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This paper proposes a model for estimating car delays at bus stops under mixed traffic using probability theory and queuing theory.
The roadway is divided to serve motorized and nonmotorized traffic streams. Bus stops are located on the nonmotorized lanes.
When buses dwell at the stop, they block the bicycles. Thus, two conflict points between car stream and other traffic stream are
identified. The first conflict point occurs as bicycles merge to the motorized lane to avoid waiting behind the stopping buses. The
second occurs as buses merge back to the motorized lane.The average car delay is estimated as the sum of the average delay at these
two conflict points and the delay resulting from following the slower bicycles thatmerged into themotorized lane. Data are collected
to calibrate and validate the developed model from one site in Beijing.The sensitivity of car delay to various operation conditions is
examined.The results show that both bus stream and bicycle stream have significant effects on car delay. At bus volumes above 200
vehicles per hour, the curbside stop design is not appropriate because of the long car delays. It can be replaced by the bus bay design.

1. Introduction

As the first point of contact between the passenger and the
public transit service, the bus stop is a critical element in
a transit system’s overall goal of providing timely, safe, and
convenient transportation. In the past several decades, traffic
planners, designers, and scholars have paid much attention
to the location, design, and operations of bus stops [1–5]. A
prominent achievement of this research is a set of guidelines
for use in designing and locating bus stops, sponsored by
TCRP in the United States [1]. Other researchers mainly
focused on the effects of bus stops on traffic flow. For
example,Wong et al. analyzed the delay at a signal-controlled
intersection with a bus stop upstream [6]. Fernández applied
themicroscopic traffic simulationmodel to study operational
impacts on bus stops such as capacity, delays, queues, and
waiting times [7]. Tang et al. used the macrodynamic model
to analyze the effects of bus stop on traffic flow [8]. Most
existing research of bus stops analyzes only the mixed traffic
flowbetween buses and cars without including nonmotorized
vehicles. This might be the reason that the car-bus conflict
at bus stops is usually regarded as more important than the
motorized vehicle-bicycle conflict. Another reason might be

the low proportion of cycling among all travel modes in
developed countries.

As a developing country, China has its own traffic char-
acteristics. A mix of nonmotorized and motorized vehicles is
an important traffic type in China. Some surveys show that
the nonmotorized vehicle, especially the bicycle, is one of the
most widely used traffic tools in Chinese daily travel activity.
Typically, there are three types of bus stops in urban areas:
curbside stops, bus bays, and bus boarders [9]. The curbside
stop is the most common type on minor roadways in many
Chinese cities. Figure 1 shows the mixed traffic streams at
a typical curbside stop. There are two lanes on the urban
roadway: the bicycle lane and the motorized lane, and there
are three types of traffic streams: bicycle, bus, and car. Bus
stops are usually located on the bicycle lane. When a bus
dwells at the curbside stop, it blocks the bicycles. Bicycles
merge to the motorized lane to avoid waiting behind the
stopping bus. Thus, the presence of a stopped bus creates a
temporary conflict between bicycles and cars. In addition,
the car-bus conflict takes place when a bus departs from
the stop to the motorized lane. Similar phenomena may
be found in other Asian developing countries, for example,
India, Malaysia, Vietnam, and Cambodia.
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Curbside stop

Figure 1: Curbside stop with mixed traffic streams of buses, cars,
and bicycles.

Due to the special features ofmixed traffic, the application
of existing traffic models for bus stops, developed by devel-
oped countries, has not produced a clear effect on Chinese
traffic management and control. Therefore, it is necessary to
deeply study the mixed traffic flow between nonmotorized
vehicles and motorized vehicles.

On the mixed traffic, till now, much research has been
conducted on basic segments and intersections [10, 11], but
the correlative research on bus stops is much less in the
literature. In recent years, some researchers have realized this,
and correlativework is being done, but it still has a longway to
go. Koshy and Arasan used simulation technique to study the
impact of bus stop type on the speeds of other vehicles under
heterogeneous conditions [9]. Yang et al. established car
capacity models near a curbside stop with bicycles based on
gap acceptance theory and conflict technique [12, 13]. How-
ever, little information was found in the literature on delay
time near bus stops with mixed traffic flow.This paper inves-
tigates car delay time near a curbside stop undermixed traffic
conditions. Firstly, mixed traffic flow characteristics near bus
stops are analyzed. Then, the delay model based on probabil-
ity and queuing theory is proposed. Next, the delay model is
validated by field data in Beijing. In addition, the sensitivity of
car delay to various operation conditions is examined. Finally,
conclusions and future researches are given.

2. Mixed Traffic Flow Characteristics near
Curbside Stops

2.1. Bus Stream: M/M/𝑘 Queuing Model. Consider a road
link near the bus stop as shown in Figure 1. A sophisticated
queuing theory model can be developed on the assumption
that the simple bus stream system can be represented by an
M/M/𝑘 queue. The service counter is the bus stop. The input
into the system in equilibrium, as well as the output, is formed
by the buses approaching from upstream, which are assumed
to arrive at random; that is, there are negative exponentially
distributed arrival headways with mean 1/𝜆𝑏 seconds. The
dwelling time at the stop is the service time, which is
also assumed to be independent and negative exponential
distributed random variables with mean 𝑡𝑏 seconds. Finally,
the “𝑘” in M/M/𝑘 stands for 𝑘 identical servers, that is, the
number of existing berths at the bus stop.

For the M/M/𝑘 system as a general property, the proba-
bility of the busy system is given by the following equation.
That is, the probability of one or more buses at the stop is

𝑝𝑠 = 1 − (
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Figure 2: Conflict among cars, buses and bicycles at a curbside stop.

Note that, here, 𝜌𝑏 = 𝜆𝑏𝑡𝑏, and for the existence of a
steady-state solution, 𝜆𝑏 < 𝑘/𝑡𝑏. The subscript “𝑏” stands for
bus stream passing the stop and the subscript “𝑠” stands for
bus stream at the stop.

And the expected number in the system at steady state;
that is, the expected number of buses both in service and in
queue at the stop is

𝐿 = 𝐸 (𝑁) =
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(1 − 𝑝𝑠) + 𝜌𝑏. (2)

2.2. Conflict between Different Streams. At the curbside stop
with mixed traffic flow, there are three streams among buses,
bicycles, and cars. As shown in Figure 2, car stream is directly
affected by two conflicts. One is the interaction between car
stream and bicycle stream at point B when one or more
buses dwell at the stop. The other is the conflict between car
stream and bus stream at point C as buses merge back to the
motorized lane.

When a bus dwells at the curbside stop in the nonmotor-
ized lane, the nonmotorized lane is blocked by a stopped bus.
A lane change for bicycles from the nonmotorized lane to the
motorized lane is “essential” when bicyclists approach to the
last stopped bus. As a result, forced lane changing maneuvers
take place. Bicycles in the nonmotorized lane would force the
subsequent car in the motorized lane to slow down for the
lane-changing execution. Field observations indicate that this
cooperative lane changing and priority-sharing behavior is
prevalent between bicycles and cars near bus stops [13]. As
the acceptable gap of bicycles is approximate to the follow-up
time of successive cars, the bicycle-car conflict near a bus top
is similar to the conflict at merges under low speed or high
flow conditions. In the saturated traffic flow, gap acceptance
theory completely loses its applicability; waiting vehicles
generally perform forced lane-changing maneuvers and pass
the conflict point alternately [14, 15]. That is to say, they
comply with the FIFO (first-in-first-out) discipline under low
speed condition. Near a curbside stop, the vehicles usually
pass the conflicting areas with a low speed because there is
a serious conflict among different streams. The conflicting
areas near a curbside stop can also be considered in such a
way that the FIFO discipline is applied.

3. Delay Model for Car Stream near the Stop
under Mixed Traffic Flow

The average delay to car stream near the stop under mixed
traffic conditions is estimated as the sum of the average
delay at these two conflict points and the delay resulting
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from following the slower bicycle traffic that merged into the
motorized lanes.

3.1. Delay Resulting from following the Slower Bicycles from
Point B to Point C. Both car stream and bicycle stream are
assumed to arrive at random, that is, negative exponentially
distributed arrival headways. Let 𝑡𝑛 denote the time that a
bicycle (nonmotorized vehicle) arrives at point B, and 𝑡𝑐
denote the time that a car arrives at point B behind the bicycle.
Let 𝑍 be a nonnegative random variable representing the
difference between 𝑡𝑐 and 𝑡𝑛:

𝑍 = 𝑡𝑐 − 𝑡𝑛. (3)

Then, the probability that𝑍 is not more than a given time
𝑧 can be expressed as
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Then, the probability density function of 𝑍 is
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As shown in Figure 2, it may occur that a car follows
the slower bicycles when a bicyclist rides at section BC. The
distance from B to C can be obtained by the formula:

𝑙BC = 𝑙𝑏 ⋅ 𝐿, (6)

where 𝑙𝑏 is the minimum headway distance of successively
stopped buses at the stop and 𝐿 is the expected number of
buses at the stop which can be given as (2).

The phenomenon that a car follows the slower bicycle
takes place only when one or more buses berth the stop
and 𝑍 falls within limits, 0 ≤ 𝑍 ≤ 𝑧max. The minimum
value, 0, represents the condition that a car begins to follow
a bicycle from point B. The maximum value, 𝑧max, represents
the condition that a car begins to follow a bicycle from point
C. If 𝑍 is less than 𝑧max, a car must decelerate to follow the
preceding bicycle before point C. 𝑧max can be calculated as

𝑧max = 𝑙BC (
1

V1𝑛
−

1

V1𝑐
) , (7)

where V1𝑐 and V1𝑛 are the free-flow velocity for car stream and
bicycle stream near a curbside stop, respectively. It is noted
that (1/V1𝑛 − 1/V1𝑐) is the delay for a car driving one meter
when it decelerates to follow the slower bicycle.

Let a car with the free-flow velocity catch up with its
preceding bicycle at the time 𝑡. In this case, the distance that

the car drives from time 𝑡𝑐 to 𝑡 is equal to the distance that the
bicyclist rides from time 𝑡𝑛 to 𝑡, which can be expressed as

𝑙1 = V1𝑛 (𝑡 − 𝑡𝑛) = V1𝑐 (𝑡 − 𝑡𝑐) . (8)
Combined with (3), (7), and (8), 𝑙1 can be given as
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Thus, the remaining distance that a car must decelerate to
follow its preceding bicycle in section BC is

𝑙2 = 𝑙BC − 𝑙1 = 𝑙BC − 𝑍 ⋅
𝑙BC
𝑧max

. (10)

The expected value that a car decelerates to follow the
preceding bicycle can be calculated as
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It occurs that a car follows the slower bicycles only when
one or more buses berth the stop. Thus, combined with (1),
(7), and (11), the delay resulting from following the slower
bicycles can be calculated as

𝑑BC = 𝑝𝑠 ⋅ 𝐸 (𝑙2) ⋅ (
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3.2. Delay at Two Conflict Points. As shown in Figure 2, for
the conflicting point B, if one ormore buses berth the stop, the
car-bicycle conflict takes place.The conflicting areas near bus
stops can be considered in such away that the FIFOdiscipline
is applied. Because different stream has different service time
passing the conflicting area, the car-bicycle conflict at point
B can be represented by the advancedMarkovian model with
no priorities but unequal arrival rates and unequal service
rates for customers of two major types. Similarly, the car-
bus conflict at point C can be described by the advanced
Markovian model.

It is assumed that each stream arrives as a Poisson process
to a single exponential channel, and there are two types of
customers with no priorities but unequal arrival rates (𝜆1, 𝜆2)
and unequal service rates (𝜇1, 𝜇2, and 𝜇2 > 𝜇1). Here, service
rate (𝜇) is the reciprocal value of the mean service time (𝑠),
that is, 𝜇1 = 1/𝑠1, 𝜇2 = 1/𝑠2. Then, the expected waiting time
for each type of customers in queue at steady state [16] is
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3.2.1. Delay Resulting from the Car-Bicycle Conflict at Point B.
Traffic conditions near a curbside stop are classified into two
types: inexistence and existence of stopped bus at the stop.
The probabilities of these two conditions can be obtained
by using (1). Under the former condition, the bicycle stream
and the car stream at point B have no conflict and car travel
time is not affected by the bicycle stream. Under the latter
condition, the car-bicycle conflict at point B leads to an effect
on car travel time by the bicycle stream. In this case, the car-
bicycle conflict at point B can be represented by the advanced
Markovian model. The car delay caused by the car-bicycle
conflict is equal to the expected waiting time in the queue
system for mixed streams between cars and bicycles,𝑊𝑐,B. As
the mean service time for car stream at point B is larger than
that for bicycle stream,𝑊𝑐,B can be obtained by (13).Thus, the
car delay at the point B can be given as

𝑑B = 𝑝𝑠𝑊𝑐,B + (1 − 𝑝𝑠) ⋅ 0

= 𝑝𝑠𝑠
2
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1 − 𝜆𝑐𝑠𝑐 − 𝜆𝑛𝑠𝑛

,

(15)

where 𝜆𝑛 and 𝜆𝑐 are the arrival rate of bicycle stream and car
stream approaching the conflicting point B, respectively. 𝑠𝑛
and 𝑠𝑐 are the mean service time of bicycle stream and car
stream passing the point B, respectively.

3.2.2. Delay Resulting from the Car-Bus Conflict at Point C. As
buses merge back to the motorized lane, the car-bus conflict
takes place.The car-bus conflict at point C can be represented
by the advanced Markovian model. The car delay caused by
the car-bus conflict is equal to the expected waiting time in
the queue system for mixed streams between cars and buses,
𝑊𝑐,C. As themean service time for car stream at point C is less
than that for bus stream, 𝑊𝑐,C can be obtained by (14). Thus,
the car delay at the point C can be given as

𝑑C = 𝑊𝑐,C = 𝑠
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where 𝜆𝑏 and 𝜆𝑐 are the arrival rate of bus stream and car
stream, respectively. 𝑠

𝑏
and 𝑠𝑐 are the mean service time of

bus stream and car stream passing the point C, respectively.

4. Model Validation and Comparison

In order to calibrate the proposed model of car delay at
the curbside stop under mixed traffic conditions, field data
collected at a bus stop in Beijing were employed. Video
cameras were used to record traffic operations at the bus stop.
Vehicle type, flows, and travel times were recorded for each
vehicle passing through the stop. In addition, the dwell time
of bus stream and the headways in the conflicting area were
also recorded. Data were collected in the spring of 2008 in
one direction over 3 minutes categorized into a group.

The basic parameter used to compute car delay at a stop
under mixed traffic is the service time for each stream. The
service time was directly measured for each vehicle at the
conflicting point using video during this study. The service
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Figure 3: Comparison of measured average travel time and esti-
mated average travel time.

time in this paper is the follow-up headway for vehicles
in this approach if no vehicle is waiting on the conflicting
approach and is equal to the minimum saturation headway.
On the basis of field survey and video process, the minimum
saturation headways for bicycle stream, car stream, and bus
stream are 0.90 s, 2.04 s, and 4.27 s, respectively. Here, the
relatively low value for bicycle stream is the result of cycling
parallel behavior and group behavior. In addition, 𝑙𝑏 = 12m,
V1𝑛 = 4.5m/s, and V1𝑐 = 10m/s on the surveyed curbside
stops in Beijing.

The data collected in field study are used to validate the
model, as shown in Figure 3. To facilitate comparison, the
line where the measured average travel time equals to the
estimated average travel time is superimposed on each figure.
And it is found that scatter dots fluctuates narrowly around
the line. In addition, the mean percent error between the
estimated travel times and the measured times is −6.6%,
and the mean absolute percentage error is 12.7%. Thus, the
proposed delay model at the stop with mixed traffic flow is
desirable. Before the applications, however, it is noted that the
model should be estimated using the specified field data.

5. Effects of Individual Traffic Stream on
Car Delay

Differences in the arrival rate of bicycle stream affect car
delay time near the curbside stop are shown in Figure 4. Here,
the curbside stop has two berths; that is to say, bus stream
system can be considered as an M/M/2 queue. In addition,
𝜆𝑏 = 0.03 veh/s, 𝑠𝑏 = 25 s, 𝑙𝑏 = 12m, V1𝑛 = 4.5m/s, and
V1𝑐 = 10m/s, and the minimum saturation headways for
bicycle stream, car stream, and bus stream are 0.90 s, 2.04 s,
and 4.27 s, respectively. Bicycle stream headways follow the
negative exponential distribution. At the same car flow rate,
the probability of the car-bicycle conflict increases with the
increasing bicycle stream, which finally lead to the increase
of car delays.
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Figures 5 and 6 give the effects of bus stream on car delay
time. Firstly, as shown in Figure 5, the probability of one or
more stopped buses at the stop increases with the increasing
bus flow rate, and so does also the probability of the car-
bus conflict. This extends car travel time. Similarly, Figure 6
displays car delay with different dwelling times of bus stream.
As the dwelling time of bus stream increases, the probability
of one or more stopped buses at the stop increases. This
increases the delay time for car stream on the basis of (12)
and (15).

In addition, Figures 4, 5, and 6 all show that car delay
increases with the creasing car flow rate. Meanwhile, a
comparison of these three figures indicates that bus flow rate
has themost significant effect on car delays.This is because all
parts of car delay (including 𝑑B, 𝑑BC, and 𝑑C) increase as bus
flow rate increases. As shown in Figure 7, especially, at high
bus flow rates, as the queuing systems are near the threshold
values of equilibrium conditions; that is, 𝜆𝑐𝑠𝑐+𝜆𝑛𝑠𝑛 or 𝜆𝑏𝑠𝑏/𝑘
is near to one, 𝑑B and 𝑑BC will become infinite. The results
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are consistent with observed phenomena that car delays are
very long under high flow and slow speed conditions. In this
case, most drivers would give way to bicyclists merging into
the motorized lane as bicycles have advantages of small size,
light weight, flexible action, and so on [12].

6. Conclusion

Delay time to cars at a bus stop with mixed traffic flow is
investigated on the basis of queuing theory and probability
theory. Bus stream system can be represented by an M/M/𝑘
queue. Meanwhile, the conflict between different streams at
the stop can be described by the advanced Markovian model
with no priorities but unequal service rates for customers.
The delay resulting from following the slower bicycles can
be obtained by the joint distribution of bivariate continuous
randomvariable.The analysis shows that both bus stream and
bicycle stream have significant effects on car delay. Car delay
near the stop under mixed traffic condition is the function of
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three types of traffic streams with buses, cars, and bicycles. At
bus volumes above approximately 200 vehicles per hour, the
curbside stop design is unreasonable because of the long car
delays.Therefore, in this case, it can be replaced by the bus bay
design. The proposed model may be applicable to design and
operational analysis of bus stops in other Asian developing
countries.

Although this study has given valuable insights into car
delay at the bus stop with mixed traffic flow, possible further
research work is suggested. Firstly, we assume that bicycles
have no priority over cars when bus berths at the stop in this
paper.However, field observations show that sometimes a few
bicyclists or drivers politely allow others to proceed. Bunker
and Troutbeck [17] studied minor stream delays at a limited
priority freewaymerge.Weneed to present a newdelaymodel
which assumes limited priority for different streams near bus
stops. In addition, the plan and design problems of bus stops
with mixed traffic flow should be further researched.
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