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TheReconstruction of Variational IterationMethod (RVIM) technique has been successfully applied to obtain solutions for systems
of nonlinear fractional differential equations: 𝐷𝛼

∗
𝑥
𝑖
(𝑡) = 𝑁

𝑖
(𝑡, 𝑥
1
, . . . , 𝑥

𝑛
), 𝑥(𝑘)
𝑖

= 𝑐
𝑖

𝑘
, 0 ≤ 𝑘 ≤ [𝛼

𝑖
], 1 ≤ 𝑖 ≤ 𝑛, where 𝐷𝛼

∗
denote

Caputo fractional derivative. The RVIM, for differential equations of integer order is extended to derive approximate analytical
solutions for systems of fractional differential equations. Advantage of the RVIM, is simplicity of the computations and convergent
successive approximations without any restrictive assumptions or transform functions. Some illustrative examples are given to show
the validity of this method for solving linear and nonlinear systems of fractional differential equations.

1. Introduction

In recent years, the fractional differential equations have
received remarkable attention. Differential equations of frac-
tional order have been found to be effective to describe some
physical phenomena such as rheology, fluid flow, diffusive
transport, electrical network, and electromagnetic theory
[1–4]. There are different methods to solve the fractional
differential equations. Some of the recent analytic methods
for solving a system of nonlinear fractional differential equa-
tions are the Adomian decomposition method (ADM) [5–8],
differential transform method [9], and Variational Iteration
method (VIM) [10].

The differential transform method was first applied in
engineering in 1986 [11]. Ertürk and Momani introduced
a new application of the differential transform method to
provide an approximate solution for systems of fractional
differential equations [9]. For this propose He developed
the Variational Iteration Method (VIM) in 1999 [10]. In
this method, the solution is approximated at first iteration
by using the initial conditions. A correction functional is
established by the general Lagrange multiplier which can
be identified optimally via the variational theory. Although

a number of useful attempts have been made to solve
fractional equations via the VIM, the problem has not yet
been completely resolved; that is, most of the previous work
avoid the term of fractional derivative and handle them as
restricted variations and they cannot identify the fractional
Lagrange multipliers explicitly in the correction function.
Hesameddini and Latifizadeh proposed a new alternative
approach to derivation of the Variational Iteration formu-
lations using the Laplace transform for solving linear and
nonlinear ordinary differential equations which was called
the Reconstruction of Variational IterationMethod [12].This
method does not use a Lagrange multiplier.

Partial differential equations of fractional order are often
very complicated to be exactly solved and even if an exact
solution is obtainable, the required calculations may be too
complicated to be practical, or itmight be difficult to interpret
the outcome.

In this work, we extend the Reconstruction of Variational
Iteration Method to solve systems of fractional differential
equations. The aim of this work is to present an alternative
approach based on RVIM to find the solution for linear
and nonlinear system of fractional differential equations.
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The efficiency and accuracy of RVIM are demonstrated
through several test examples.

2. Preliminaries and Notations

In this section, some necessary definitions and mathematical
preliminaries of the fractional calculus theory which are used
further in this paper will be presented.

Definition 1. Let 𝐶[𝑎, 𝑏] denotes the space of continuous
functions defined on [𝑎, 𝑏] and 𝐶𝑛[𝑎, 𝑏] denotes a class of all
real valued functions defined on [𝑎, 𝑏]which have continuous
𝑛th order derivative.

Definition 2. Let 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝛼 ≥ 0; then the expression

𝐼
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, (1)

is called the Riemann-Liouville integral of order 𝛼.

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

𝐷
𝛼

∗
𝑓 (𝑡)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝐼
𝑚−1

𝑓
(𝑚)

(𝑡)

=
1

Γ (𝑚 − 𝛼)

×∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑓
(𝑚)

(𝜏) 𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚,

𝑑
𝑚

𝑑𝑥
𝑚
𝑓 (𝑡) , 𝛼 = 𝑚,

(2)

for𝑚 ∈ 𝑁 and 𝑓 ∈ 𝐶
𝑛

[𝑎, 𝑏].

Note that

𝐼
𝛼

𝐼
𝛽

𝑓 (𝑡) = 𝐼
𝛼+𝛽

𝑓 (𝑡) , 𝛼, 𝛽 ≥ 0,

𝐼
𝛼

𝑡
𝛾

=
Γ (𝛾 + 1)

Γ (𝛾 + 𝛼 + 1)
𝑡
𝛾+𝛼

, 𝛼 > 0, 𝛾 > −1, 𝑡 > 0.

(3)

Definition 4. Given a function 𝑓(𝑡) defined for all 𝑡 ≥ 0, the
Laplace transform of 𝑓 is the function 𝐹 defined as follows:

𝐹 (𝑠) = 𝑙 {𝑓 (𝑡; 𝑠)} = ∫

∞

0

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡, (4)

for all values of 𝑠 for which the improper integral converges.

Definition 5. The function𝑓 is said to be of exponential order
as 𝑡 → +∞ if there exist nonnegative constants𝑀, 𝑐, and 𝑇
such that

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀𝑒

𝑐𝑇 for 𝑡 ≥ 𝑇. (5)

Definition 6. The function 𝑓(𝑡) is said to be piecewise
continuous on the bounded interval 𝑎 ≤ 𝑡 ≤ 𝑏 provided
that [𝑎, 𝑏] can be subdivided into finitely many abutting
subintervals in such a way that

(1) 𝑓 is continuous in the interior of each of these
subintervals,

(2) 𝑓(𝑡) has a finite limit as 𝑡 approaches each endpoint
of each subinterval from the interior.

Theorem 7 (existence of the laplace transforms). If the
function 𝑓 is piecewise continuous for 𝑡 ≥ 0 and is of
exponential order as 𝑡 → +∞, then its Laplace transform 𝐹(𝑠)

exists. More precisely, if 𝑓 is piecewise continuous and satisfies
the condition (5), then 𝐹(𝑠) exists for all 𝑠 > 𝑐.

Definition 8. Let the functions 𝑓(𝑡) and 𝑔(𝑡) be defined for
𝑡 ≥ 0; then the convolution of them is denoted by (𝑓 ∗ 𝑔)(𝑡)
and is defined as the following integral:

(𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

0

𝑓 (𝜏) 𝑔 (𝑡 − 𝜏) 𝑑𝜏. (6)

In other words, if 𝑙{𝑓(𝑡)} = 𝐹(𝑠), 𝑙{𝑔(𝑡)} = 𝐺(𝑠), then 𝑙{(𝑓 ∗
𝑔)(𝑡)} = 𝐹(𝑠)𝐺(𝑠). Or equivalently, 𝑙{∫𝑡

0

𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏} =

𝐹(𝑠)𝐺(𝑠). Therefore, the inverse Laplace transform will be
defined as

𝑙
−1

{𝐹 (𝑠) 𝐺 (𝑠)} = ∫

𝑡

0

𝑓 (𝜏) 𝑔 (𝑡 − 𝜏) 𝑑𝜏. (7)

Definition 9. The Laplace transform of the Caputo fractional
derivative𝐷𝛼

∗
𝑓(𝑡) is given by

𝑙 {𝐷
𝛼

∗
𝑓 (𝑡) ; 𝑠} = 𝑠

𝛼

𝐹 (𝑠) −

𝑚−1

∑

𝑘=0

𝑠
(𝛼−𝑘−1)

𝑓
(𝑘)

(0
+

) , (8)

where 𝐹(𝑠) = 𝑙{𝑓(𝑡); 𝑠}, 𝑚 − 1 ≤ 𝛼 < 𝑚.

3. System of Fractional Differential Equations
and Reconstruction of Variational Iteration
Method (RVIM)

Consider a system of fractional differential equations as
follows:

𝐷
𝛼

∗
𝑥
1
(𝑡) = 𝑁

1
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝐷
𝛼

∗
𝑥
2
(𝑡) = 𝑁

2
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

...

𝐷
𝛼

∗
𝑥
𝑛
(𝑡) = 𝑁

𝑛
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

(9)

where 𝑁
𝑖
’s are linear/nonlinear functions of 𝑡, 𝑥

1
, 𝑥
2
,

. . . , 𝑥
𝑛
, 𝐷𝛼𝑖
∗
is the derivative of 𝑥

𝑖
with order of 𝛼

𝑖
in the sense

of Caputo and 𝑚 − 1 ≤ 𝛼
𝑖
< 𝑚 with 𝑚 ≥ 1, subjected to the

initial conditions:

𝑥
(𝑘)

𝑖
= 𝑐
𝑖

𝑘
0 ≤ 𝑘 ≤ [𝛼

𝑖
] , 1 ≤ 𝑖 ≤ 𝑛. (10)

Equation (10) can be rewritten down as a correction function
in the following way:

𝐷
𝛼

∗
𝑥
𝑖
(𝑡) = 𝑁

𝑖
(𝑡, 𝑥
1
, . . . , 𝑥

𝑛
) , 𝑖 = 1, . . . , 𝑛. (11)
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Therefore, the approximate solution can be reached as fol-
lows:

𝑥
𝑖
(𝑡) = lim
𝑛→∞

𝑥
𝑛

𝑖
(𝑡) , 𝑖 = 1, . . . 𝑛, (12)

where 𝑥𝑛
𝑖
indicates 𝑛th approximation of 𝑥

𝑖
and 𝑥0

𝑖
is 𝑥
𝑖
(0) +

𝑡𝑥
󸀠

𝑖
(0) + ⋅ ⋅ ⋅ + 𝑡

𝑛

𝑥
(𝑛)

𝑖
(0)/𝑛! where 𝑥(𝑘)

𝑖
(0), 𝑘 = 0, 1, . . . , 𝑛 are

substituted by initial condition of the main problem.
Taking Laplace transform to both sides of (11) in the

usual way and using the homogenous initial conditions (i.e.,
artificial initial conditions equal to zero), the result can be
obtained as follows:

𝑠
𝛼𝑖 𝑙 {𝑥
𝑖
(𝑡)} = 𝑙 {𝑁

𝑖
(𝑡, 𝑥
1
, . . . , 𝑥

𝑛
)} . (13)

Now by applying the inverse Laplace transform to both sides
of (13) and using the convolution theorem, the following
relation can be concluded:

𝑥
𝑖
(𝑡) = ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
𝑁
𝑖
(𝜏, 𝑥
1
(𝜏) , 𝑥

2
(𝜏) , . . . , 𝑥

𝑛
(𝜏)) 𝑑𝜏.

(14)

Therefore,

𝑥
𝑛+1

𝑖
(𝑡)

= 𝑥
0

𝑖
(𝑡)

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)

× 𝑁
𝑖
(𝜏, 𝑥
𝑛

1
(𝜏) , 𝑥

𝑛

2
(𝜏) , . . . , 𝑥

𝑛

𝑛
(𝜏)) 𝑑𝜏, 𝑖 = 1, . . . , 𝑛.

(15)

After identifying the initial approximation of 𝑥0
𝑖
, the remain-

ing approximations 𝑥𝑛
1
(𝑡), 𝑛 > 0 can be obtained. So that

each term can be determined by previous term and the
approximation of iteration formula can be entirely evaluated.
Consequently, the solution may be written as

𝑥
𝑖
(𝑡) = lim
𝑛→∞

𝑥
𝑛

𝑖
(𝑡) , 𝑖 = 1, . . . 𝑛. (16)

4. Numerical Results

To demonstrate the effectiveness of the method we consider
some systems of linear and nonlinear fractional differential
equations.

Example 1. Let us consider the following system of two linear
fractional differential equations:

𝐷
𝛽

∗
𝑥 (𝑡) = 𝑥 (𝑡) + 𝑦 (𝑡) ,

𝐷
𝛾

∗
𝑦 (𝑡) = −𝑥 (𝑡) + 𝑦 (𝑡) ,

(17)

subjected to the initial conditions

𝑥 (0) = 0, 𝑦 (0) = 1. (18)

Applying the RVIM to (17), the result is as follows:

𝑙 {𝑥 (𝑡)} =
1

𝑠𝛽
𝑙 {𝑥 (𝑡) + 𝑦 (𝑡)} ,

𝑙 {𝑦 (𝑡)} =
1

𝑠𝛾
𝑙 {−𝑥 (𝑡) + 𝑦 (𝑡)} .

(19)

Applying the inverse Laplace transform to both sides of (19)
results in

𝑥 (𝑡) =
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

[𝑥 (𝜏) + 𝑦 (𝜏)] 𝑑𝜏,

𝑦 (𝑡) =
1

Γ (𝛾)
∫

𝑡

0

(𝑡 − 𝜏)
𝛾−1

[−𝑥 (𝜏) + 𝑦 (𝜏)] 𝑑𝜏.

(20)

Therefore, approximate solution for (20) can be readily
obtained as

𝑥
𝑛+1

(𝑡) = 𝑥
0
(𝑡) +

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

[𝑥
𝑛
(𝜏) + 𝑦

𝑛
(𝜏)] 𝑑𝜏,

𝑦
𝑛+1

(𝑡) = 𝑦
0
(𝑡) +

1

Γ (𝛾)
∫

𝑡

0

(𝑡 − 𝜏)
𝛾−1

[−𝑥
𝑛
(𝜏) + 𝑦

𝑛
(𝜏)] 𝑑𝜏,

(21)

where 𝑥
0
(𝑡) = 0, 𝑦

0
(𝑡) = 1.

According to (21), after some simplification and substitu-
tion, the following sets of equations are concluded:

𝑥
1
(𝑡) =

𝑡
𝛽

Γ (𝛽 + 1)
,

𝑦
1
(𝑡) = 1 +

𝑡
𝛾

Γ (𝛾 + 1)
,

𝑥
2
(𝑡) =

𝑡
𝛽

Γ (𝛽 + 1)
+

𝑡
2𝛽

Γ (2𝛽 + 1)
+

𝑡
𝛾+𝛽

Γ (𝛾 + 𝛽 + 1)
,

𝑦
2
(𝑡) = 1 +

𝑡
𝛾

Γ (𝛾 + 1)
+

𝑡
2𝛾

Γ (2𝛾 + 1)
−

𝑡
𝛾+𝛽

Γ (𝛾 + 𝛽 + 1)
,

𝑥
3
(𝑡) =

𝑡
𝛽

Γ (𝛽 + 1)
+

𝑡
2𝛽

Γ (2𝛽 + 1)
+

𝑡
𝛾+𝛽

Γ (𝛾 + 𝛽 + 1)

+
𝑡
3𝛽

Γ (3𝛽 + 1)
+

𝑡
2𝛾+𝛽

Γ (2𝛾 + 𝛽 + 1)
,

𝑦
3
(𝑡) = 1 +

𝑡
𝛾

Γ (𝛾 + 1)
+

𝑡
2𝛾

Γ (2𝛾 + 1)
−

𝑡
𝛾+𝛽

Γ (𝛾 + 𝛽 + 1)

+
𝑡
3𝛾

Γ (3𝛾 + 1)
−

𝑡
𝛾+2𝛽

Γ (𝛾 + 2𝛽 + 1)
−

2𝑡
2𝛾+𝛽

Γ (2𝛾 + 𝛽 + 1)
.

(22)

Figure 1 shows the approximate solution for system (17),
obtained for the values of 𝛽 = 𝛾 = 1. This is
the only case for which we know the exact solution
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Figure 1: Comparison plot of RVIM method for system (17), when
𝛽 = 𝛾 = 1 with its exact solution.

(𝑥(𝑡) = 𝑒
𝑡 sin(𝑡), 𝑦(𝑡) = 𝑒

𝑡 cos(𝑡)). One can see that our
approximate solutions by using the RVIM are in a good
agreement with its exact solution.

Figure 2 shows the approximate solutions for system
(17), obtained for the values of 𝛽 = 0.7 and 𝛾 = 0.9.
It is to be noted that the following three iterations were
used in evaluating the approximate solution (whereas by the
differential transformmethod twenty-five terms were used in
evaluating the approximate solutions).

The results in Figures 1 and 2 are in full agreementwith the
results obtained in [9], using differential transform method.

Example 2. Consider the following nonlinear system of
fractional differential equations:

𝑑
𝛼

𝑦
1

𝑑𝑡𝛼
= −𝑦
1
,

𝑑
𝛼

𝑦
2

𝑑𝑡𝛼
= 𝑦
1
− 𝑦
2

2
,

𝑑
𝛼

𝑦
3

𝑑𝑡𝛼
= 𝑦
2

2
,

(23)

subjected to the initial conditions

𝑦
1
(0) = 1, 𝑦

2
(0) = 0, 𝑦

3
(0) = 0. (24)

Applying the RVIM to (23), the result is as follows:

𝑙 {𝑦
1
(𝑡)} =

1

𝑠𝛼
𝑙 {−𝑦
1
(𝑡)} ,

𝑙 {𝑦
2
(𝑡)} =

1

𝑠𝛼
𝑙 {𝑦
1
(𝑡) − 𝑦

2

2
(𝑡)} ,

𝑙 {𝑦
3
(𝑡)} =

1

𝑠𝛼
𝑙 {𝑦
2

2
(𝑡)} .

(25)

Benefiting from the inverse Laplace transform to both sides
of (25), one obtains

𝑦
1
(𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[−𝑦
1
(𝜏)] 𝑑𝜏,

𝑦
2
(𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑦
1
(𝜏) − 𝑦

2

2
(𝜏)] 𝑑𝜏,

𝑦
3
(𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑦
2

2
(𝜏)] 𝑑𝜏.

(26)

Therefore, approximate solution for (26) can be readily
obtained as

𝑦
𝑛+1

1
(𝑡) = 𝑦

0

1
(𝑡) +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[−𝑦
1
(𝜏)] 𝑑𝜏,

𝑦
𝑛+1

2
(𝑡) = 𝑦

0

2
(𝑡) +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑦
1
(𝜏) − 𝑦

2

2
(𝜏)] 𝑑𝜏,

𝑦
𝑛+1

3
(𝑡) = 𝑦

0

3
(𝑡) +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑦
2

2
(𝜏)] 𝑑𝜏,

(27)

where 𝑦0
1
(𝑡) = 1, 𝑦0

2
(𝑡) = 0, 𝑦0

3
(𝑡) = 0, and 𝑦𝑛

𝑖
indicates 𝑛th

approximation of 𝑦
𝑖
for 𝑖 = 1, 2, 3.

According to (27), after some simplification and substitu-
tion, the following set of equations is concluded:

𝑦
1

1
(𝑡) = 1 −

𝑡
𝛼

Γ (𝛼 + 1)
,

𝑦
1

2
(𝑡) =

𝑡
𝛼

Γ (𝛼 + 1)
,

𝑦
1

3
(𝑡) = 0,

𝑦
2

1
(𝑡) = 1 −

𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)
,

𝑦
2

2
(𝑡) =

𝑡
𝛼

Γ (𝛼 + 1)
−

𝑡
2𝛼

Γ (2𝛼 + 1)
−

Γ (2𝛼 + 1) 𝑡
3𝛼

(Γ (𝛼 + 1))
2

⋅ Γ (3𝛼 + 1)

,

𝑦
2

3
(𝑡) =

Γ (2𝛼 + 1) 𝑡
3𝛼

(Γ (𝛼 + 1))
2

⋅ Γ (3𝛼 + 1)

,

𝑦
3

1
(𝑡) = 1 −

𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)
,

𝑦
3

2
(𝑡) =

𝑡
𝛼

Γ (𝛼 + 1)
−

𝑡
2𝛼

Γ (2𝛼 + 1)
−

Γ (2𝛼 + 1) 𝑡
3𝛼

(Γ (𝛼 + 1))
2

⋅ Γ (3𝛼 + 1)

,

𝑦
3

3
(𝑡) =

Γ (2𝛼 + 1) 𝑡
3𝛼

(Γ (𝛼 + 1))
2

⋅ Γ (3𝛼 + 1)

.

(28)
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Figure 2: Plots of system (17), when 𝛽 = 0.7, 𝛾 = 0.9: (a) RVIM method and (b) differential transform method.
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Figure 3: Plots of system (23): (a) RVIM method and (b) differential transform method.

It is to be noted that we reached the approximate solution
after three iterations by the method of RVIM, whereas it is
obtained after seventy iterations by the differential transform
method. In Figure 3, we draw the curves of approximate
solutions 𝑦

1
(𝑡), 𝑦
2
(𝑡), and 𝑦

3
(𝑡), which is obtained for the

value of 𝛼 = 0.7. The graphical results are in a very good
agreement with the results in [9].

Example 3. Lastly we consider the following system of two
nonlinear fractional differential equations:

𝐷
1.3

∗
𝑥 (𝑡) = 𝑥 (𝑡) + 𝑦

2

(𝑡) ,

𝐷
2.4

∗
𝑦 (𝑡) = 𝑥 (𝑡) + 5𝑦 (𝑡) ,

(29)
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Figure 4: Plots of system (29): (a) RVIM method and (b) differential transform method.

with the initial conditions
𝑥 (0) = 0, 𝑥

󸀠

(0) = 1,

𝑦 (0) = 0, 𝑦
󸀠

(0) = 1, 𝑦
󸀠󸀠

(0) = 1.

(30)

Applying the RVIM to (29), the result is as follows:

𝑙 {𝑥 (𝑡)} =
1

𝑠1.3
𝑙 {𝑥 (𝑡) + 𝑦

2

(𝑡)} ,

𝑙 {𝑦 (𝑡)} =
1

𝑠2.4
𝑙 {𝑥 (𝑡) + 5𝑦 (𝑡)} .

(31)

Benefiting from the inverse Laplace transform to both sides
of (31), one obtains

𝑥 (𝑡) =
1

Γ (1.3)
∫

𝑡

0

(𝑡 − 𝜏)
0.3

[𝑥 (𝜏) + 𝑦
2

(𝜏)] 𝑑𝜏,

𝑦 (𝑡) =
1

Γ (2.4)
∫

𝑡

0

(𝑡 − 𝜏)
1.4

[𝑥 (𝜏) + 5𝑦 (𝜏)] 𝑑𝜏 .

(32)

Therefore, approximate solution for (32) can be readily
obtained as:

𝑥
𝑛+1

(𝑡) = 𝑥
0
(𝑡) +

1

Γ (1.3)
∫

𝑡

0

(𝑡 − 𝜏)
0.3

[𝑥 (𝜏) + 𝑦
2

(𝜏)] 𝑑𝜏,

𝑦
𝑛+1

(𝑡) = 𝑦
0
(𝑡) +

1

Γ (2.4)
∫

𝑡

0

(𝑡 − 𝜏)
1.4

[𝑥 (𝜏) + 5𝑦 (𝜏)] 𝑑𝜏,

(33)

where the initial approximation must be satisfied by the
following equations:

𝑥
0
(𝑡) = 𝑡, 𝑦

0
(𝑡) = 𝑡 +

𝑡
2

2
. (34)

According to (33), after some simplification and substitution,
the following sets of equations are concluded:

𝑥
1
(𝑡) = 𝑡 +

𝑡
2.3

Γ (3.3)
+

2𝑡
3.3

Γ (4.3)
+

6𝑡
5.3

Γ (6.3)
+

6𝑡
4.3

Γ (5.3)
,

𝑦
1
(𝑡) = 𝑡 +

𝑡
2

2
+

6𝑡
3.4

Γ (4.4)
+

5𝑡
4.4

Γ (5.4)
.

(35)

Figure 4 shows the efficiency of this method to obtain
approximate solutions of system (29).

5. Conclusion

In this paper, Reconstruction of Variational IterationMethod
(RVIM) was successfully employed to solve systems of differ-
ential equations of fractional order.Thework emphasized our
belief that the method is a reliable technique to handle linear
and nonlinear systems of fractional differential equations.

The results of this method are in a good agreement
with those obtained by using the differential transform
method and theAdomian decompositionmethod. One of the
advantages of this method in comparison with the Adomian
decomposition method is that we do not need to do the
difficult computation for finding the Adomian polynomials.

Moreover, the method presented rapidly convergent suc-
cessive approximations without any restrictive assumptions
or transformation which may change the physical behavior
of the problem.

Evidently, the RVIM reduced the size of calculation and
also the iteration was direct and straight forward.

Generally, the proposed method is promising and appli-
cable to a board class of linear and nonlinear systems in the
theory of fractional calculus.
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