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A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable
coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way
by employing Laplace’s transform of fractional order.The fractional derivative is considered in Jumarie’s sense.The results are more
accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient
and simple.

1. Introduction

Fractional differential equations (FDEs) have been proved
to be a valuable tool in the modelling of many phenomena
in the fields of applied sciences. This is because of the fact
that fractional derivatives provide an excellent instrument to
describe the memory and hereditary properties of various
materials and processes. With the increasing applications
of FDEs, considerable attentions have been paid to pro-
vide efficient methods for finding the exact and numerical
solutions of FDEs. Recently, some approximate methods
such as Adomian’s decomposition method [1–5], homotopy
perturbation method [6–10], variational iteration method
[11–27], and homotopy analysis method [28, 29] are given to
find an analytical approximation to FDEs.

The variational iteration method (VIM) was first pro-
posed by He et al. [11–15] and has been shown to be efficient
for handling nonlinear problems.Thus, there has been a great
deal of interest in FDEs by using the VIM [17–27]. For VIM,
the key points are the construction of correct function and
the identification of the Lagrange multiplier. However, the
previous work either avoids the term of fractional derivative
and handles them as a restricted variation or identifies the
Lagrange multipliers by an approximate method, resulting in
a poor convergence and inaccuracy. So, it is urgent to find a
new method which can identify the Lagrange multiplier in a
more accurate way.

In this paper, we will use a correct function described
in [27] and give a new method to evaluate the Lagrange
multipliers by employing Laplace’s transform of fractional
order. Then, we develop a new framework of VIM for the
three-dimensional fractional heat- and wave-like equations
of the form [3]:

𝜕
𝛼

𝑇

𝜕𝑡𝛼
= 𝑓 (𝑥, 𝑦, 𝑧) 𝑇

𝑥𝑥
+ 𝑔 (𝑥, 𝑦, 𝑧) 𝑇

𝑦𝑦
+ ℎ (𝑥, 𝑦, 𝑧) 𝑇

𝑧𝑧

0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏, 0 < 𝑧 < 𝑐, 𝑛 < 𝛼 < 𝑛 + 1, 𝑡 > 0,

(1)

subject to the boundary conditions

𝑇 (0, 𝑦, 𝑧, 𝑡) = 𝑓
1
(𝑦, 𝑧, 𝑡) , 𝑇

𝑥
(𝑎, 𝑦, 𝑧, 𝑡) = 𝑓

2
(𝑦, 𝑧, 𝑡) ,

𝑇 (𝑥, 0, 𝑧, 𝑡) = 𝑔
1
(𝑥, 𝑧, 𝑡) , 𝑇

𝑦
(𝑥, 𝑏, 𝑧, 𝑡) = 𝑔

2
(𝑥, 𝑧, 𝑡) ,

𝑇 (𝑥, 𝑦, 0, 𝑡) = ℎ
1
(𝑥, 𝑦, 𝑡) , 𝑇

𝑧
(𝑥, 𝑦, 𝑐, 𝑡) = ℎ

2
(𝑥, 𝑦, 𝑡) ,

(2)

and the initial conditions

𝑇 (𝑥, 𝑦, 𝑧, 0) = 𝜓 (𝑥, 𝑦, 𝑧) , 𝑇
𝑡
(𝑥, 𝑦, 𝑧, 0) = 𝜂 (𝑥, 𝑦, 𝑧) ,

(3)

where 𝛼 is a parameter describing the fractional derivative. In
the case of 0 < 𝑎 ≤ 1, (1) reduces to the fractional heat-like
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equation with variable coefficients and to the fractional
wave-like equation that models anomalous diffusive and
subdiffusive systems in the case of 1 < 𝑎 ≤ 2. The approx-
imate solutions of (1) have been studied by using the ADM
[3], VIM [17], FVIM [23], and modified VIM [24].

The remainder of the paper is organized as follows.
In Section 2, we describe some necessary preliminaries
of the fractional calculus and the Laplace transform for
our subsequent development. Section 3 is devoted to the
derivation of general iteration formula for the fractional heat-
andwave-like equations. In Section 4, four examples are given
to demonstrate our conclusions. Finally, a brief summary is
presented.

2. Preliminaries

In this section, we cover some preliminaries. First, we list
some basic definitions about fractional calculus. Second, the
Laplace transforms of fractional integral and derivative are
described. For more details, see [30–39].

2.1. Fractional Calculus

Definition 1. A real function ℎ(𝑡), 𝑡 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ 𝑅, if there exist a real number 𝑝 > 𝜇, such that

ℎ(𝑡) = 𝑡
𝑝

ℎ
1
(𝑡), where ℎ

1
(𝑡) ∈ 𝐶(0,∞), and it is said to be in

the space 𝐶𝑛
𝜇
if and only if ℎ(𝑛) ∈ 𝐶

𝜇
, 𝑛 ∈ 𝑁.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator (𝐽𝛼) of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is

defined as

𝐽
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0,

𝐽
0

𝑓 (𝑡) = 𝑓 (𝑡) ,

(4)

when 0 < 𝛼 ≤ 1, 𝐽
𝛼

𝑓(𝑡) = (1/Γ(𝛼)) ∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓(𝜏)𝑑𝜏 =

(1/Γ(1 + 𝛼)) ∫
𝑡

0

𝑓(𝜏)(𝑑𝜏)
𝛼.

If we denote the Riemann-Liouville fractional derivative
by 𝐷𝛼, then the next equation define the Riemann-Liouville
fractional derivative of order𝑚

𝐷
𝛼

𝑓 (𝑥) =
𝑑
𝑚

𝑑𝑥𝑚
(𝐽
𝑚−𝛼

𝑓 (𝑥)) , (5)

where𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁.
Jumarie (see [31–37]) proposed a simple alternative def-

inition to the Riemann-Liouville derivative. Since his mod-
ified Riemann-Liouville derivative is defined for arbitrary
continuous (nondifferentiable) functions and the fractional
derivative of a constant is equal to zero, it has the advantages
of both the standard Riemann-Liouville and the Caputo
fractional derivatives. Now, we present some notations, def-
initions, and preliminary facts of the modified Riemann-
Liouville derivative which will be used later in this work.

Definition 3. Jumarie’s fractional derivative is a modified
Riemann-Liouville derivative defined by the expression [37,
38]

𝑓
(𝛼)

(𝑥) :=
1

Γ (−𝛼)
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼−1

𝑓 (𝜉) 𝑑𝜉, 𝛼 < 0. (6)

For positive 𝛼, one will set

𝑓
(𝛼)

(𝑥) := (𝑓
(𝛼−1)

(𝑥))


=
1

Γ (1 − 𝛼)

𝑑

𝑑𝑥

× ∫

𝑥

0

(𝑥 − 𝜉)
−𝛼

(𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉, 0 < 𝛼 < 0,

𝑓
(𝛼)

(𝑥) := (𝑓
(𝛼−𝑛)

(𝑥))
(𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1.

(7)

In addition, we want to give some properties of Jumarie’s
fractional derivative.

Theorem 4 (the fractional Leibniz product rule [36]). If 𝑓
and 𝑔 are two continuous functions on [0, 1], then

(𝑓 (𝑥) 𝑔 (𝑥))
𝛼

= (𝑓 (𝑥))
𝛼

𝑔 (𝑥) + 𝑓 (𝑥) (𝑔 (𝑥))
𝛼

. (8)

Theorem 5 (the fractional Barrow’s formula [37]). For a
continuous function 𝑓, one has

∫

𝑥

0

𝑓
(𝛼)

(𝑡) (𝑑𝑡)
(𝛼)

= 𝛼! (𝑓 (𝑥) − 𝑓 (0)) , (9)

where 𝛼! = Γ(1 + 𝛼).

From Theorems 4 and 5, the formula of integration by
parts is given as

∫

1

0

𝑢
(𝛼)

(𝑥) V (𝑥) (𝑑𝑥)
(𝛼)

= ∫

1

0

(𝑢 (𝑥) V (𝑥))
(𝛼)

(𝑑𝑥)
(𝛼)

− ∫

1

0

𝑢 (𝑥) V
(𝛼)

(𝑥) (𝑑𝑥)
(𝛼)

= 𝛼![𝑢 (𝑥) V (𝑥)]
1

0
− ∫

1

0

𝑢 (𝑥) V
(𝛼)

(𝑥) (𝑑𝑥)
(𝛼)

.

(10)

Definition 6. Fractional derivative of compounded functions
[37, 38] is defined as

𝑑
𝛼

𝑓 ≅ Γ (1 + 𝛼) 𝑑𝑓, 0 < 𝛼 < 1. (11)

Definition 7. The integral with respect to (𝑑𝑥)
𝛼 [37, 38] is

defined as the solution of the fractional differential equation

𝑑𝑦 ≅ 𝑓 (𝑥) (𝑑𝑥)
𝛼

, 𝑥 ≥ 0, 𝑦 (0) = 0, 0 < 𝛼 < 1. (12)

Lemma 8. Let 𝑓(𝑥) denote a continuous function [37, 38],
then the solution𝑦(𝑥),𝑦(0) = 0 of (8) is defined by the equality

𝑦 = ∫

𝑥

0

𝑓 (𝜉) (𝑑𝜉)
𝛼

= 𝛼∫

𝑥

0

(𝑥 − 𝜉)
𝛼

𝑓 (𝜉) 𝑑𝜉, 0 < 𝛼 < 1.

(13)
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Lemma 9. Let 𝑛−1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, ℎ ∈ 𝐶
𝑛

𝜇
, 𝜇 ≥ −1,

then

(𝐽
𝛼

𝐷
𝛼

) ℎ (𝑡) = ℎ (𝑡) −

𝑛−1

∑

𝑘=0

ℎ
(𝑘)

(0
+

)
𝑡
𝑘

𝑘!
. (14)

2.2. The Laplace Transform

Definition 10. The Laplace transform 𝐿{𝑓(𝑥)} := 𝐹(𝑠), 𝑠 ∈ 𝐶,
of a 𝑅 → 𝐶 function 𝑓(𝑥) is defined by the integral

𝐿 {𝑓 (𝑥)} :=: 𝐹 (𝑠) := ∫

∞

0

𝑒
𝑠𝑥

𝑓 (𝑥) 𝑑𝑥. (15)

Lemma 11. The Laplace transform of the fractional derivative
(the Riemann-Liouville derivative) is

𝐿 {𝐷
𝛼

𝑥
𝑓 (𝑥) ; 𝑠} = 𝑠

𝛼

𝐹 (𝑠) −

𝑛

∑

𝑘=1

𝑠
𝑘−1

𝐷
𝛼−𝑘

𝑓 (0+) . (16)

Definition 12. The inverse Laplace transform is defined by the
complex integral

𝑓 (𝑡) = 𝐿
−1

{𝐹 (𝑠)} =
1

2𝜋𝑖
lim
𝑇→∞

∫

𝜌+𝑖𝑇

𝜌−𝑖𝑇

𝑒
𝑠𝑡

𝐹 (𝑠) 𝑑𝑠, (17)

where the integration is done along the vertically Re(𝑠) = 𝜌

in the complex plane such that 𝜌 is greater than the real
part of all singularities of 𝐹(𝑠). This ensures that the contour
path is in the region of convergence. If all singularities are
in the left half-plane, or 𝐹(𝑠) is a smooth function on −∞ <

Re(𝑠) < ∞ (i.e., no singularities), then 𝜌 can be set to zero
and the above inverse integral formula becomes identical to
the inverse Fourier transform.

Now, we will introduce the definition of the fractional
Laplace transform derived by Jumarie [38] for the first time,
and some results of the fractional Laplace transform are also
presented.

Definition 13. Let 𝑓(𝑥) denote a function which vanishes for
negative values of 𝑥. Its Laplace’s transform 𝐿

𝛼
{𝑓(𝑥)} of order

𝛼 (or its 𝛼th fractional Laplace’s transform) is defined by the
following expression, when it is finite:

𝐿
𝛼
{𝑓 (𝑥)} :=: 𝐹

𝛼
(𝑠) = ∫

∞

0

𝐸
𝛼
(−𝑠
𝛼

𝑥
𝛼

) 𝑓 (𝑥) (𝑑𝑥)
𝛼

,

0 < 𝛼 ≤ 1,

(18)

where 𝑠 ∈ 𝐶 and 𝐸
𝛼
(𝑢) is the Mittag-Leffler function

∑
∞

𝑘=0
(𝑢
𝑘

/Γ(1 + 𝑘𝛼)).

Lemma 14. If one defines the convolution of order 𝛼 of the two
functions 𝑓(𝑥) by the expression

(𝑓 (𝑥) ∗ 𝑔 (𝑥))
𝛼
:= ∫

𝑥

0

𝑓 (𝑥 − 𝑢) 𝑔 (𝑢) (𝑑𝑢)
𝛼

, 0 < 𝛼 ≤ 1.

(19)

Then, one has the equality

𝐿
𝛼
{(𝑓 (𝑥) ∗ 𝑔 (𝑥))

𝛼
} = 𝐿
𝛼
{𝑓 (𝑥)} 𝐿

𝛼
{𝑔 (𝑥)} . (20)

Corollary 15. Given the Laplace transform that one has the
inversion formula

𝑓 (𝑥) =
1

(𝑀
𝛼
)
∫

+𝑖∞

−𝑖∞

𝐸
𝛼
(𝑠
𝛼

𝑥
𝛼

) 𝐹
𝛼
(𝑠) (𝑑𝑠)

𝛼

, 0 < 𝛼 ≤ 1,

(21)

where 𝑀
𝛼
is the period of the complex-valued Mittag-Leffler

function defined by the equality 𝐸
𝛼
(𝑖(𝑀
𝛼
)
𝛼

) = 1.

Lemma 16. The fractional Laplace transform of the fractional
derivative (the modified Riemann-Liouville derivative) is

𝐿
𝛼
{𝑓
(𝛼)

(𝑥)} = 𝑠
𝛼

𝐿
𝛼
{𝑓 (𝑥)} − Γ (1 + 𝛼) 𝑓 (0) , 0 < 𝛼 ≤ 1.

(22)

Some properties of the fractional Laplace transform are
given as follows [38]:

𝐿
𝛼
{𝑥
𝛼

𝑓 (𝑥)} = −𝐷
𝛼

𝑠
𝐿 {𝑓 (𝑥)} ,

𝐿
𝛼
{𝑓 (𝑎𝑥)}

𝑠
= (

1

𝑎
)

𝛼

𝐿
𝛼
{𝑓 (𝑥)}

𝑠/𝛼
,

𝐿
𝛼
{𝑓 (𝑥 − 𝑏)} = 𝐸

𝛼
(−𝑠
𝛼

𝑏
𝛼

) 𝐿
𝛼
{𝑓 (𝑥)} ,

𝐿
𝛼
{𝐸
𝛼
(−𝑐
𝛼

𝑥
𝛼

) 𝑓 (𝑥)}
𝑠
= 𝐿
𝛼
{𝑓 (𝑥)}

𝑠+𝑐
,

𝐿
𝛼
{−𝑥
𝛼

𝑓 (𝑥)} = 𝐷
𝛼

𝑠
𝐿
𝛼
{𝑓 (𝑥)} ,

𝐿
𝛼
{∫

𝑥

0

𝑓 (𝑢) (𝑑𝑢)
𝛼

} = Γ
−1

(1 + 𝛼) 𝑠
−𝛼

𝐿
𝛼
{𝑓 (𝑥)} .

(23)

3. Fractional Variational Iteration Method

In order to illustrate the solution procedure of the variational
iteration method, we consider the following fractional differ-
ential equation:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑡) + 𝑁𝑢 (𝑥, 𝑦, 𝑡) + 𝑅𝑢 (𝑥, 𝑦, 𝑡) = 𝑔 (𝑥, 𝑦, 𝑡) ,

𝑡 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(24)

where 𝑅 is the linear operator, 𝑁 is the nonlinear operator,
and 𝐷

𝛼

𝑡
is the modified Rieman-Liouville derivative of order

𝛼.
Subject to the initial condition,

𝑢
(𝑘)

(𝑥, 𝑦, 0) = 𝑐
𝑘
(𝑥, 𝑦) , 𝑘 = 0, 1, . . . , 𝑚 (25)

Let 𝑢
𝑘
(𝑡) = 𝑢

𝑘
(𝑥, 𝑦, 𝑡), 𝑔

𝑘
(𝑡) = 𝑔

𝑘
(𝑥, 𝑦, 𝑡).
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Before our solution, we will describe the fractional
variational iteration method described in [23, 25, 26], which
construct a correct function for (24) as

𝑢
𝑘+1

(𝑡) = 𝑢
𝑘
(𝑡)

+ 𝐽
𝛼

𝜏
[𝜆 (𝑡, 𝜏) (𝐷

𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏))]

= 𝑢
𝑘
(𝑡) +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜆 (𝑡, 𝜏)

× (𝐷
𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏)) 𝑑𝜏.

(26)

Then, by using Lemma 8 proposed by Jumarie [37, 38] for
the first time, one gets a correction function

𝑢
𝑘+1

(𝑡) = 𝑢
𝑘
(𝑡) +

1

Γ (1 + 𝛼)

× ∫

𝑡

0

𝜆 (𝑡, 𝜏) (𝐷
𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+ 𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏)) (𝑑𝜏)

𝛼

.

(27)

But, unfortunately, (27) holds true only when 0 < 𝛼 ≤ 1. In
the case of𝑚−1 < 𝛼 ≤ 𝑚,𝑚 = 2, 3, 4, . . ., somemodifications
must be made. For example, replacing the fractional order 𝛼
(𝑚 − 1 < 𝛼 ≤ 𝑚) by the order 𝑚𝛼 (0 < 𝛼 ≤ 1), whether
there is a general iteration formula for (24). Certainly, there
is. In the remainder section, we will use two methods to
derive a general iteration formula of VIM for (24). Unlike the
previous work, which calculates the Lagrange multiplier by
some approximate methods, we will use a more accurate way
by employing the properties of Laplace’s transform.

3.1. The Laplace Transform Method. According to VIM [27],
we can construct a correction functional as follows:

𝑢
𝑘+1

(𝑡) = 𝑢
𝑘
(𝑡) + 𝐽

𝛽

𝜏
[𝜆 (𝑡, 𝜏) (𝐷

𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏))]

= 𝑢
𝑘
(𝑡) +

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

𝜆 (𝑡, 𝜏)

× (𝐷
𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏)) 𝑑𝜏,

(28)

where 𝐽𝛽
𝜏
is the Riemann-Liouville fractional integral opera-

tor of order𝛽 = 𝛼−floor(𝛼), that is,𝛽 = 𝛼+1−𝑚, with respect
to the variable 𝑡, and 𝜆 is a general Lagrange multiplier, and
�̃�
𝑘
(𝜏) is a restricted variation, that is, 𝛿�̃�(𝜏) = 0.

By taking the Laplace transform on the both sides of (28),
we have

𝐿 {𝑢
𝑘+1

(𝑡)}

= 𝐿 {𝑢
𝑘
(𝑡)}

+ 𝐿{
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

𝜆 (𝑡, 𝜏)

× (𝐷
𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏)) 𝑑𝜏} ,

(29)

where 𝐿 is the operator of the Laplace transform.

𝐿 {𝑢
𝑘+1

(𝑡)} = 𝐿 {𝑢
𝑘
(𝑡)} +

1

Γ (𝛽)
𝐿 {(𝑡 − 𝜏)

𝛽−1

𝜆 (𝑡, 𝜏)}

× 𝐿 {𝐷
𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏)} .

(30)

From the Lemma 11, we get

𝐿 {𝑢
𝑘+1

(𝑡)} = 𝐿 {𝑢
𝑘
(𝑡)} +

1

Γ (𝛽)
𝐿 {(𝑡 − 𝜏)

𝛽−1

𝜆 (𝑡, 𝜏)}

× 𝐿{𝑠
𝛼

𝐿 {𝑢
𝑘
(𝜏)} −

𝑛

∑

𝑘=1

𝑠
𝑘−1

𝐷
𝛼−𝑘

𝑢
𝑘
(0)

+𝑁 [�̃�
𝑘
(𝜏)] + 𝑅 [𝑢

𝑘
(𝜏)] − 𝑔 (𝜏)} .

(31)

Taking the variation derivative 𝛿 on the both sides of (31),
we can derive

𝐿 {𝑢
𝑘+1

(𝑡)} = 𝐿 {𝑢
𝑘
(𝑡)}

+
1

Γ (𝛽)
𝐿 {(𝑡 − 𝜏)

𝛽−1

𝜆 (𝑡, 𝜏)}

× 𝛿 [𝑠
𝛼

𝐿 {𝑢
𝑘
(𝜏)} + 𝐿 {𝑅 [𝑢

𝑘
(𝜏)]}] .

(32)

Without loss of generality, assuming that 𝛿𝑅[𝑢
𝑘
(𝜏)] = 0,

then we have

𝛿𝐿 {𝑢
𝑘
(𝑡)} : 1 +

1

Γ (𝛽)
𝑠
𝛼

𝐿 {(𝑡 − 𝜏)
𝛽−1

𝜆 (𝑡, 𝜏)} = 0. (33)

Set the coefficient of 𝛿𝐿{𝑢
𝑘
(𝑡)} to zeros, we obtain

𝐿 {(𝑡 − 𝜏)
𝛽−1

𝜆 (𝑡, 𝜏)} = −Γ (𝛽) 𝑠
−𝛼

. (34)

By employing the inverse Laplace transform, we have

(𝑡 − 𝜏)
𝛽−1

𝜆 (𝑡, 𝜏) = −
(𝑡 − 𝜏)

𝛼−1

Γ (𝛽)

Γ (𝛼)
. (35)

Substituting (35) into (28), we get the iteration formula as
follows:
𝑢
𝑘+1

(𝑡) = 𝑢
𝑘
(𝑡)

− 𝐽
𝛼

𝜏
{(𝐷
𝛼

𝑡
𝑢
𝑘
(𝜏) + 𝑁𝑢

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏))} .

(36)
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3.2. The Fractional Laplace Transform Method. In order to
illustrate our method, we replace the fractional order 𝛼 (𝑚 −

1 < 𝛼 ≤ 𝑚) by the order 𝑚𝛼 (0 < 𝛼 ≤ 1). According to VIM
[27], we can construct a correction function as follows:

𝑢
𝑘+1

(𝑡) = 𝑢
𝑘
(𝑡)

+ 𝐽
𝛼

𝜏
[𝜆 (𝑡, 𝜏) (𝐷

𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏))] .

(37)

Taking the fractional Laplace transform on the both sides
of (37), we have

𝐿
𝛼
{𝑢
𝑘+1

(𝑡)} = 𝐿
𝛼
{𝑢
𝑘
(𝑡)}

+ 𝐿
𝛼
{𝐽
𝛼

𝜏
[𝜆 (𝑡, 𝜏) (𝐷

𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏)

+𝑅𝑢
𝑘
(𝜏) − 𝑔 (𝜏))]} ,

(38)

where 𝐿
𝛼
is the fractional Laplace transform of order 𝛼.

By assuming that 𝜆(𝑡, 𝜏) has the form as 𝜆(𝑡, 𝜏) = 𝜆(𝑡 − 𝜏)

and using (10), then we get

𝐽
𝛼

𝜏
𝜆 (𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏))

=
1

Γ (1 + 𝛼)

× (𝜆 (𝑡, 𝜏) ∗ (𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏)))

𝛼
.

(39)

From (20), we have

𝐿
𝛼
{𝐽
𝛼

𝜏
𝜆 (𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏))}

=
1

Γ (1 + 𝛼)
𝐿
𝛼
{𝜆 (𝑡, 𝜏)}

× 𝐿
𝛼
{𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁�̃�

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏)} .

(40)

Substituting (40) into (38) and then taking the variation
derivative 𝛿 on the both sides of (35), we can derive

𝐿
𝛼
{𝑢
𝑘+1

(𝑡)} = 𝐿
𝛼
{𝑢
𝑘
(𝑡)}

+
1

Γ (1 + 𝛼)
𝐿
𝛼
{𝜆 (𝑡 − 𝜏)}

× 𝛿 [𝐿 {𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏)}] .

(41)

Without loss of generality, assuming that 𝛿[𝑅𝑢
𝑘
(𝜏)] = 0,

then we have

𝛿𝐿
𝛼
{𝑢
𝑘
(𝑡)} : 1 +

1

Γ (1 + 𝛼)
𝐿
𝛼
{𝜆 (𝑡 − 𝜏)} 𝑠

𝑚𝛼

= 0. (42)

Set the coefficient of 𝛿𝐿
𝛼
{𝑢
𝑘
(𝑡)} to zeros, we have

𝐿
𝛼
{𝜆 (𝑡 − 𝜏)} = −

Γ (1 + 𝛼)

𝑠𝑚𝛼
. (43)

By employing the inverse fractional Laplace transform,
we have

𝜆 (𝑡, 𝜏) = −
Γ (1 + 𝛼)

Γ (1 + (𝑚 − 1) 𝛼)
(𝑡 − 𝜏)

(𝑚−1)𝛼

. (44)

Substituting (40) into (26), we get the iteration formula as
follows:

𝑢
𝑘+1

(𝑡) = 𝑢
𝑘
(𝑡)

+ 𝐽
𝛼

𝜏
{−

Γ (1 + 𝛼)

Γ (1 + (𝑚 − 1) 𝛼)
(𝑡 − 𝜏)

(𝑚−1)𝛼

× (𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁𝑢

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏)) }

= 𝑢
𝑘
(𝑡)

− 𝐽
𝑚𝛼

𝜏
{𝐷
𝑚𝛼

𝜏
𝑢
𝑘
(𝜏) + 𝑁𝑢

𝑘
(𝜏) + 𝑅𝑢

𝑘
(𝜏) − 𝑔 (𝜏)} .

(45)

After replacing the fractional order𝑚𝛼 (0 < 𝛼 ≤ 1) by the
order 𝛼 (𝑚− 1 < 𝛼 ≤ 𝑚), we could find that (36) and (45) are
the same. So, we could get a general iteration formula for (1)
as follows:

𝑇
𝑘+1

(𝑡)

= 𝑇
𝑘
(𝑡)

− 𝐽
𝛼

𝜏
{𝐷
𝛼

𝜏
𝑇
𝑘
(𝜏) − [𝑓 (𝑥, 𝑦, 𝑧)

𝜕
2

𝑇
𝑘

𝜕𝑥2
+ 𝑔 (𝑥, 𝑦, 𝑧)

𝜕
2

𝑇
𝑘

𝜕𝑦2

+ℎ (𝑥, 𝑦, 𝑧)
𝜕
2

𝑇
𝑘

𝜕𝑧2
]} .

(46)

By using the Lemma 11, we finally have

𝑇
𝑘+1

(𝑡) =

𝑚−1

∑

𝑖=0

𝑇
(𝑖)

𝑘
(0
+

)
𝑡
𝑖

𝑖!

+ 𝐽
𝛼

𝜏
[𝑓 (𝑥, 𝑦, 𝑧)

𝜕
2

𝑇
𝑘

𝜕𝑥2
+ 𝑔 (𝑥, 𝑦, 𝑧)

𝜕
2

𝑇
𝑘

𝜕𝑦2

+ℎ (𝑥, 𝑦, 𝑧)
𝜕
2

𝑇
𝑘

𝜕𝑧2
] .

(47)

4. Applications and Results

Example 17. Consider the following fractional model for heat
conduction in polar bear hairs proposed by Qing-Li et al.
[40]:

𝐷
𝛼

𝑡
𝑇 + 𝐷

𝜕
2

𝑇

𝜕𝑥2
= 0, 𝑥 ∈ (0, 1) , 𝑡 > 0, 0 < 𝛼 ≤ 1, (48)
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where 𝐷𝛼
𝑡
𝑇 is the modified Rieman-Liouville derivative and

𝐷 is a constant, with the initial condition

𝑇 (𝑥, 0) = 𝑎 −
𝑎 − 𝑏

1 − exp (−1/𝑘𝐷)

+
𝑎 − 𝑏

1 − exp (−1/𝑘𝐷)
exp(− 𝑥

𝑘𝐷
) ,

(49)

where a is the body temperature, b is the environment
temperature, and k is a constant. When 𝛼 = 1, the exact
solution of (46) is

𝑇 (𝑥, 𝑡) = 𝑎 −
𝑎 − 𝑏

1 − exp (−1/𝑘𝐷)

+
𝑎 − 𝑏

1 − exp (−1/𝑘𝐷)
exp(− 𝑥

𝑘𝐷
−

𝑡

𝐷𝑘2
) .

(50)

According to the general iteration formula of VIM, one
can get the iteration formulation as follows:

𝑇
𝑛+1

(𝑥, 𝑡) = 𝑇 (𝑥, 0) − 𝐽
𝛼

(𝐷
𝜕
2

𝑇
𝑛

𝜕𝑥2
) . (51)

For the convenience, let 𝑐 = (𝑎−𝑏)/(1−exp(−1/𝑘𝐷)) and
𝑑 = 𝑎 − 𝑐, then

𝑇
0
= 𝑑 + 𝑐 exp(− 𝑥

𝑘𝐷
) . (52)

Starting with the initial value as shown in (52), we can
derive

𝑇
1
(𝑥, 𝑡) = 𝑑 + 𝑐 exp(− 𝑥

𝑘𝐷
)[1 −

1

𝐷𝑘2

Γ (1)

Γ (1 + 𝛼)
𝑡
𝛼

] ,

𝑇
2
(𝑥, 𝑡) = 𝑑 + 𝑐 exp (− 𝑥

𝑘𝐷
)

×[1−
1

𝐷𝑘2

Γ (1)

Γ (1 + 𝛼)
𝑡
𝛼

+
1

(𝐷𝑘2)
2

Γ (1)

Γ (1 + 2𝛼)
𝑡
2𝛼

] ,

(53)

and then

𝑇
𝑛
(𝑥, 𝑡) = 𝑑 + 𝑐 exp(− 𝑥

𝑘𝐷
)

𝑛

∑

𝑚=0

1

Γ (1 + 𝑚𝛼)
(
(−𝑡)
𝛼

𝐷𝑘2
)

𝑚

.

(54)

So, the solution is

𝑇 (𝑥, 𝑡) = lim
𝑛→∞

𝑇
𝑛
(𝑥, 𝑡) = 𝑑 + 𝑐 exp(− 1

𝑘𝐷
𝑥)𝐸
𝛼
(−

𝑡
𝛼

𝐷𝑘2
) ,

(55)

which is the exact solution.

Example 18. Consider the one-dimensional fractional heat-
like equation:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
=

1

2
𝑥
2
𝜕
2

𝑢

𝜕𝑥2
, 𝑡 > 0, 0 < 𝑥 < 1, 1 < 𝛼 ≤ 2 (56)

subject to the initial condition

𝑢 (𝑥, 0) = 𝑥,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑥
2

, (57)

when 𝛼 = 2 and the exact solution is 𝑢(𝑥, 𝑡) = 𝑥 + 𝑥
2 sinh(𝑡).

According to the general iteration formula of VIM, one
can get the following formula of iteration:

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 0) +

𝜕𝑢
𝑘
(𝑥, 0)

𝜕𝑡
𝑡 + 𝐽
𝛼

(
1

2
𝑥
2
𝜕
2

𝑢
𝑘

𝜕𝑥2
) .

(58)

Starting with an initial approximation 𝑢
0
= 𝑥 + 𝑥

2

𝑡, one
can obtain

𝑢
1
= 𝑥 + 𝑥

2

𝑡 +
1

Γ (2 + 𝛼)
𝑥
2

𝑡
1+𝛼

,

𝑢
2
= 𝑥 + 𝑥

2

[𝑡 +
𝑡
1+𝛼

Γ (2 + 𝛼)
+

𝑡
1+2𝛼

Γ (2 + 2𝛼)
] ,

𝑢
3
= 𝑥 + 𝑥

2

[𝑡 +
𝑡
1+𝛼

Γ (2 + 𝛼)
+

𝑡
1+2𝛼

Γ (2 + 2𝛼)
+

𝑡
1+3𝛼

Γ (2 + 3𝛼)
] .

(59)

The solution in a series form is given by

𝑢 (𝑥, 𝑡) = lim
𝑘→∞

𝑢
𝑘
(𝑥, 𝑡)

= 𝑥 + 𝑥
2

𝑡

∞

∑

𝑘=0

𝑡
𝑘𝛼

Γ (𝑘𝛼 + 2)
= 𝑥 + 𝑥

2

𝑡𝐸
𝛼,2

(𝑡
𝛼

) ,

(60)

where 𝐸
𝛼,2
(𝑡
𝛼

) denotes the two-parameter Mittag-Leffler
function.The result obtained in (56) is exactly the same result,
obtained by Momani [3] and Faraz et al. [23].

Example 19. Consider the one-dimensional fractional heat-
like equation:

𝜕
2𝛼

𝑢

𝜕𝑡2𝛼
=

1

12
(𝑥
2

𝑢
𝑥𝑥

+ 𝑦
2

𝑢
𝑦𝑦
) ,

0 < 𝑥, 𝑦 < 1, 0.5 < 𝛼 ≤ 1, 𝑡 > 0,

(61)

subject to the boundary conditions

𝑢 (0, 𝑦, 𝑡) = 0, 𝑢 (1, 𝑦, 𝑡) = 4 cosh 𝑡,

𝑢 (𝑥, 0, 𝑡) = 0, 𝑢 (𝑥, 1, 𝑡) = 4 sinh 𝑡,
(62)

and the initial condition

𝑢 (𝑥, 𝑦, 0) = 𝑥
4

, 𝑢
𝑡
(𝑥, 𝑦, 0) = 𝑦

4

. (63)

The exact solution 𝛼 = 1 was found to be [41]

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥
4 cosh 𝑡 + 𝑦

4 sinh 𝑡. (64)
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According to the general iteration formula of VIM, one
can get the following formula of iteration:

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 𝑡) − 𝐽

2𝛼

(
𝜕
2𝛼

𝑢

𝜕𝑡2𝛼
−

1

12
(𝑥
2

𝑢
𝑥𝑥

+ 𝑦
2

𝑢
𝑦𝑦
)) .

(65)

Starting with an initial approximation 𝑢
0
(𝑥, 𝑦, 𝑡) =

𝑢(𝑥, 𝑦, 0) = 𝑥
4

+ 𝑦
4

𝑡, one can obtain the following successive
approximate:

𝑢
1
= 𝑥
4

[1 +
1

Γ (1 + 2𝛼)
𝑡
2𝛼

] + 𝑦
4

𝑡 [1 +
1

Γ (2 + 2𝛼)
𝑡
2𝛼

] ,

𝑢
2
= 𝑥
4

[1 +
1

Γ (1 + 2𝛼)
𝑡
2𝛼

+
1

Γ (1 + 4𝛼)
𝑡
4𝛼

]

+ 𝑦
4

𝑡 [1 +
1

Γ (2 + 2𝛼)
𝑡
2𝛼

+
1

Γ (2 + 4𝛼)
𝑡
4𝛼

] ,

𝑢
3
= 𝑥
4

[1+
1

Γ (1 + 2𝛼)
𝑡
2𝛼

+
1

Γ (1 + 4𝛼)
𝑡
4𝛼

+
1

Γ (1 + 6𝛼)
𝑡
6𝛼

]

+ 𝑦
4

𝑡 [1 +
1

Γ (2 + 2𝛼)
𝑡
2𝛼

+
1

Γ (2 + 4𝛼)
𝑡
4𝛼

+
1

Γ (1 + 6𝛼)
𝑡
6𝛼

] .

(66)

The solution in a series form is given by

𝑢 (𝑥, 𝑡) = lim
𝑘→∞

𝑢
𝑘
(𝑥, 𝑡)

= 𝑥
4

∞

∑

𝑘=0

𝑡
2𝑘𝛼

Γ (2𝑘𝛼 + 1)
+ 𝑦
4

𝑡

∞

∑

𝑘=0

𝑡
2𝑘𝛼

Γ (2𝑘𝛼 + 2)

= 𝑥
4

𝑡𝐸
2𝛼,1

(𝑡
2𝛼

) + 𝑦
4

𝑡𝐸
2𝛼,2

(𝑡
2𝛼

) ,

(67)

where 𝐸
2𝛼,2

(𝑡
𝛼

) denotes the two-parameter Mittag-Leffler
function.

Example 20. Consider the one-dimensional fractional heat-
like equation:

𝜕
2𝛼

𝑢

𝜕𝑡2𝛼
= 𝑥
2

𝑦
2

𝑧
2

+
1

2
(𝑥
2

𝑢
𝑥𝑥

+ 𝑦
2

𝑢
𝑦𝑦

+ 𝑧
2

𝑢
𝑧𝑧
) ,

0 < 𝑥, 𝑦, 𝑧 < 1, 0.5 < 𝛼 ≤ 1, 𝑡 > 0,

(68)

subject to the boundary conditions

𝑢 (0, 𝑦, 𝑧, 𝑡) = 𝑦
2

(𝑒
𝑡

− 1) + 𝑧
2

(𝑒
−𝑡

− 1) ,

𝑢 (1, 𝑦, 𝑧, 𝑡) = (1 + 𝑦
2

) (𝑒
𝑡

− 1) + 𝑧
2

(𝑒
−𝑡

− 1) ,

𝑢 (𝑥, 0, 𝑧, 𝑡) = 𝑥
2

(𝑒
𝑡

− 1) + 𝑧
2

(𝑒
−𝑡

− 1) ,

𝑢 (𝑥, 1, 𝑧, 𝑡) = (1 + 𝑥
2

) (𝑒
𝑡

− 1) + 𝑧
2

(𝑒
−𝑡

− 1) ,

𝑢 (𝑥, 𝑦, 0, 𝑡) = (𝑥
2

+ 𝑦
2

) (𝑒
𝑡

− 1) ,

𝑢 (𝑥, 𝑦, 1, 𝑡) = (𝑥
2

+ 𝑦
2

) (𝑒
𝑡

− 1) + (𝑒
−𝑡

− 1) ,

(69)

and the initial condition

𝑢 (𝑥, 𝑦, 𝑧, 0) = 0, 𝑢
𝑡
(𝑥, 𝑦, 𝑧, 0) = 𝑥

2

+ 𝑦
2

− 𝑧
2

. (70)

The exact solution 𝛼 = 1 was found to be [41]

𝑢 (𝑥, 𝑦, 𝑡) = (𝑥
2

+ 𝑦
2

) 𝑒
𝑡

+ 𝑧
2

𝑒
−𝑡

− (𝑥
2

+ 𝑦
2

+ 𝑧
2

) . (71)

According to the general iteration formula of VIM, one
can get the following formula of iteration:

𝑢
𝑘+1

(𝑥, 𝑡)

= 𝑢
𝑘
(𝑥, 𝑡)

− 𝐽
2𝛼

(
𝜕
2𝛼

𝑢

𝜕𝑡2𝛼
− 𝑥
2

𝑦
2

𝑧
2

−
1

2
(𝑥
2

𝑢
𝑥𝑥

+ 𝑦
2

𝑢
𝑦𝑦

+ 𝑧
2

𝑢
𝑧𝑧
)) .

(72)

Starting with an initial approximation,

𝑢
0
(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥

2

+ 𝑦
2

)(𝑡 +
𝑡
2𝛼

Γ (2𝛼 + 1)
)

+ 𝑧
2

(−𝑡 +
𝑡
2𝛼

Γ (2𝛼 + 1)
) ,

(73)

which was given by [41]. One can obtain the following
successive approximate:

𝑢
1
= (𝑥
2

+ 𝑦
2

)

× [1 + 𝑡 +
𝑡
2𝛼

Γ (1 + 2𝛼)
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𝑡
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+

𝑡
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Γ (1 + 4𝛼)
]

+ 𝑧
2
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𝑡
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𝑡
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+

𝑡
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]
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2

𝑦
2

𝑧
2

,
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2
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2
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2

) [1 + 𝑡 +
𝑡
2𝛼

Γ (1 + 2𝛼)
+

𝑡
1+2𝛼

Γ (2 + 2𝛼)

+
𝑡
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Γ (1 + 4𝛼)
+

𝑡
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Γ (2 + 4𝛼)
+

𝑡
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Γ (1 + 6𝛼)
]

+ 𝑧
2

[1 − 𝑡 +
𝑡
2𝛼

Γ (1 + 2𝛼)
−

𝑡
1+2𝛼

Γ (2 + 2𝛼)
+

𝑡
4𝛼

Γ (1 + 4𝛼)

−
𝑡
1+4𝛼

Γ (2 + 4𝛼)
+

𝑡
6𝛼

Γ (1 + 6𝛼)
] − 𝑥
2

𝑦
2

𝑧
2

,

(74)

when 𝛼 = 1 and the exact solution for (68) is

𝑢 (𝑥, 𝑦, 𝑡) = (𝑥
2

+ 𝑦
2

) 𝑒
𝑡

+ 𝑧
2

𝑒
−𝑡

− (𝑥
2

+ 𝑦
2

+ 𝑧
2

) . (75)

From above procedure of solution, one can conclude that the
result obtained by the fractional variational iteration method
(FVIM) is the same as the decomposition method [3].
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5. Conclusion

VIM has been known as a powerful tool for solving many
fractional differential equations. In this paper, we derive a
general iteration formula of VIM for fractional heat- and
wave-like equations with variable coefficients. There are two
points to make here. First, the Lagrange multiplier of the
method is identified in amore accurate way by employing the
Laplace transform. Second, our iteration formula still holds
true in the case of 𝛼 > 1. All the examples show that the
results of the proposed method are more accurate than those
obtained by the classical VIM and the same as the ADM but
not require the calculation of Adomian’s polynomials.
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