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We are concerned with the followingmodified nonlinear Schrödinger system: −Δ𝑢+𝑢−(1/2)𝑢Δ(𝑢2) = (2𝛼/(𝛼+𝛽))|𝑢|

𝛼−2
|V|𝛽𝑢, 𝑥 ∈

Ω, −ΔV+V−(1/2)VΔ(V2) = (2𝛽/(𝛼+𝛽))|𝑢|

𝛼
|V|𝛽−2V, 𝑥 ∈ Ω, 𝑢 = 0, V = 0, 𝑥 ∈ 𝜕Ω, where𝛼 > 2, 𝛽 > 2, 𝛼+𝛽 < 2⋅2

∗, 2∗ = 2𝑁/(𝑁−2)

is the critical Sobolev exponent, andΩ ⊂ R𝑁 (𝑁 ≥ 3) is a bounded smooth domain. By using the perturbationmethod, we establish
the existence of both positive and negative solutions for this system.

1. Introduction

Let us consider the followingmodifiednonlinear Schrödinger
system:

−Δ𝑢 + 𝑢 −

1

2

𝑢Δ (𝑢

2
) =

2𝛼

𝛼 + 𝛽

|𝑢|

𝛼−2
|V|𝛽𝑢, 𝑥 ∈ Ω,

−ΔV + V −
1

2

VΔ (V2) =
2𝛽

𝛼 + 𝛽

|𝑢|

𝛼
|V|𝛽−2V, 𝑥 ∈ Ω,

𝑢 = 0, V = 0, 𝑥 ∈ 𝜕Ω,

(1)

where 𝛼 > 2, 𝛽 > 2, 𝛼 + 𝛽 < 2 ⋅ 2

∗, 2∗ = 2𝑁/(𝑁 − 2) is the
critical Sobolev exponent, andΩ ⊂ R𝑁 (𝑁 ≥ 3) is a bounded
smooth domain.

Solutions for the system (1) are related to the existence
of the standing wave solutions of the following quasilinear
Schrödinger equation:

𝑖𝜕

𝑡
𝑧 = −Δ𝑧 + 𝑉 (𝑥) 𝑧 − 𝑓 (|𝑧|

2
) 𝑧 − 𝑘Δℎ (|𝑧|

2
) ℎ


(|𝑧|

2
) 𝑧,

𝑥 ∈ R
𝑁
,

(2)

where 𝑉(𝑥) is a given potential, 𝑘 is a real constant, and 𝑓, ℎ
are real functions. We would like to mention that (2) appears

more naturally in mathematical physics and has been derived
as models of several physical phenomena corresponding to
various types of ℎ. For instance, the case ℎ(𝑠) = 𝑠was used for
the superfluid film equation in plasma physics by Kurihara [1]
(see also [2]); in the case of ℎ(𝑠) = (1 + 𝑠)

1/2, (2) was used as
a model of the self-changing of a high-power ultrashort laser
in matter (see [3–6] and references therein).

In recent years, much attention has been devoted to the
quasilinear Schrödinger equation of the following form:

−Δ𝑢 + 𝜆𝑉 (𝑥) 𝑢 − 𝑘Δ (𝑢

2
) 𝑢 = |𝑢|

𝑝−2
𝑢, 𝑥 ∈ R

𝑁
. (3)

See, for example, by using a constrained minimization argu-
ment, the existence of positive ground state solution was
proved by Poppenberg et al. [7]. Using a change of variables,
Liu et al. [8] used an Orlicz space to prove the existence of
soliton solution for (3) via mountain pass theorem. Colin and
Jeanjean [9] alsomade use of a change of variables but worked
in the Sobolev space 𝐻

1
(𝑅

𝑁
); they proved the existence

of positive solution for (3) from the classical results given
by Berestycki and Lions [10]. Liu et al. [11] established the
existence of both one-sign and nodal ground states of soliton
type solutions for (3) by the Nehari method. In particular,
in [12], by using Nehari manifold method and concentration
compactness principle (see [13]) in the Orlicz space, Guo
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and Tang considered the following quasilinear Schrödinger
system:

− Δ𝑢 + (𝜆𝑎 (𝑥) + 1) 𝑢 −

1

2

(Δ|𝑢|

2
) 𝑢 =

2𝛼

𝛼 + 𝛽

|𝑢|

𝛼−2
|V|𝛽𝑢,

𝑥 ∈ 𝑅

𝑁
,

− Δ𝑢 + (𝜆𝑏 (𝑥) + 1) 𝑢 −

1

2

(Δ|𝑢|

2
) 𝑢 =

2𝛽

𝛼 + 𝛽

|𝑢|

𝛼
|V|𝛽−2V,

𝑥 ∈ 𝑅

𝑁
,

𝑢 (𝑥) → 0, V (𝑥) → 0, |𝑥| → ∞

(4)

with 𝑎(𝑥) ≥ 0, 𝑏(𝑥) ≥ 0 having a potential well and 𝛼 >

2, 𝛽 > 2, 𝛼 + 𝛽 < 2 ⋅ 2

∗, where 2∗ = 2𝑁/(𝑁 − 2) is the
critical Sobolev exponent, and they proved the existence of
a ground state solution for the system (4) which localizes
near the potential well int 𝑎−1(0) for 𝜆 large enough. Guo
and Tang [14] also considered ground state solutions of the
single quasilinear Schrödinger equation corresponding to the
system (4) by the samemethods and obtained similar results.

It is worth pointing out that the existence of one-bump or
multibump bound state solutions for the related semilinear
Schrödinger equation (3) for 𝑘 = 0 has been extensively
studied. One can see Bartsch andWang [15], Ambrosetti et al.
[16], Ambrosetti et al. [17], Byeon and Wang [18], Cingolani
and Lazzo [19], Cingolani and Nolasco [20], Del Pino and
Felmer [21, 22], Floer and Weinstein [23], and Oh [24, 25]
and the references therein.

The system (1) is a kind of “limit” problem of the system
(4) as 𝜆 → ∞. The existence of solutions for the system (1)
has important physical interest. The purpose of this paper is
to study the existence of both positive and negative solutions
for the system (1). We mainly follow the idea of Liu et al. [26]
to perturb the functional and obtain our main results. We
point out that the procedure to the system (1) is not trivial
at all. Since the appearance of the quasilinear terms 𝑢Δ(𝑢2)
and VΔ(V2), we need more delicate estimates.

The paper is organized as follows. In Section 2, we
introduce a perturbation of the functional and give our main
results (Theorem 1 and 2). In Section 3, we verify the Palais-
Smale condition for the perturbed functional. Section 4 is
devoted to some asymptotic behavior of sequence {(𝑢

𝑛
, V
𝑛
)} ⊂

𝑊

1,4

0
(Ω) × 𝑊

1,4

0
(Ω) and {𝜇

𝑛
} ⊂ (0, 1] satisfying some condi-

tions. Finally, our main results will be proved in Section 5.
Throughout this paper, we will use the same 𝐶 to denote

various generic positive constants, and we will use 𝑜(1) to
denote quantities that tend to 0.

2. Perturbation of the Functional and
Main Results

In order to obtain the desired existence of solutions for the
system (1), in this section, we introduce a perturbation of the
functional and give our main results.

The weak form of the system (1) is

∫

Ω

((1 + 𝑢

2
) ∇𝑢∇𝜑 + (1 + |∇𝑢|

2
) 𝑢𝜑)

+ ∫

Ω

((1 + V2) ∇V∇𝜓 + (1 + |∇V|2) V𝜓)

−

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜑 −

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜓 = 0,

(𝜑, 𝜓) ∈ 𝐶

∞

0
(Ω) × 𝐶

∞

0
(Ω) ,

(5)

which is formally the variational formulation of the following
functional:

𝐼

0
(𝑢, V) =

1

2

∫

Ω

((1 + 𝑢

2
) |∇𝑢|

2
+ 𝑢

2
)

+

1

2

∫

Ω

((1 + V2) |∇V|2 + V2) −
2

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽.

(6)

Wemay define the derivative of 𝐼
0
at (𝑢, V) in the direction

of (𝜑, 𝜓) ∈ 𝐶∞
0
(Ω) × 𝐶

∞

0
(Ω) as follows:

⟨𝐼



0
(𝑢, V) , (𝜑, 𝜓)⟩ = ∫

Ω

(1 + 𝑢

2
) ∇𝑢∇𝜑

+ ∫

Ω

(1 + |∇𝑢|

2
) 𝑢𝜑+∫

Ω

(1 + V2) ∇V∇𝜓

+ ∫

Ω

(1 + |∇V|2) V𝜓

−

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜑

−

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜓.

(7)

We call that (𝑢, V) is a critical point of 𝐼

0
if (𝑢, V) ∈

𝑊

1,2

0
(Ω) × 𝑊

1,2

0
(Ω), ∫

Ω
𝑢

2
|∇𝑢|

2
< ∞, ∫

Ω
V2|∇V|2 < ∞ and

⟨𝐼



0
(𝑢, V), (𝜑, 𝜓)⟩ = 0 for all (𝜑, 𝜓) ∈ 𝐶∞

0
(Ω)×𝐶

∞

0
(Ω). That is,

(𝑢, V) is a weak solution for the system (1).
When we consider the system (1) by using the classical

critical point theory, we encounter the difficulties due to the
lack of an appropriate working space. In general it seems
there is no suitable space in which the variational functional
𝐼

0
possesses both smoothness and compactness properties.

For smoothness one would need to work in a space smaller
than 𝑊

1,2

0
(Ω) to control the term involving the quasilinear

term in the system (1), but it seems impossible to obtain
bounds for (𝑃𝑆)

𝑐
sequence in this setting. There have been

several ideas and approaches used in recent years to overcome
the difficulties such as by minimizations [7, 27], the Nehari
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method [11], and change of variables [8, 9]. In this paper, we
consider a perturbed functional

𝐼

𝜇
(𝑢, V) =

1

4

𝜇∫

Ω

(|∇𝑢|

4
+ |∇V|4) + 𝐼0 (𝑢, V)

=

1

4

𝜇∫

Ω

(|∇𝑢|

4
+|∇V|4)+

1

2

∫

Ω

((1+𝑢

2
) |∇𝑢|

2
+𝑢

2
)

+

1

2

∫

Ω

((1 + V2) |∇V|2 + V2) −
2

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽,

(8)

where 𝜇 ∈ (0, 1] is a parameter.Then it is easy to see that 𝐼
𝜇
is

a𝐶1-functional on𝑊1,4
0
(Ω)×𝑊

1,4

0
(Ω). We also can define the

derivative of 𝐼
𝜇
at (𝑢, V) in the direction of (𝜑, 𝜓) as follows:

⟨𝐼



𝜇
(𝑢, V) , (𝜑, 𝜓)⟩ = 𝜇∫

Ω

|∇𝑢|

2
∇𝑢∇𝜑 + 𝜇∫

Ω

|∇V|2∇V∇𝜓

+ ∫

Ω

(1+𝑢

2
) ∇𝑢∇𝜑 +∫

Ω

(1+|∇𝑢|

2
) 𝑢𝜑

+ ∫

Ω

(1+V2) ∇V∇𝜓 +∫

Ω

(1+|∇V|2) V𝜓

−

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜑

−

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜓

(9)

for all (𝜑, 𝜓) ∈ 𝐶

∞

0
(Ω) × 𝐶

∞

0
(Ω). The idea is to obtain the

existence of the critical points of 𝐼
𝜇
for 𝜇 > 0 small and to

establish suitable estimates for the critical points as 𝜇 → 0

so that we may pass to the limit to get the solutions for the
original system (1).

Our main results are as follows.

Theorem 1. Assume that 𝛼 > 2, 𝛽 > 2 and 𝛼 + 𝛽 < 2 ⋅ 2

∗. Let
𝜇

𝑛
→ 0 and let {(𝑢

𝑛
, V
𝑛
)} ⊂ 𝑊

1,4

0
(Ω) ×𝑊

1,4

0
(Ω) be a sequence

of 𝐼
𝜇
𝑛

satisfying 𝐼
𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) = 0 and 𝐼

𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) ≤ 𝐶 for some 𝐶

independent of 𝑛. Then, up to a subsequence

𝑢

𝑛
→ 𝑢, V

𝑛
→ V 𝑖𝑛 𝑊

1,2

0
(Ω) ,

𝑢

𝑛
∇𝑢

𝑛
→ 𝑢∇𝑢, V

𝑛
∇V
𝑛
→ V∇V 𝑖𝑛 𝐿

2
(Ω) ,

𝜇

𝑛
∫

Ω

(









∇𝑢

𝑛









4

+









∇V
𝑛









4

) → 0,

𝐼



𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) → 𝐼



0
(𝑢, V)

(10)

as 𝑛 → ∞ and (𝑢, V) is a critical point of 𝐼
0
.

UsingTheorem 1, we have the following existence result.

Theorem 2. Assume that 𝛼 > 2, 𝛽 > 2 and 𝛼 + 𝛽 < 2 ⋅ 2

∗.
Then 𝐼

𝜇
has a positive critical point (𝑢

𝜇
, V
𝜇
) and a negative

critical point (�̃�
𝜇
, Ṽ
𝜇
), and (𝑢

𝜇
, V
𝜇
) (resp., (�̃�

𝜇
, Ṽ
𝜇
)) converges to

a positive (resp., negative) solution for the system (1) as 𝜇 → 0.

Notation. We denote by ‖ ⋅ ‖ the norm of 𝑊1,4
0
(Ω) and by | ⋅ |

𝑠

the norm of 𝐿𝑠(Ω) (1 ≤ 𝑠 < +∞).

3. Compactness of the Perturbed Functional

In this section, we verify the Palais-Smale condition ((PS)
𝑐

condition in short) for the perturbed functional 𝐼
𝜇
(𝑢, V). We

have the following proposition.

Proposition 3. For 𝜇 > 0 fixed, the functional 𝐼
𝜇
(𝑢, V) satisfies

(PS)
𝑐
condition for all 𝑐 ∈ R. That is, any sequence {(𝑢

𝑛
, V
𝑛
)} ⊂

𝑊

1,4

0
(Ω) ×𝑊

1,4

0
(Ω) satisfying, for 𝑐 ∈ R,

𝐼

𝜇
(𝑢

𝑛
, V
𝑛
) → 𝑐,

𝐼



𝜇
(𝑢

𝑛
, V
𝑛
) → 0 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 (𝑊

1,4

0
(Ω) ×𝑊

1,4

0
(Ω))

∗
(11)

has a strongly convergent subsequence in𝑊1,4
0
(Ω) × 𝑊

1,4

0
(Ω),

where (𝑊1,4
0
(Ω) ×𝑊

1,4

0
(Ω))

∗ is the dual space of 𝑊1,4
0
(Ω) ×

𝑊

1,4

0
(Ω).

For giving the proof of Proposition 3, we need the
following lemma firstly.

Lemma 4. Suppose that a sequence {(𝑢
𝑛
, V
𝑛
)} ⊂ 𝑊

1,4

0
(Ω) ×

𝑊

1,4

0
(Ω) satisfies (11). Then

lim sup
𝑛→∞









(𝑢

𝑛
, V
𝑛
)









4

≤ (

1

4

−

1

𝛼 + 𝛽

)

−1

𝜇

−1
𝑐.

(12)

Proof. It follows from (11) that

𝑐 + 𝑜 (1) −

1

𝛼 + 𝛽

𝑜 (1)









(𝑢

𝑛
, V
𝑛
)









= 𝐼

𝜇
(𝑢

𝑛
, V
𝑛
) −

1

𝛼 + 𝛽

⟨𝐼



𝜇
(𝑢

𝑛
, V
𝑛
) , (𝑢

𝑛
, V
𝑛
)⟩

= (

1

4

−

1

𝛼 + 𝛽

)𝜇∫

Ω

(









∇𝑢

𝑛









4

+









∇V
𝑛









4

)

+ (

1

2

−

1

𝛼 + 𝛽

)∫

Ω

(









∇𝑢

𝑛









2

+









∇V
𝑛









2

)

+ (

1

2

−

1

𝛼 + 𝛽

)∫

Ω

(









𝑢

𝑛









2

+









V
𝑛









2

)

+ (

1

2

−

2

𝛼 + 𝛽

)∫

Ω

(𝑢

2

𝑛









∇𝑢

𝑛









2

+ V2
𝑛









∇V
𝑛









2

)

≥ (

1

4

−

1

𝛼 + 𝛽

)𝜇∫

Ω

(|∇𝑢|

4
+ |∇V|4) .

(13)

Thus we have

lim sup
𝑛→∞









(𝑢

𝑛
, V
𝑛
)









4

≤ (

1

4

−

1

𝛼 + 𝛽

)

−1

𝜇

−1
𝑐.

(14)

This completes the proof of Lemma 4.

Now we give the proof of Proposition 3.
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Proof of Proposition 3. From Lemma 4, we know that
{(𝑢

𝑛
, V
𝑛
)} is bounded in𝑊1,4

0
(Ω) × 𝑊

1,4

0
(Ω). So there exists a

subsequence of {(𝑢
𝑛
, V
𝑛
)}, still denoted {(𝑢

𝑛
, V
𝑛
)}, such that

(𝑢

𝑛
, V
𝑛
) ⇀ (𝑢, V) weakly in 𝑊

1,4

0
(Ω) ×𝑊

1,4

0
(Ω)

as 𝑛 → ∞,

𝑢

𝑛
→ 𝑢, V

𝑛
→ V strongly in 𝐿

𝑠
(Ω)

as 𝑛 → ∞ for any 2 < 𝑠 < 2 ⋅ 2

∗
.

(15)

Now we prove that (𝑢
𝑛
, V
𝑛
) → (𝑢, V) in𝑊1,4

0
(Ω) × 𝑊

1,4

0
(Ω).

In (9), choosing (𝜑, 𝜓) = (𝑢

𝑛
− 𝑢

𝑚
, V
𝑛
− V
𝑚
), we have

𝑜 (1)









(𝑢

𝑛
− 𝑢

𝑚
, V
𝑛
− V
𝑚
)









= ⟨𝐼



𝜇
(𝑢

𝑛
, V
𝑛
) − 𝐼



𝜇
(𝑢

𝑚
, V
𝑚
) , (𝑢

𝑛
− 𝑢

𝑚
, V
𝑛
− V
𝑚
)⟩

= 𝜇∫

Ω

(









∇𝑢

𝑛









2

∇𝑢

𝑛
−









∇𝑢

𝑚









2

∇𝑢

𝑚
) (∇𝑢

𝑛
− ∇𝑢

𝑚
)

+ 𝜇∫

Ω

(









∇V
𝑛









2

∇V
𝑛
−









∇V
𝑚









2

∇V
𝑚
) (∇V
𝑛
− ∇V
𝑚
)

+ ∫

Ω









𝑢

𝑛
− 𝑢

𝑚









2

+ ∫

Ω









∇𝑢

𝑛
− ∇𝑢

𝑚









2

+ ∫

Ω

(𝑢

2

𝑛
∇𝑢

𝑛
− 𝑢

2

𝑚
∇𝑢

𝑚
) (∇𝑢

𝑛
− ∇𝑢

𝑚
) + ∫

Ω









V
𝑛
− V
𝑚









2

+ ∫

Ω









∇V
𝑛
−∇V
𝑚









2

+∫

Ω

(V2
𝑛
∇V
𝑛
−V2
𝑚
∇V
𝑚
) (∇V
𝑛
−∇V
𝑚
)

+ ∫

Ω

(𝑢

𝑛









∇𝑢

𝑛









2

− 𝑢

𝑚









∇𝑢

𝑚









2

) (𝑢

𝑛
− 𝑢

𝑚
)

+ ∫

Ω

(V
𝑛









∇V
𝑛









2

− V
𝑚









∇V
𝑚









2

) (V
𝑛
− V
𝑚
)

−

2𝛼

𝛼+𝛽

∫

Ω

(









𝑢

𝑛









𝛼−2








V
𝑛









𝛽

𝑢

𝑛
−









𝑢

𝑚









𝛼−2








V
𝑚









𝛽

𝑢

𝑚
) (𝑢

𝑛
−𝑢

𝑚
)

−

2𝛽

𝛼+𝛽

∫

Ω

(









𝑢

𝑛









𝛼








V
𝑛









𝛽−2

V
𝑛
−









𝑢

𝑚









𝛼








V
𝑚









𝛽−2

V
𝑚
) (V
𝑛
−V
𝑚
) .

(16)

We may estimate the terms involved as follows:

𝜇∫

Ω

(









∇𝑢

𝑛









2

∇𝑢

𝑛
−









∇𝑢

𝑚









2

∇𝑢

𝑚
) (∇𝑢

𝑛
− ∇𝑢

𝑚
)

≥ 𝜇∫

Ω









∇𝑢

𝑛
− ∇𝑢

𝑚









4

,

𝜇 ∫

Ω

(









∇V
𝑛









2

∇V
𝑛
−









∇V
𝑚









2

∇V
𝑚
) (∇V
𝑛
− ∇V
𝑚
)

≥ 𝜇∫

Ω









∇V
𝑛
− ∇V
𝑚









4

,

∫

Ω

(𝑢

2

𝑛
∇𝑢

𝑛
− 𝑢

2

𝑚
∇𝑢

𝑚
) (∇𝑢

𝑛
− ∇𝑢

𝑚
)

≥ ∫

Ω

𝑢

2

𝑛









∇𝑢

𝑛
−∇𝑢

𝑚









2

+∫

Ω

(𝑢

2

𝑛
−𝑢

2

𝑚
) ∇𝑢

𝑚
(∇𝑢

𝑛
−∇𝑢

𝑚
)

≥ −









𝑢

𝑛
− 𝑢

𝑚







4
(









𝑢

𝑛







4
+









𝑢

𝑚







4
)









𝑢

𝑚









(









𝑢

𝑛









+









𝑢

𝑚









)

→ 0 as 𝑚, 𝑛 → ∞,

∫

Ω

(V2
𝑛
∇V
𝑛
− V2
𝑚
∇V
𝑚
) (∇V
𝑛
− ∇V
𝑚
)

≥ ∫

Ω

V2
𝑛









∇V
𝑛
−∇V
𝑚









2

+∫

Ω

(V2
𝑛
−V2
𝑚
) ∇V
𝑚
(∇V
𝑛
−∇V
𝑚
)

≥ −









V
𝑛
− V
𝑚







4
(









V
𝑛







4
+









V
𝑚







4
)









V
𝑚









(









V
𝑛









+









V
𝑚









)

→ 0 as 𝑚, 𝑛 → ∞,















∫

Ω

(𝑢

𝑛









∇𝑢

𝑛









2

− 𝑢

𝑚









∇𝑢

𝑚









2

) (𝑢

𝑛
− 𝑢

𝑚
)















≤ (









𝑢

𝑛







4









𝑢

𝑛









2

+









𝑢

𝑚







4









𝑢

𝑚









2

)









𝑢

𝑛
− 𝑢

𝑚







4

→ 0 as 𝑚, 𝑛 → ∞,















∫

Ω

(V
𝑛









∇V
𝑛









2

− V
𝑚









∇V
𝑚









2

) (V
𝑛
− V
𝑚
)















≤ (









V
𝑛







4









V
𝑛









2

+









V
𝑚







4









V
𝑚









2

)









V
𝑛
− V
𝑚







4

→ 0 as 𝑚, 𝑛 → ∞,

2𝛼

𝛼 + 𝛽















∫

Ω

(









𝑢

𝑛









𝛼−2








V
𝑛









𝛽

𝑢

𝑛
−









𝑢

𝑚









𝛼−2








V
𝑚









𝛽

𝑢

𝑚
) (𝑢

𝑛
− 𝑢

𝑚
)















≤

2𝛼

𝛼 + 𝛽

∫

Ω

(









𝑢

𝑛









𝛼−1








V
𝑛









𝛽

+









𝑢

𝑚









𝛼−1








V
𝑚









𝛽

)









𝑢

𝑛
− 𝑢

𝑚









≤

2𝛼

𝛼 + 𝛽

(









𝑢

𝑛









𝛼−1

𝛼+𝛽









V
𝑛









𝛽

𝛼+𝛽
+









𝑢

𝑚









𝛼−1

𝛼+𝛽









V
𝑚









𝛽

𝛼+𝛽
)









𝑢

𝑛
−𝑢

𝑚







𝛼+𝛽

→ 0 as 𝑚, 𝑛 → ∞,

2𝛽

𝛼 + 𝛽















∫

Ω

(









𝑢

𝑛









𝛼








V
𝑛









𝛽−2

V
𝑛
−









𝑢

𝑚









𝛼








V
𝑚









𝛽−2

V
𝑚
) (V
𝑛
− V
𝑚
)















≤

2𝛽

𝛼 + 𝛽

∫

Ω

(









𝑢

𝑛









𝛼








V
𝑛









𝛽−1

+









𝑢

𝑚









𝛼








V
𝑚









𝛽−1

)









V
𝑛
− V
𝑚









≤

2𝛽

𝛼 + 𝛽

(









𝑢

𝑛









𝛼

𝛼+𝛽









V
𝑛









𝛽−1

𝛼+𝛽
+









𝑢

𝑚









𝛼

𝛼+𝛽









V
𝑚









𝛽−1

𝛼+𝛽
)









V
𝑛
−V
𝑚







𝛼+𝛽

→ 0 as 𝑚, 𝑛 → ∞.

(17)

Returning to (16), we have

𝜇∫

Ω

(









∇𝑢

𝑛
− ∇𝑢

𝑚









4

+









∇V
𝑛
− ∇V
𝑚









4

)

≤ 𝑜 (1)









(𝑢

𝑛
− 𝑢

𝑚
, V
𝑛
− V
𝑚
)









+ 𝑜 (1) ,

(18)
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which implies that ‖(𝑢
𝑛
− 𝑢

𝑚
, V
𝑛
− V
𝑚
)‖ → 0, that is,

(𝑢

𝑛
, 𝑢

𝑚
) → (𝑢, V) in𝑊1,4

0
(Ω) × 𝑊

1,4

0
(Ω). This completes the

proof of Proposition 3.

4. Some Asymptotic Behavior

Proposition 3 enables us to apply minimax argument to the
functional 𝐼

𝜇
(𝑢, V). In this section, we also study the behavior

of sequence {(𝑢
𝑛
, V
𝑛
)} ⊂ 𝑊

1,4

0
(Ω) × 𝑊

1,4

0
(Ω) and {𝜇

𝑛
} ⊂ (0, 1]

satisfying

𝜇

𝑛
→ 0, 𝐼

𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) → 𝑐,











𝐼



𝜇
𝑛

(𝑢

𝑛
, V
𝑛
)











∗

→ 0.

(19)

The following proposition is the key of this section.

Proposition 5. Assume sequence {(𝑢

𝑛
, V
𝑛
)} ⊂ 𝑊

1,4

0
(Ω) ×

𝑊

1,4

0
(Ω) and {𝜇

𝑛
} ⊂ (0, 1] satisfy (19). Then after extracting

a sequence, still denoted by 𝑛, one has

(𝑢

𝑛
, V
𝑛
) ⇀ (𝑢, V) 𝑖𝑛 𝑊

1,2

0
(Ω) ×𝑊

1,2

0
(Ω) ,

(𝑢

𝑛
∇𝑢

𝑛
, V
𝑛
∇V
𝑛
) ⇀ (𝑢∇𝑢, V∇V) 𝑖𝑛 𝐿

2
(Ω) × 𝐿

2
(Ω) ,

(𝑢

𝑛
(𝑥) , V

𝑛
(𝑥)) → (𝑢 (𝑥) , V (𝑥)) 𝑎.𝑒. 𝑥 ∈ Ω

(20)

as 𝑛 → ∞.

Proof. Similar to the proof of Lemma 4, by (19), we have

𝐶 ≥ 𝐼

𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) −

1

𝛼 + 𝛽

⟨𝐼



𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) , (𝑢

𝑛
, V
𝑛
)⟩

≥ (

1

4

−

1

𝛼 + 𝛽

)𝜇

𝑛
∫

Ω

(









∇𝑢

𝑛









4

+









∇V
𝑛









4

)

+ (

1

2

−

1

𝛼 + 𝛽

)∫

Ω

(









∇𝑢

𝑛









2

+









∇V
𝑛









2

)

+ (

1

2

−

1

𝛼 + 𝛽

)∫

Ω

(









𝑢

𝑛









2

+









V
𝑛









2

)

+ (

1

2

−

2

𝛼 + 𝛽

)∫

Ω

(𝑢

2

𝑛









∇𝑢

𝑛









2

+ V2
𝑛









∇V
𝑛









2

) .

(21)

Thus

𝜇

𝑛
∫

Ω

(









∇𝑢

𝑛









4

+









∇V
𝑛









4

) + ∫

Ω

(









∇𝑢

𝑛









2

+









∇V
𝑛









2

)

+ ∫

Ω

(









𝑢

𝑛









2

+









V
𝑛









2

) + ∫

Ω

(𝑢

2

𝑛









∇𝑢

𝑛









2

+ V2
𝑛









∇V
𝑛









2

) ≤ 𝐶

(22)

for some 𝐶 independent of 𝑛. Then, up to a subsequence, we
have

(𝑢

𝑛
, V
𝑛
) ⇀ (𝑢, V) in 𝑊

1,2

0
(Ω) ×𝑊

1,2

0
(Ω) ,

(𝑢

𝑛
∇𝑢

𝑛
, V
𝑛
∇V
𝑛
) ⇀ (𝑢∇𝑢, V∇V) in 𝐿

2
(Ω) × 𝐿

2
(Ω) ,

(𝑢

𝑛
(𝑥) , V

𝑛
(𝑥)) → (𝑢 (𝑥) , V (𝑥)) 𝑎.𝑒. 𝑥 ∈ Ω

(23)

as 𝑛 → ∞. This completes the proof of Proposition 5.

5. Proof of Main Results

In this section, we give the proof of our main results. Firstly,
we proveTheorem 1.

Proof of Theorem 1. Note that (𝑢
𝑛
, V
𝑛
) satisfies the following

equation:

𝜇

𝑛
∫

Ω









∇𝑢

𝑛









2

∇𝑢

𝑛
∇𝜑 + 𝜇

𝑛
∫

Ω









∇V
𝑛









2

∇V
𝑛
∇𝜓

+ ∫

Ω

((1 + 𝑢

2

𝑛
) ∇𝑢

𝑛
∇𝜑 + (1 +









∇𝑢

𝑛









2

) 𝑢

𝑛
𝜑)

+ ∫

Ω

((1 + V2
𝑛
) ∇V
𝑛
∇𝜓 + (1 +









∇V
𝑛









2

) V
𝑛
𝜓)

−

2𝛼

𝛼 + 𝛽

∫

Ω









𝑢

𝑛









𝛼−2








V
𝑛









𝛽

𝑢

𝑛
𝜑

−

2𝛽

𝛼 + 𝛽

∫

Ω









𝑢

𝑛









𝛼








V
𝑛









𝛽−2

V
𝑛
𝜓 = 0

(24)

for all (𝜑, 𝜓) ∈ 𝑊1,4
0
(Ω) ×𝑊

1,4

0
(Ω). Since

(∫

Ω









𝑢

𝑛









4𝑁/(𝑁−2)

)

(𝑁−2)/𝑁

≤ 𝐶∫

Ω

𝑢

2

𝑛









∇𝑢

𝑛









2

≤ 𝐶,

(∫

Ω









V
𝑛









4𝑁/(𝑁−2)

)

(𝑁−2)/𝑁

≤ 𝐶∫

Ω

V2
𝑛









∇V
𝑛









2

≤ 𝐶.

(25)

By Moser’s iteration, we have









𝑢

𝑛







𝐿
∞ ≤ 𝐶,









V
𝑛







𝐿
∞ ≤ 𝐶. (26)

Hence,

|𝑢|𝐿
∞ ≤ 𝐶, |V|𝐿∞ ≤ 𝐶 (27)

for some 𝐶 independent of 𝑛. To show that (𝑢, V) is a critical
point of 𝐼

0
we use some arguments in [28, 29] (see more

references therein). In (24) we choose 𝜑 = 𝜉 exp(−𝑢
𝑛
), 𝜓 =

𝜂 exp(−V
𝑛
), where 𝜉 ∈ 𝐶

∞

0
(Ω), 𝜉 ≥ 0, 𝜂 ∈ 𝐶

∞

0
(Ω), 𝜂 ≥ 0.

Substituting (𝜑, 𝜓) into (24), we have

0 = 𝜇

𝑛
∫

Ω









∇𝑢

𝑛









2

∇𝑢

𝑛
(∇𝜉 exp (−𝑢

𝑛
) − 𝜉∇𝑢

𝑛
exp (−𝑢

𝑛
))

+ 𝜇

𝑛
∫

Ω









∇V
𝑛









2

∇V
𝑛
(∇𝜂 exp (−V

𝑛
) − 𝜂∇V

𝑛
exp (−V

𝑛
))

+ ∫

Ω

(1 + 𝑢

2

𝑛
) ∇𝑢

𝑛
(∇𝜉 exp (−𝑢

𝑛
) − 𝜉∇𝑢

𝑛
exp (−𝑢

𝑛
))

+ ∫

Ω

(1 + V2
𝑛
) ∇V
𝑛
(∇𝜂 exp (−V

𝑛
) − 𝜂∇V

𝑛
exp (−V

𝑛
))

+ ∫

Ω

(1 +









∇𝑢

𝑛









2

) 𝑢

𝑛
𝜉 exp (−𝑢

𝑛
)
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+ ∫

Ω

(1 +









∇V
𝑛









2

) V
𝑛
𝜂 exp (−V

𝑛
)

−

2𝛼

𝛼 + 𝛽

∫

Ω









𝑢

𝑛









𝛼−2








V
𝑛









𝛽

𝑢

𝑛
𝜉 exp (−𝑢

𝑛
)

−

2𝛽

𝛼 + 𝛽

∫

Ω









𝑢

𝑛









𝛼








V
𝑛









𝛽−2

V
𝑛
𝜂 exp (−V

𝑛
)

≤ 𝜇

𝑛
∫

Ω









∇𝑢

𝑛









2

∇𝑢

𝑛
∇𝜉 exp (−𝑢

𝑛
)

+ 𝜇

𝑛
∫

Ω









∇V
𝑛









2

∇V
𝑛
∇𝜂 exp (−V

𝑛
)

+ ∫

Ω

(1 + 𝑢

2

𝑛
) ∇𝑢

𝑛
∇𝜉 exp (−𝑢

𝑛
)

+ ∫

Ω

(1 + V2
𝑛
) ∇V
𝑛
∇𝜂 exp (−V

𝑛
)

+ ∫

Ω

𝑢

𝑛
𝜉 exp (−𝑢

𝑛
) + ∫

Ω

V
𝑛
𝜂 exp (−V

𝑛
)

− ∫

Ω

(1 + 𝑢

2

𝑛
− 𝑢

𝑛
)









∇𝑢

𝑛









2

𝜉 exp (−𝑢
𝑛
)

− ∫

Ω

(1 + V2
𝑛
− V
𝑛
)









∇V
𝑛









2

𝜂 exp (−V
𝑛
)

−

2𝛼

𝛼 + 𝛽

∫

Ω









𝑢

𝑛









𝛼−2








V
𝑛









𝛽

𝑢

𝑛
𝜉 exp (−𝑢

𝑛
)

−

2𝛽

𝛼 + 𝛽

∫

Ω









𝑢

𝑛









𝛼








V
𝑛









𝛽−2

V
𝑛
𝜂 exp (−V

𝑛
) .

(28)

Note that 1+𝑢2
𝑛
−𝑢

𝑛
≥ 0, 1+V2

𝑛
−V
𝑛
≥ 0. By Fatou’s Lemma, the

weak convergence of {(𝑢
𝑛
, V
𝑛
)} and the fact that𝜇

𝑛
∫

Ω
(|∇𝑢

𝑛
|

4
+

|∇V
𝑛
|

4
) is bounded, we have

0 ≤ ∫

Ω

(1 + 𝑢

2
) ∇𝑢∇𝜉 exp (−𝑢) + ∫

Ω

(1 + V2) ∇V∇𝜂 exp (−V)

+ ∫

Ω

𝑢𝜉 exp (−𝑢) + ∫
Ω

V𝜂 exp (−V)

− ∫

Ω

(1 + 𝑢

2
− 𝑢) |∇𝑢|

2
𝜉 exp (−𝑢)

− ∫

Ω

(1 + V2 − V) |∇V|2𝜂 exp (−V)

−

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜉 exp (−𝑢)

−

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜂 exp (−V)

= ∫

Ω

(1 + 𝑢

2
) ∇𝑢∇ (𝜉 exp (−𝑢))

+ ∫

Ω

(1 + V2) ∇V∇ (𝜂 exp (−V))

+ ∫

Ω

(1+|∇𝑢|

2
) 𝑢𝜉 exp (−𝑢)+∫

Ω

(1+|∇V|2) V𝜂 exp (−V)

−

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜉 exp (−𝑢)

−

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜂 exp (−V) .

(29)

Let (𝜒, 𝜔) ≥ (0, 0), (𝜒, 𝜔) ∈ 𝐶

∞

0
(Ω) × 𝐶

∞

0
(Ω). We may

choose a sequence of nonnegative functions {(𝜉

𝑛
, 𝜂

𝑛
)} ⊂

𝐶

∞

0
(Ω) × 𝐶

∞

0
(Ω) such that (𝜉

𝑛
, 𝜂

𝑛
) → (𝜒 exp 𝑢, 𝜔 exp V) in

𝑊

1,2

0
(Ω) × 𝑊

1,2

0
(Ω), (𝜉

𝑛
, 𝜂

𝑛
) → (𝜒 exp 𝑢, 𝜔 exp V) a.e. 𝑥 ∈ Ω

and {(𝜉
𝑛
, 𝜂

𝑛
)} is uniformly bounded in 𝐿∞(Ω)×𝐿∞(Ω). Then

by approximations in (29) we may obtain

∫

Ω

(1 + 𝑢

2
) ∇𝑢∇𝜒 + ∫

Ω

(1 + V2) ∇V∇𝜔 + ∫

Ω

(1 + |∇𝑢|

2
) 𝑢𝜒

+ ∫

Ω

(1 + |∇V|2) V𝜔 −

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜒

−

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜔 ≥ 0

(30)

for all (𝜒, 𝜔) ≥ (0, 0), (𝜒, 𝜔) ∈ 𝐶∞
0
(Ω) × 𝐶

∞

0
(Ω).

Similarly, we may obtain an opposite inequality. Thus we
have

∫

Ω

(1 + 𝑢

2
) ∇𝑢∇𝜒 + ∫

Ω

(1 + V2) ∇V∇𝜔 + ∫

Ω

(1 + |∇𝑢|

2
) 𝑢𝜒

+ ∫

Ω

(1 + |∇V|2) V𝜔 −

2𝛼

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼−2
|V|𝛽𝑢𝜒

−

2𝛽

𝛼 + 𝛽

∫

Ω

|𝑢|

𝛼
|V|𝛽−2V𝜔 = 0

(31)

for all (𝜒, 𝜔) ∈ 𝐶

∞

0
(Ω) × 𝐶

∞

0
(Ω). That is, (𝑢, V) is a critical

point of 𝐼
0
and a solution for the system (1). By doing

approximations again, we have (𝑢, V) in the place of (𝜒, 𝜔) of
(31)

∫

Ω

((1 + 2𝑢

2
) |∇𝑢|

2
+ 𝑢

2
) + ∫

Ω

((1 + 2V2) |∇V|2 + V2)

− 2∫

Ω

|𝑢|

𝛼
|V|𝛽 = 0.

(32)
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Setting (𝜑, 𝜓) = (𝑢

𝑛
, V
𝑛
) in (24), we have

𝜇

𝑛
∫

Ω

(









∇𝑢

𝑛









4

+









∇V
𝑛









4

) + ∫

Ω

((1 + 2𝑢

2

𝑛
)









∇𝑢

𝑛









2

+ 𝑢

2

𝑛
)

+ ∫

Ω

((1 + 2V2
𝑛
)









∇V
𝑛









2

+ V2
𝑛
) − 2∫

Ω









𝑢

𝑛









𝛼








V
𝑛









𝛽

= 0.

(33)

Using ∫
Ω
|𝑢

𝑛
|

𝛼
|V
𝑛
|

𝛽
→ ∫

Ω
|𝑢|

𝛼
|V|𝛽 as 𝑛 → ∞, (32), (33), and

lower semicontinuity, we obtain

∫

Ω









∇𝑢

𝑛









2

→ ∫

Ω

|∇𝑢|

2
, ∫

Ω









∇V
𝑛









2

→ ∫

Ω

|∇V|2,

∫

Ω

𝑢

2

𝑛









∇𝑢

𝑛









2

→ ∫

Ω

𝑢

2
|∇𝑢|

2
, ∫

Ω

V2
𝑛









∇V
𝑛









2

→ ∫

Ω

V2|∇V|2

(34)

as 𝑛 → ∞.
In particular, we have

𝑢

𝑛
→ 𝑢, V

𝑛
→ V in 𝑊

1,2

0
(Ω) ,

𝑢

𝑛
∇𝑢

𝑛
→ 𝑢∇𝑢, V

𝑛
∇V
𝑛
→ V∇V in 𝐿

2
(Ω) ,

𝜇

𝑛
∫

Ω

(









∇𝑢

𝑛









4

+









∇V
𝑛









4

) → 0,

𝐼



𝜇
𝑛

(𝑢

𝑛
, V
𝑛
) → 𝐼



0
(𝑢, V)

(35)

as 𝑛 → ∞. This completes the proof of Theorem 1.

Next, we apply the mountain pass theorem to obtain
existence of critical points of 𝐼

𝜇
. Set

Σ

𝜌
={(𝑢, V)∈𝑊1,4

0
(Ω)×𝑊

1,4

0
(Ω) | ∫

Ω

((1+𝑢

2
) |∇𝑢|

2
+𝑢

2
)

+∫

Ω

((1 + V2) |∇V|2 + V2) ≤ 𝜌

2
}

(36)

for 𝜌 > 0.
Let us consider the functional

𝐼

+

𝜇
(𝑢, V) =

1

4

𝜇∫

Ω

(|∇𝑢|

4
+ |∇V|4)

+

1

2

∫

Ω

((1 + 𝑢

2
) |∇𝑢|

2
+ 𝑢

2
)

+

1

2

∫

Ω

((1 + V2) |∇V|2 + V2)

−

2

𝛼 + 𝛽

∫

Ω

(𝑢

+
)

𝛼

(V+)
𝛽

.

(37)

Here and in the following we denote 𝑢+ = max{𝑢, 0}. The
functional 𝐼

𝜇
satisfies (PS)

𝑐
condition. Similarly, we may

verify that 𝐼+
𝜇
satisfies (PS)

𝑐
condition. By 𝜀-Young inequality,

for any 𝜀 > 0, there exists 𝐶
𝜀
> 0 such that

(𝑢

+
)

𝛼

(V+)
𝛽

≤ 𝜀(𝑢

+
)

𝛼+𝛽

+ 𝐶

𝜀
(V+)
𝛼+𝛽

.

(38)

Since

∫

Ω

|𝑢|

𝛼+𝛽
≤ 𝐶(∫

Ω

𝑢

2
|∇𝑢|

2
)

(𝛼+𝛽)/4

,

∫

Ω

|V|𝛼+𝛽 ≤ 𝐶(∫

Ω

V2|∇V|2)
(𝛼+𝛽)/4

.

(39)

Then

−

2

𝛼 + 𝛽

∫

Ω

(𝑢

+
)

𝛼

(V+)
𝛽

≥ −

2

𝛼 + 𝛽

𝜀∫

Ω

(𝑢

+
)

𝛼+𝛽

−

2

𝛼 + 𝛽

𝐶

𝜀
∫

Ω

(𝑢

+
)

𝛼+𝛽

≥ −

2𝐶

𝛼 + 𝛽

𝜀∫

Ω

(∫

Ω

𝑢

2
|∇𝑢|

2
)

(𝛼+𝛽)/4

−

2𝐶

𝜀

𝛼 + 𝛽

(∫

Ω

V2|∇V|2)
(𝛼+𝛽)/4

≥ −

2𝐶

𝛼 + 𝛽

𝜀𝜌

(𝛼+𝛽)/2
−

2𝐶

𝜀

𝛼 + 𝛽

𝜌

(𝛼+𝛽)/2

≥ −

1

𝛼 + 𝛽

𝜌

2

(40)

for 𝜀, 𝜌 small. Thus we have

𝐼

+

𝜇
(𝑢, V)

≥

1

2

∫

Ω

((1 + 𝑢

2
) |∇𝑢|

2
+ 𝑢

2
)

+

1

2

∫

Ω

((1 + V2) |∇V|2 + V2) −
2

𝛼 + 𝛽

∫

Ω

(𝑢

+
)

𝛼

(V+)
𝛽

≥

1

2

𝜌

2
−

1

𝛼 + 𝛽

𝜌

2
= (

1

2

−

1

𝛼 + 𝛽

)𝜌

2

(41)

for (𝑢, V) ∈ 𝜕Σ

𝜌
and for 𝜌 > 0 small enough. Choose

(𝜑, 𝜓) ≥ (0, 0), (𝜒, 𝜔) ∈ 𝐶

∞

0
(Ω) × 𝐶

∞

0
(Ω) and 𝑇 > 0. Define

a path (𝑔, ℎ): [0, 1] → 𝑊

1,4

0
(Ω) × 𝑊

1,4

0
(Ω) by (𝑔(𝑡), ℎ(𝑡)) =

(𝑡𝑇𝜑, 𝑡𝑇𝜓). When 𝑇 is large enough, we have

𝐼

+

𝜇
(𝑔 (1) , ℎ (1)) < 0,

∫

Ω

((1 + 𝑔

2
(1))









∇𝑔 (1)









2

+ 𝑔

2
(1))

+ ∫

Ω

((1 + ℎ

2
(1)) |∇ℎ (1)|

2
+ ℎ

2
(1)) > 𝜌

2
,

sup
𝑡∈[0,1]

𝐼

+

𝜇
(𝑔 (𝑡) , ℎ (𝑡)) ≤ 𝑚

(42)

for some𝑚 independent of 𝜇 ∈ (0, 1].
Define

𝑐

𝜇
= inf
(𝑔,ℎ)∈Γ

sup
𝑡∈[0,1]

𝐼

+

𝜇
(𝑔 (𝑡) , ℎ (𝑡)) , (43)
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where

Γ = {(𝑔, ℎ) ∈ 𝐶 ([0, 1] ,𝑊

1,4

0
(Ω) ×𝑊

1,4

0
(Ω)) | (𝑔 (0) , ℎ (0))

= (0, 0) , (𝑔 (1) , ℎ (1)) = (𝑇𝜑, 𝑇𝜓) } .

(44)

From the mountain pass theorem we obtain that

𝑐

𝜇
≥ (

1

2

−

1

𝛼 + 𝛽

)𝜌

2 (45)

is a critical value of 𝐼+
𝜇
.

Let (𝑢
𝜇
, V
𝜇
) be a critical point corresponding to 𝑐

𝜇
. We

have (𝑢
𝜇
, V
𝜇
) ≥ (0, 0). Thus (𝑢

𝜇
, V
𝜇
) is a positive critical point

of 𝐼
𝜇
by the strong maximum principle. In summary, we have

the following.

Proposition 6. There exist positive constants 𝜌 and 𝑚 inde-
pendent of 𝜇 such that 𝐼

𝜇
has a positive critical point (𝑢

𝜇
, V
𝜇
)

satisfying

(

1

2

−

1

𝛼 + 𝛽

)𝜌

2
≤ 𝐼

𝜇
(𝑢

𝜇
, V
𝜇
) ≤ 𝑚. (46)

Finally, we give the proof of Theorem 2.

Proof of Theorem 2. For a positive solution of the system
(1), the proof follows from Proposition 6 and Theorem 1. A
similar argument gives a negative solution of the system (1).
This completes the proof of Theorem 2.
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l’Institut Henri Poincaré, vol. 1, no. 2, pp. 109–145, 1984.

[14] Y. Guo and Z. Tang, “Ground state solutions for the quasilinear
Schrödinger equation,” Nonlinear Analysis A, vol. 75, no. 6, pp.
3235–3248, 2012.

[15] T. Bartsch and Z. Q. Wang, “Multiple positive solutions for
a nonlinear Schrödinger equation,” Zeitschrift für Angewandte
Mathematik und Physik, vol. 51, no. 3, pp. 366–384, 2000.

[16] A. Ambrosetti, M. Badiale, and S. Cingolani, “Semiclassical
states of nonlinear Schrödinger equations,” Archive for Rational
Mechanics and Analysis, vol. 140, no. 3, pp. 285–300, 1997.

[17] A. Ambrosetti, A.Malchiodi, and S. Secchi, “Multiplicity results
for some nonlinear Schrödinger equations with potentials,”
Archive for Rational Mechanics and Analysis, vol. 159, no. 3, pp.
253–271, 2001.

[18] J. Byeon and Z. Q. Wang, “Standing waves with a critical
frequency for nonlinear Schrödinger equations II,” Calculus of
Variations and Partial Differential Equations, vol. 18, no. 2, pp.
207–219, 2003.

[19] S. Cingolani and M. Lazzo, “Multiple positive solutions to
nonlinear Schrödinger equations with competing potential
functions,” Journal of Differential Equations, vol. 160, no. 1, pp.
118–138, 2000.

[20] S. Cingolani and M. Nolasco, “Multi-peak periodic semiclas-
sical states for a class of nonlinear Schrödinger equations,”
Proceedings of the Royal Society of Edinburgh A, vol. 128, no. 6,
pp. 1249–1260, 1998.

[21] M. Del Pino and P. L. Felmer, “Multi-peak bound states for
nonlinear Schrödinger equations,” Annales de l’Institut Henri
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