l p

ow
er

 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−20

−40

−60

−80

(d)

Figure 3: Simulation results for MIMO system with the measurement noise and disturbance. (a), (b) system outputs 1 and 2. (c), (d) control
signals 𝑢 relative to inputs 1 and 2.

Figure 4: Vertical slice of magnetic levitation and rail in a magnetic train [9].

nonlinear terms like existence of first state in denominator
(that affect directly the destabilizing system), and so forth.
As it is demonstrated in Figure 5(a), the system output,
that is distance between rail and train, has no overshoot;
after about .25 second it goes from 10 to 16mm smoothly.
Such as the last example, it is acquired from Figure 6 that
disturbance did not have any effect on the output, control

effort, and settling time. In Figure 7, it is illustrated that
sinusoidal measurement noise with no changes appears into
output but no noticeable alternation in control signal has
been seen. And finally in Figure 8, an impalpable effect
of white Gaussian measurement noise on output and con-
trol signal can be shown; in this example some repeated
benefits which are seen in Maglev system response are
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Figure 5: Simulation result for Maglev without disturbance (in
which it goes from 10 to 16mm). (a) Distance between train and rail,
(b) control signal.
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Figure 6: Simulation result for Maglev with disturbance. (a)
Distance between train and rail, (b) control signal.

expressed, such as appropriate system stabilizing, good and
rapid tracking, disturbance rejection, and small settling
time.

6. Conclusion

Model-free adaptive controller is an adaptive controller that
just uses system outputs and does not require another system
states (so does not need observer) and with this, as model-
free controller, it performs good and also has some merits
such as good stability, appropriate tracking, robust against
uncertainty, disturbance rejection, and good decoupling and
the biggest advantage of MFA controller is no requiring
to system dynamic and even does not need to any prior
experiment about system.
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Figure 7: Simulation result for Maglev with sinuous measurement
noise at 15Hz and disturbance. (a) Distance between train and rail,
(b) control signal.
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Figure 8: Simulation result for Maglev train with white Gaussian
measurement noise along with disturbance. (a) Distance between
train and rail, (b) control signal.

Appendices

A. Some Requirements

Lemma A.1. For each time 𝑘, 𝑥(𝑘) is bounded by

‖𝑥 (𝑘)‖ ≤ 𝑑
0

+ 𝑑
1

‖𝑟 (𝑘)‖ (A.1)

which is 𝑟(𝑘), called “tracking error,” and 𝑑
0

, 𝑑
1

are computable
positive constants.
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Proof [see [8, Lemma 3.2]]. Let 𝑥(𝑘) ∈ 𝑈, in which 𝑈 is a
compact subset of 𝑅𝑛. Assume that ℎ(𝑥(𝑘)) ∈ 𝐶∞𝑈; that is,
ℎ(𝑥(𝑘)) is a smooth function 𝑈 → 𝑅, so that the Taylor
series expansion of ℎ(𝑥(𝑘)) exists. Then using the bound on
𝑥(𝑘), express the function ℎ(𝑥(𝑘)) on a compact set as linear
form of parameters. Thus, the upper bound for ℎ(𝑥(𝑘)) can
be obtained as

‖ℎ (𝑥 (𝑘))‖ ≤ 𝑐
0

+ 𝑐
1

‖𝑟 (𝑘)‖ , (A.2)

where 𝑐
0

and 𝑐
1

are constant matrices [8].

Remark A.2. 𝜀
𝑔

,𝜀
𝑓

are estimation errors of 𝑔, 𝑓, respectively,
and 𝑑 is external disturbance. These errors are bounded and
have these definite bounds


𝜀
𝑓


≤ 𝜀
𝑁𝑓

,

𝜀
𝑔


≤ 𝜀
𝑁𝑔

, ‖𝑑‖ ≤ 𝑑
𝑀

. (A.3)

Remark A.3. According to (27), if 𝐼 = 1 then ‖𝑢
𝑐

‖ ≤ 𝑠, so 𝑢
𝑐

is bounded and if 𝐼 = 0 then ‖𝑢
𝑐

‖ > 𝑠, but by considering
the mentioned condition at Remark 3 in Section 5, in which
if 𝑢
𝑐

is greater than 1/𝛾, it is assumed to be equal 1/𝛾. Thus, it
can be deduced that in both regions and in all of times, 𝑢

𝑐

is
bounded and its bounds are shown as follows:

𝑢𝑐
 ≤

{{{

{{{

{

𝑠 𝐼 = 1,

1

𝛾
𝐼 = 0.

(A.4)

Lemma A.4. With regards to that, the proposed control
algorithm is divided into two regions 𝐼 = 0 and 𝐼 = 1. We
will prove the following relationship which is established in each
region:

{


𝑔 (𝑢 − 𝑢

𝐶

) + 𝜀
𝑓

+ 𝜀
𝑔

𝑢
𝑐

+ 𝑑

≤ 𝑐
0

+ 𝑐
1

‖𝑟 (𝑘)‖ 𝐼 = 1,

𝑔𝑢 − 𝑔𝑢𝐶
 ≤ 𝑑0 + 𝑑1 ‖𝑟 (𝑘)‖ 𝐼 = 0.

(A.5)

Proof. (a) First region: 𝐼 = 1 or ‖𝑢
𝑐

‖ ≤ 𝑠 and ‖𝑔(𝑥)‖ > 𝑔.
In consideration of Lemma A.1, it is demonstrated that

‖𝑔(𝑥)‖ ≤ 𝑐
01

+ 𝑐
11

‖𝑟(𝑘)‖, where 𝑐
01

, 𝑐
11

are constant matrices:

𝑢𝑐
 ≤ 𝑠 →

𝑢𝑟
 ≤

𝜇

𝑔

𝑢𝑐
 → bounded 𝑢𝑟

 . (A.6)

By using the result of relation (A.6), the following inequality
is obtained:

𝑢 − 𝑢𝑐
 ≤



𝑢
𝑟

− 𝑢
𝑐

2
𝑒
𝛾(‖𝑢

𝑐
‖−𝑠)


. (A.7)

As regards ‖𝑢
𝑐

‖ ≤ 𝑠 → 𝛾(‖𝑢
𝑐

‖ − 𝑠) ≤ 0,

𝑢 − 𝑢𝑐
 ≤



𝑢
𝑟

− 𝑢
𝑐

2


≤
1

2
(
𝑢𝑟
 +

𝑢𝑐
) ≤ 𝑐2.

(A.8)

By considering (A.7),
𝑔 (𝑢 − 𝑢𝐶)

 ≤
𝑔


(𝑢 − 𝑢𝐶)


≤ 𝑐
2

(𝑐
01

+ 𝑐
11

‖𝑟 (𝑘)‖) = 𝑐
02

+ 𝑐
12

‖𝑟 (𝑘)‖ .

(A.9)

Also by utilizing Remark 3, (A.10) is stated as follows:

𝜀
𝑓

+ 𝜀
𝑔

𝑢
𝑐

+ 𝑑

≤

𝜀
𝑓


+

𝜀
𝑔



𝑢𝑐
 + ‖𝑑‖

≤ 𝜀
𝑁𝑓

+ 𝜀
𝑁𝑔

+ 𝑑
𝑀

= 𝜀
𝑁

.

(A.10)

By using (A.9) and (A.10) the following inequality is acquired:

𝑔 (𝑢 − 𝑢

𝐶

) + 𝜀
𝑓

+ 𝜀
𝑔

𝑢
𝑐

+ 𝑑


≤
𝑔 (𝑢 − 𝑢𝐶)

 +

𝜀
𝑓

+ 𝜀
𝑔

𝑢
𝑐

+ 𝑑


≤ 𝑐
02

+ 𝑐
12

‖𝑟 (𝑘)‖ + 𝜀
𝑁

≤ 𝑐
0

+ 𝑐
1

‖𝑟 (𝑘)‖ .

(A.11)

Thus, the assumption is proved in the first region.
(b) Second region: 𝐼 = 0 or ‖𝑢

𝑐

‖ ≥ 𝑠 and ‖𝑔(𝑥)‖ < 𝑔 and
the mentioned condition for the proposed MFA controller in
Remark 3 in Section 5 is stated as follows:

if 𝑢
𝑐

>
1

𝛾
⇒ 𝑢
𝑐

=
1

𝛾
. (A.12)

In consideration of Lemma A.1, it is demonstrated that
‖𝑔(𝑥)‖ ≤ 𝑐

01

+ 𝑐
11

‖𝑟(𝑘)‖, where 𝑐
01

, 𝑐
11

are constant matrices.
By using the result of relation (A.6) and the condition that is
given above, the following inequality is obtained:

‖𝑢‖ ≤
𝑢𝑟
 +



𝑢
𝑟

− 𝑢
𝑐

2
𝑒
−𝛾(‖𝑢

𝑐
‖−𝑠)


. (A.13)

As regards ‖𝑢
𝑐

‖ > 𝑠 → −𝛾(‖𝑢
𝑐

‖ − 𝑠) ≤ 0,

‖𝑢‖ ≤
𝑢𝑟
 +



𝑢
𝑟

− 𝑢
𝑐

2


≤
1

2
(3
𝑢𝑟
 +

𝑢𝑐
) ≤ 𝑑2.

(A.14)

By considering (B.5),
𝑔𝑢

 ≤
𝑔
 ‖𝑢‖ ≤ 𝑑2 (𝑐01 + 𝑐11 ‖𝑟 (𝑘)‖)

= 𝑑
02

+ 𝑑
12

‖𝑟 (𝑘)‖ ,

𝑔𝑢𝑐
 ≤

𝑔




1

𝛾



≤ 𝑑
3

.

(A.15)

By using (A.10) and (A.15), the following inequality is
obtained:

𝑔𝑢 − 𝑔𝑢𝑐
 ≤

𝑔𝑢
 +

𝑔𝑢𝑐


≤ 𝑑
01

+ 𝑑
11

‖𝑟 (𝑘)‖ + 𝑑
3

≤ 𝑑
0

+ 𝑑
1

‖𝑟 (𝑘)‖ .

(A.16)

Finally, the assumption is proved in the second region. Thus,
inequality (A.5) is correct in both regions.

B. Obtain 𝑟(𝑘)

In consideration of error definition 𝑟(𝑘) in (21),

𝑟 (𝑘 + 1) = 𝑒
𝑛

(𝑘 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

I
+ 𝜆
1

𝑒
𝑛−1

(𝑘 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

II
+ ⋅ ⋅ ⋅ + 𝜆

𝑛−1

𝑒
1

(𝑘 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

III
,

(B.1)
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(I) 𝑒
𝑛

(𝑘 + 1) = 𝑥
𝑛

(𝑘 + 1) − 𝑦
𝑑

(𝑘 + 𝑛) = 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑘) +

𝑑(𝑘) − 𝑦
𝑑

(𝑘 + 𝑛),

(II) 𝜆
1

𝑒
𝑛−1

(𝑘 + 1) = 𝜆
1

[𝑥
𝑛−1

(𝑘 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥

𝑛
(𝑘)

− 𝑦
𝑑

(𝑘 + 𝑛 − 1)] =

𝜆
1

𝑒
𝑛

(𝑘),

(III) 𝜆
𝑝−1

𝑒
1

(𝑘 + 1) = 𝜆
𝑝−1

[𝑥
1

(𝑘 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥

2
(𝑘)

− 𝑦
𝑑

(𝑘 − 1)] =

𝜆
𝑝−1

𝑒
2

(𝑘).

Thus, by substituting (I), (II), and (III) in the above equation,

𝑟 (𝑘 + 1) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑘) + 𝑑 (𝑘) − 𝑦
𝑑

(𝑘 + 𝑃)

+ 𝜆
1

𝑒
𝑃

(𝑘) + ⋅ ⋅ ⋅ + 𝜆
𝑃−1

𝑒
2

(𝑘) .

(B.2)

Equation (25) can be rewritten as follows:

𝑣 (𝑘) = 𝑔 (𝑘) 𝑢
𝑐

(𝑘) + 𝑓 (𝑘) . (B.3)

By using (23), (25), and (B.2),

𝑟 (𝑘 + 1) = 𝑣 (𝑘) − 𝑣 (𝑘) + 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑘) + 𝑑 (𝑘)

− 𝑦
𝑑

(𝑘 + 𝑃) + 𝜆
1

𝑒
𝑃

(𝑘) + ⋅ ⋅ ⋅ + 𝜆
𝑃−1

𝑒
2

(𝑘)

= 𝑘
𝑣

𝑟 (𝑘) − 𝑣 (𝑘) + 𝑓 (𝑥) + 𝑔 (𝑥) + 𝑑 (𝑘)

= 𝑘
𝑣

𝑟 (𝑘) + (𝑓 (𝑥) − 𝑓) + (𝑔 (𝑥) 𝑢 − 𝑔𝑢
𝑐

) + 𝑑 (𝑘) .

(B.4)

Also by considering the above equation, the tracking errors,
�̃�
𝑓

and �̃�
𝑔

, are acquired as follows:

𝑟 (𝑘 + 1) = 𝑘
𝑣

𝑟 (𝑘) + (𝑓 (𝑥) − 𝑓) + (𝑔 (𝑥) 𝑢
𝑐

− 𝑔𝑢
𝑐

)

+ 𝑑 (𝑘) + (𝑔𝑢 − 𝑔𝑢
𝑐

)

= 𝑘
𝑣

𝑟 (𝑘) + (𝑓 (𝑥) − 𝑓) + (𝑔 (𝑥) 𝑢
𝑐

− 𝑔𝑢
𝑐

)

+ 𝑑 (𝑘) + 𝑔𝑢
𝑑

,

(B.5)

where 𝑢
𝑑

= 𝑢−𝑢
𝑐

. By the following definitions about the𝑔(𝑥),
𝑓, 𝑓(𝑥), and 𝑔, (B.5) is rewritten as follows:

𝑓 (𝑥) = 𝑢
𝑇

𝑓

+ 𝜀
𝑓

(𝑥) ⇒ 𝑓 = �̂�
𝑇

𝑓

,

𝑔 (𝑥) = 𝑢
𝑇

𝑔

+ 𝜀
𝑔

(𝑥) ⇒ 𝑔 = �̂�
𝑇

𝑔

,

�̃�
𝑓

= 𝑢
𝑓

− �̂�
𝑓

, �̃�
𝑔

= 𝑢
𝑔

− �̂�
𝑔

,

𝑟 (𝑘 + 1) = 𝑘
𝑣

𝑟 (𝑘) + (𝑢
𝑇

𝑓

− �̂�
𝑇

𝑓

) + (𝑢
𝑇

𝑔

𝑢
𝑐

− �̂�
𝑇

𝑔

𝑢
𝑐

)

+ 𝜀
𝑓

+ 𝜀
𝑔

𝑢 + 𝑑 (𝑘) + 𝑔𝑢
𝑑

= 𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝜀
𝑓

+ 𝜀
𝑔

𝑢 + 𝑔𝑢
𝑑

(B.6)

with substitution of 𝜀 = 𝜀
𝑓

+ 𝜀
𝑔

𝑢
𝑐

+ 𝑑 in (B.6); final relation
of tracking error is demonstrated as follows:

𝑟 (𝑘 + 1) = 𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝜀


+ 𝑔𝑢
𝑑

. (B.7)

Remark B.1. In consideration of (20) in this region, the
following equalities are given:

�̃�
𝑓

= 𝑢
𝑓

− �̂�
𝑓

⇒ �̃�
𝑓

(𝑘 + 1) = (1 − 𝛼) �̃�
𝑓

(𝑘)

− 𝛼(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑔

𝑢
𝑐

+ 𝜀


+ 𝑔𝑢
𝑑

)
𝑇

,

�̃�
𝑔

= 𝑢
𝑔

− �̂�
𝑔

⇒ �̃�
𝑔

(𝑘 + 1) = (1 − 𝛽) �̃�
𝑇

𝑔

(𝑘) 𝑢
𝑐

− 𝛽(𝑘
𝑣

𝑟 (𝑘) + �̃�
𝑇

𝑓

+ 𝜀


+ 𝑔𝑢
𝑑

)
𝑇

.

(B.8)

By using equation (B.4) in the second region, tracking errors,
�̃�
𝑓

, �̃�
𝑔

, are obtained as follows:

𝑟 (𝑘 + 1) = 𝑘
𝑣

𝑟 (𝑘) + (𝑓 (𝑥) − 𝑓) + (𝑔 (𝑥) 𝑢 − 𝑔𝑢
𝑐

) + 𝑑 (𝑘)

= 𝑘
𝑣

𝑟 (𝑘) + (𝑓 (𝑥) − 𝑓) + 𝑔𝑢
𝑑

+ 𝑑 (𝑘) .

(B.9)

Remark B.2. By utilizing (20) in this region, �̃�
𝑓

and �̃�
𝑔

are
acquired as follows:

�̃�
𝑓

= 𝑢
𝑓

− �̂�
𝑓

,

�̃�
𝑓

(𝑘 + 1) = (1 − 𝛼) �̃�
𝑓

(𝑘) − 𝛼(𝑘
𝑣

𝑟 (𝑘) + 𝑔𝑢
𝑑

+ 𝜀


)
𝑇

�̃�
𝑔

= 𝑢
𝑔

− �̂�
𝑔

⇒ �̃�
𝑔

(𝑘 + 1) = �̃�
𝑔

(𝑘) .

(B.10)
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