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We have considered an epidemic model of a tick-borne infection which has nonviraemic transmission in addition to the viremic
transmission. The basic reproduction numberR

0
, which is a threshold quantity for stability of equilibria, is calculated. IfR

0
≤ 1,

then the infection-free equilibrium is globally asymptotically stable, and this is the only equilibrium.On the contrary, ifR
0
> 1, then

an infection equilibrium appears which is globally asymptotically stable, when one time delay is absent. By applying a permanence
theorem for infinite dimensional systems, we obtain that the disease is always present whenR

0
> 1.

1. Introduction

Vector-borne diseases are infectious diseases caused by
viruses, bacteria, protozoa, or rickettsia which are primarily
transmitted by disease-transmitting biological agents, called
vectors, who carry the disease without getting it themselves.
Vector-borne disease, in particular, tick-borne disease, such
as Lyme disease, transmitted between humans by blood-
feeding ticks, have been big concerns for the public health in
the world.

The dynamics of the tick vector are based on the biology
of the tick Ixodes ricinus that transmits the virus that causes
Louping ill. Louping ill is a tick-borne, zoonotic, viral disease
that is most important in sheep and red grouse. This tick has
a life cycle that develops from the egg through two immature
stages (larva and nymph) to the adult stage. Each immature
stage requires a blood meal from a suitable vertebrate host.
The adult female requires a meal before producing eggs once
and then dying. Adult females can only obtain a feed from
large mammals, that is, hares and not grouse, whilst the
immature stages will also feed on smaller warm-blooded
vertebrates such as grouse chicks. Once a questing tick locates
a host it generally feeds for several days. The tick life cycle
usually takes 3 to 4 years but can be longer depending on host
availability and climatic conditions; ticks need high relative
humidity to survive [1].

Mathematical models have made considerable contribu-
tions to our understanding of tick-borne infections [1–8] or

tick population dynamics [9–11]. Transmission from host to
tick is generally believed to occur when ticks bite and feed
on the blood of a viraemic host. However, in recent years
it has become clear that pathogen transmission can occur
through a number of other routes. For example, transmission
between infected and uninfected ticks that cofeed on a host
can occur in the absence of systemic infection [1]. Another
route of infection for some tick-borne pathogens is through
nonviraemic transmission. This occurs via the skin aided by
tick saliva when a susceptible tick feeds close to an infected
tick on a host that is not displaying high levels of viraemia in
the blood [12]. Grouse chicks are known to eat ticks as part
of their diet of invertebrates during the first three weeks of
life. Gilbert et al. [13] suggest that the ingestion of infected
ticksmay be themain route of infection inwild grouse chicks;
the authors consider the ingestion model; in this case, the
virus persists over a greater range of grouse densities when
ingestion is included. This is because it is now easier for the
grouse to become infectedwith the inclusion of an extra route
of infection via the oral route. In this paper, we consider
the nonseasonal model; that is, the behavior of grouse and
ticks was assumed constant over the course of a year. The
non seasonal model can be analyzed analytically unlike the
seasonal models. To investigate whether the incorporation of
the seasonal biology of grouse alters the model predictions
dramatically from the non seasonal model. In [13], they
present a more realistic model which describes the chicks
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and adult grouse separately with chicks hatching only at a
given time of the year. In this paper we build on the model
by Norman et al. [1], which have proposed an epidemic
dynamics of Louping ill virus in red grouse (the viremic host)
and hares (the nonviremic host) in the following form:

𝐺̇
𝑠 (𝑡) = (𝑎

𝑔
− 𝑠
𝑔
𝐺
𝑠 (𝑡)) 𝐺𝑠 (𝑡)

− 𝛽
1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡) − 𝑏

𝑔
𝐺
𝑠
(𝑡) ,

𝐺̇
𝑖 (𝑡) = 𝛽

1
𝑇
𝑖 (𝑡) 𝐺𝑠 (𝑡) − Γ𝐺

𝑖 (𝑡) ,

𝐺̇
𝑧
(𝑡) = 𝛾𝐺

𝑖
(𝑡) − 𝑏

𝑔
𝐺
𝑧
(𝑡) ,

𝑇̇
𝑠
(𝑡) = (𝑎

𝑇
− 𝑠
𝑇
𝑇
𝑠
(𝑡)) 𝑇
𝑠
(𝑡) − 𝛽

2
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡)

− 𝜃𝐻𝑇
𝑠 (𝑡) 𝑇𝑖 (𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑠 (𝑡) ,

𝑇̇
𝑖
(𝑡) = 𝛽

2
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡) + 𝜃𝐻𝑇

𝑠
(𝑡) 𝑇
𝑖
(𝑡)

− (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖
(𝑡) .

(1)

The model considers two hosts, a viremic host that does not
support adult ticks and a non-viremic host that supports all
stages. The total viremic host population size at time 𝑡, given
by 𝐺(𝑡), is partitioned into subclasses of individuals who are
susceptible, infectious, and recovered, with sizes denoted by
𝐺
𝑠
(𝑡), 𝐺
𝑖
(𝑡), and 𝐺

𝑧
(𝑡), respectively. Hares are assumed to be

at a constant density 𝐻. 𝑇
𝑠
(𝑡) and 𝑇

𝑖
(𝑡) represent population

density of susceptible ticks and infected ticks at any time 𝑡,
with the total tick population, 𝑇(𝑡) = 𝑇

𝑠
(𝑡) + 𝑇

𝑖
(𝑡).

The rate of non-viremic transmission is assumed to be
proportional to the number of hares present, the number of
infected ticks present and the number of susceptible ticks
present, and therefore takes the form 𝜃𝐻𝑇

𝑖
𝑇
𝑠
, where 𝜃 is

a measure of the probability of non-viremic transmission
occurring. Furthermore, the viremic host population dies at a
natural death rate 𝑏

𝑔
.The vertical transmission in the viremic

host does not occur so that all newly recruited individuals are
susceptible. The rate at which a grouse is bitten and infected
by a tick 𝛽

1
can only involve the nymphal stage as adults do

not generally bite grouse and the larvae are not infected. The
rate at which nymphs bite grouse was estimated in [14] from
tick counts of nymphs on deer and grouse as well as from
model predictions; 𝛾 is the rate at which infectious grouse
become immune, and Γ = 𝛼 + 𝑏

𝑔
+ 𝛾 is the rate at which

infectious grouse are lost from the system and is the sum of
the death rate, due to the disease, the natural death rate, and
the rate at which individuals become immune. For the ticks,
𝑏
𝑇
is the per capita natural death rate. 𝛽

2
is the probability

of an average tick biting a grouse and becoming infected per
unit time, 𝛽

3
is the probability of an adult tick being female,

biting a hare, and then going on to reproduce per unit time
before dying and being lost from the system.

Norman et al. [1] consider the local stability of six
biological relevant equilibria; this is done by determining the
eigenvalues of the Jacobian evaluated at each equilibrium.
The author chose the logistic growth function to describe the
growth of grouse and ticks, obviously, it is more reasonable,
but it increases the complexity of the algebraic analysis. To

obtain global properties for model (1), we suppose that the
host and tick population are recruited at rate that 𝜆 and 𝑠.
Note that the variables 𝐺

𝑧
do not appear in the other

equations of the above system. This allows us to consider the
following fours dimensional system:

𝐺̇
𝑠
(𝑡) = 𝜆 − 𝛽

1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡) − 𝑏

𝑔
𝐺
𝑠
(𝑡) ,

𝐺̇
𝑖
(𝑡) = 𝛽

1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡) − Γ𝐺

𝑖
(𝑡) ,

𝑇̇
𝑠 (𝑡) = 𝑠 − 𝛽

2
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡)

− 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑠
(𝑡) ,

𝑇̇
𝑖
(𝑡) = 𝛽

2
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡)

+ 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖
(𝑡) .

(2)

The incubation period for Louping ill is 6 to 18 days in sheep.
Parenterally inoculated red grouse develop clinical signs in
2 to 8 days; the dynamic of tick feeding the incubation is
effectively 12 months. We introduce two types of the delays
that correspond to (i) the latent period in an infected host
and (ii) the latency in a vector. We know that the number
of infected hosts at time 𝑡 may depend on the number of
susceptible hostswhich is infected by the infected ticks at time
𝑡 − 𝜏, for a time delay 𝜏 > 0, and 𝑒

−𝑏𝑔𝜏 is the survival rate. The
number of infected ticks at time 𝑡may depend on the number
of susceptible ticks which is feeding on the infected hosts at
time 𝑡 − 𝜔, for a time delay 𝜔 > 0, and 𝑒

−𝑏𝑇𝜔 is the survival
rate. Thus, the following model is proposed:

𝐺̇
𝑠 (𝑡) = 𝜆 − 𝑒

−𝑏𝑔𝜏
𝛽
1
𝑇
𝑖 (𝑡 − 𝜏) 𝐺𝑠 (𝑡) − 𝑏

𝑔
𝐺
𝑠 (𝑡) ,

𝐺̇
𝑖 (𝑡) = 𝑒

−𝑏𝑔𝜏
𝛽
1
𝑇
𝑖 (𝑡 − 𝜏) 𝐺𝑠 (𝑡) − Γ𝐺

𝑖 (𝑡) ,

𝑇̇
𝑠 (𝑡) = 𝑠 − 𝑒

−𝑏𝑇𝜔
𝛽
2
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡 − 𝜔)

− 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑠
(𝑡) ,

𝑇̇
𝑖 (𝑡) = 𝑒

−𝑏𝑇𝜔
𝛽
2
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡 − 𝜔)

+ 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖
(𝑡) .

(3)

Although the models incorporation of time delay have more
real biological meaning, they are difficult to deal with it
mathematically. However, the Lyapunov functional and the
LaSalle-type theorem in [15] can provide a direct and effective
method to establish global dynamical properties for the
system of those nonlinear functional differential equations.
Recently, Korobeinikov [16–18], and Huang et al. [19] have
investigated the global dynamical properties of epidemio-
logical models with and without delay by construc suitable
Lyapunov functional methods. Inspired by the work in
McCluskey [20], we construct a global Lyapunov functional
and show that the disease-free equilibrium of system (3) is
globally asymptotically stable if R

0
≤ 1, and if R

0
> 1 the

infection equilibrium is globally asymptotically stable when
one delay is absent. Furthermore, by applying a permanence
theorem by Smith and Zhao [21] for infinite dimensional
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systems (also see [22]), we obtain that the disease is always
present whenR

0
> 1. For its applications, we refer the reader

to [10, 11, 21–23].
The paper is organized as follows. In the next section, we

analyze some basic mathematical properties (positivity and
boundedness of solutions). In Section 3, we give a complete
global stability analysis of the disease-free equilibrium. In
Section 4, we are concerned with the global stability of the
infection equilibrium with one delay. In Section 5, we show
that the disease is endemic in the sense of permanence
whenever R

0
> 1. A discussion of the mathematical results

and of their biological implications is presented in Section 6.

2. Nonnegativity and Boundedness
of Solutions

Let 𝐶 = 𝐶([−𝜎, 0]; 𝑅
4
) be the Banach space of continuous

functions from [−𝜎, 0] to 𝑅
4 equipped with the sup-norm,

where 𝜎 = max{𝜏, 𝜔}. The initial condition of (3) is given as

𝐺
𝑠
(𝜃) = 𝜑

1
(𝜃) , 𝐺

𝑖
(𝜃) = 𝜑

2
(𝜃) ,

𝑇
𝑠
(𝜃) = 𝜑

3
(𝜃) , 𝑇

𝑖
(𝜃) = 𝜑

4
(𝜃) 𝜃 ∈ [−𝜎, 0] ,

(4)

where 𝜑 = (𝜑
1
, 𝜑
2
, 𝜑
3
, 𝜑
4
) ∈ 𝐶 such that 𝜑

𝑗
(𝜃) ≥ 0 (𝜎 ≤ 𝜃 ≤

0, 𝑗 = 1, 2, 3, 4).
The following result establishes the feasible region of the

model and shows that the model is wellposed.

Theorem 1. Under initial conditions in (4), all solutions of
system (3) are nonnegative on [0, +∞) andultimately bounded.

Proof. First, we prove that 𝐺
𝑠
(𝑡) is positive for 𝑡 ≥ 0.

Assuming the contrary and letting 𝑡
1

> 0 be the first time
such that 𝐺

𝑠
(𝑡
1
) = 0, by the first equation of system (3), we

have 𝐺
󸀠

𝑠
(𝑡
1
) = 𝜆 > 0, and hence 𝐺

𝑠
(𝑡) < 0 for 𝑡 ∈ (𝑡

1
− 𝜖, 𝑡
1
),

where 𝜖 is an arbitrarily small positive constant. This leads
to a contradiction. It follows that 𝐺

𝑠
(𝑡) is always positive.

Using the same method, we have that 𝑇
𝑠
(𝑡) is always positive.

Further, from the second and the forth equations in (3), we
have, respectively,

𝐺
𝑖 (𝑡) = 𝐺

𝑖 (0) 𝑒
−Γ𝑡

+ 𝑒
−𝑏𝑔𝜏

𝛽
1
∫

𝑡

0

𝑇
𝑖 (𝜉 − 𝜏) 𝐺𝑠 (𝜉) 𝑒

−Γ(𝑡−𝜉)
𝑑𝜉,

𝑇
𝑖
(𝑡) = 𝑇

𝑖
(0) 𝑒
−∫
𝑡

0
(𝜃𝐻𝑇𝑠(𝛾)−(𝛽3𝐻+𝑏𝑇))𝑑𝛾

+ 𝑒
−𝑏𝑇𝜔

𝛽
2

× ∫

𝑡

0

𝑇
𝑠
(𝜉) 𝐺
𝑖
(𝜉 − 𝜔) 𝑒

−∫
𝑡

𝜉
(𝜃𝐻𝑇𝑠(𝛾)−(𝛽3𝐻+𝑏𝑇))𝑑𝛾

𝑑𝜉.

(5)

Using (4) we know that the 𝐺
𝑖
(𝑡) and 𝑇

𝑖
(𝑡) of (3) are positive

for all 𝑡 ≥ 0.
Next we show that positive solutions of (3) are ultimately

bounded for 𝑡 ≥ 0.

Define 𝐹(𝑡) = 𝐺
𝑠
(𝑡) + 𝐺

𝑖
(𝑡) + 𝑇

𝑠
(𝑡) + 𝑇

𝑖
(𝑡) and 𝑑 =

min{𝑏
𝑔
, 𝛽
3
𝐻+𝑏
𝑇
}. By non-negativity of the solution, it follows

that

𝐹
󸀠
(𝑡) = 𝜆 + 𝑠 − (𝑏

𝑔
𝐺
𝑠
+ Γ𝐺
𝑖
+ (𝛽
3
𝐻 + 𝑏

𝑇
)

× (𝑇
𝑠
+ 𝑇
𝑖
) )

≤ 𝜆 + 𝑠 − 𝑑𝐹 (𝑡) .

(6)

This implies that 𝐹(𝑡) is ultimately bounded, and so are𝐺
𝑠
(𝑡),

𝐺
𝑖
(𝑡), 𝑇
𝑠
(𝑡), and 𝑇

𝑖
(𝑡).

This completes the proof of Theorem 1.

The basic reproduction number [24] for system (3) is

R
0
=

𝑒
−𝑏𝑔𝜏−𝑏𝑇𝜔𝜆𝑠𝛽

1
𝛽
2

Γ𝑏
𝑔
(𝛽
3
𝐻 + 𝑏

𝑇
)
2
+

𝑠𝜃𝐻

(𝛽
3
𝐻 + 𝑏

𝑇
)
2
. (7)

R
0
represents the average number of secondary infections

that single infections host can generate in a totally suscep-
tible population of hosts and ticks. The basic reproduction
number consists of two terms representing two routes of
infection. The tick would live for 1/(𝛽

3
𝐻 + 𝑏

𝑇
) units of

time and produces (𝑒−𝑏𝑔𝜏𝜆𝛽
1
)/𝑏
𝑔
(𝛽
3
𝐻 + 𝑏

𝑇
) infected grouse

through feeding and 𝜃𝑠𝐻/(𝛽
3
𝐻+ 𝑏
𝑇
)
2 infected ticks through

cofeeding. Each infected grouse lives for 1/Γ units of time and
produces 𝑒−𝑏𝑇𝜔𝛽

2
𝑠/Γ(𝛽
3
𝐻 + 𝑏

𝑇
) infected ticks.

System (3) has always an infection-free equilibrium 𝐸
0
=

(𝐺
0

𝑠
, 0, 𝑇
0

𝑠
, 0), that is, grouse and ticks both at their carry-

ing capacity with no disease present, where 𝐺
0

𝑠
= 𝜆/𝑏

𝑔
,

𝑇
0

𝑠
= 𝑠/(𝛽

3
𝐻 + 𝑏

𝑇
), and an infection equilibrium 𝐸

∗
=

(𝐺
∗

𝑠
, 𝐺
∗

𝑖
, 𝑇
∗

𝑠
, 𝑇
∗

𝑖
), when R

0
> 1, that is, ticks, grouse, and

disease coexisting together, where𝑇∗
𝑖
is given by the following

cubic:

𝑓 (𝑇
∗

𝑖
) = 𝐴𝑇

∗2

𝑖
+ 𝐵𝑇
∗

𝑖
+ 𝐶, (8)

where

𝐴 = 𝑒
−𝑏𝑔𝜏

Γ𝜃𝐻𝛽
1
(𝛽
3
𝐻 + 𝑏

𝑇
) ,

𝐵 = −𝑠𝜃𝐻Γ𝛽
1
𝑒
−𝑏𝑔𝜏

+ 𝑒
−𝑏𝑔𝜏−𝑏𝑇𝜔

𝜆𝛽
1
𝛽
2
(𝛽
3
𝐻 + 𝑏

𝑇
)

+ Γ (𝛽
3
𝐻 + 𝑏

𝑇
) (𝜃𝐻𝑏

𝑔
+ 𝑒
−𝑏𝑔𝜏

𝛽
1
(𝛽
3
𝐻 + 𝑏

𝑇
)) ,

𝐶 = −𝑒
−𝑏𝑔𝜏−𝑏𝑇𝜔

𝜆𝑠𝛽
1
𝛽
2
− 𝑠Γ𝜃𝐻𝑏

𝑔
+ Γ𝑏
𝑔
(𝛽
3
𝐻 + 𝑏

𝑇
)
2
.

(9)

Hence, we can write all of the densities in terms of the
infectious tick density, 𝑇∗

𝑖
,

𝐺
∗

𝑠
=

𝜆

𝑒
−𝑏𝑔𝜏𝛽
1
𝑇
∗

𝑖
+ 𝑏
𝑔

,

𝐺
∗

𝑖
=

𝑒
−𝑏𝑔𝜏𝜆𝛽

1
𝑇
∗

𝑖

Γ (𝑒
−𝑏𝑔𝜏𝛽
1
𝑇
∗

𝑖
+ 𝑏
𝑔
)

,

𝑇
∗

𝑠
=

𝑠

𝛽
3
𝐻 + 𝑏

𝑇

− 𝑇
∗

𝑖
.

(10)
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3. Global Stability of the Infection-Free
Equilibrium of Model (3)

In this section, we would consider the global stability of
the infection-free equilibrium. Next, we show thatR

0
deter-

mines the stability of the infection-free equilibrium.

Theorem 2. IfR
0
≤ 1, then the infection-free equilibrium 𝐸

0

is globally asymptotically stable for any time delay 𝜏 ≥ 0 and
𝜔 ≥ 0.

Proof. Consider a Lyapunov functional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (11)

with

𝑉
1
(𝑡) =

𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
0

𝑠

Γ

× (𝐺
𝑠
(𝑡) − 𝐺

0

𝑠
− 𝐺
0

𝑠
ln

𝐺
𝑠
(𝑡)

𝐺
0

𝑠

) +
𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
0

𝑠

Γ
𝐺
𝑖
(𝑡)

+ (𝑇
𝑠
(𝑡) − 𝑇

0

𝑠
− 𝑇
0

𝑠
ln

𝑇
𝑠 (𝑡)

𝑡
0

𝑠

) + 𝑇
𝑖
(𝑡) ,

𝑉
2
(𝑡) = 𝑒

−𝑏𝑇𝜔
𝛽
2
𝑇
0

𝑠
∫

𝑡

𝑡−𝜔

𝐺
𝑖
(𝜉) 𝑑𝜉,

𝑉
3
(𝑡) =

𝑒
−(𝑏𝑔𝜏+𝑏𝑇𝜔)𝛽

1
𝛽
2
𝐺
0

𝑠
𝑇
0

𝑠

Γ
∫

𝑡

𝑡−𝜏

𝑇
𝑖
(𝜉) 𝑑𝜉.

(12)

Calculate the time derivative of 𝑉:

𝑑𝑉

𝑑𝑡
=

𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
0

𝑠

Γ
(1 −

𝐺
0

𝑠

𝐺
𝑠 (𝑡)

)𝐺
󸀠

𝑠
(𝑡)

+
𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
0

𝑠

Γ
𝐺
󸀠

𝑖
(𝑡)

+ (1 −
𝑇
0

𝑠

𝑇
𝑠 (𝑡)

)𝑇
󸀠

𝑠
(𝑡) + 𝑇

󸀠

𝑖
(𝑡)

+ 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
0

𝑠
(𝐺
𝑖 (𝑡) − 𝐺

𝑖 (𝑡 − 𝜔))

+
𝑒
−(𝑏𝑔𝜏+𝑏𝑇𝜔)𝛽

1
𝛽
2
𝐺
0

𝑠
𝑇
0

𝑠

Γ
(𝑇
𝑖 (𝑡) − 𝑇

𝑖 (𝑡 − 𝜏)) .

(13)

Since 𝜆 = 𝑏
𝑔
𝐺
0

𝑠
, 𝑠 = (𝛽

3
𝐻 + 𝑏

𝑇
)𝑇
0

𝑠
, it follows that

𝑑𝑉

𝑑𝑡
=

𝛽
2
𝑏
𝑔
𝐺
0

𝑠
𝑇
0

𝑠

Γ
(2 −

𝐺
0

𝑠

𝐺
𝑠
(𝑡)

−
𝐺
𝑠
(𝑡)

𝐺
0

𝑠

)

+ (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
0

𝑠
(2 −

𝑇
0

𝑠

𝑇
𝑠 (𝑡)

−
𝑇
𝑠
(𝑡)

𝑇
0

𝑠

)

+ (𝛽
3
𝐻 + 𝑏

𝑇
) (R
0
− 1) 𝑇

𝑖
(𝑡) .

(14)

ObviouslyR
0
≤ 1 ensures that 𝑑𝑉/𝑑𝑡 ≤ 0. It is clear that𝑉 ≥

0 and 𝑉 = 0 if and only if 𝐺
𝑠
(𝑡) = 𝐺

0

𝑠
, 𝐺
𝑖
(𝑡) = 0, 𝑇

𝑠
(𝑡) = 𝑇

0

𝑠
,

and 𝑇
𝑖
(𝑡) = 0. Hence, it follows from the Lyapunov-LaSalle

invariance principle that the infection-free equilibrium 𝐸
0
is

globally asymptotically stable whenR
0
≤ 1.

This completes the proof of Theorem 2.

4. Dynamical Analysis for
the Infection Equilibrium

System (3) has an infection equilibrium 𝐸
∗ whenR

0
> 1. We

consider two situations: (a) 𝜏 = 0, 𝜔 ≥ 0 and (b) 𝜏 ≥ 0, 𝜔 = 0.

4.1. Global Stability of the Infection Equilibrium When 𝜏 = 0

and𝜔 ≥ 0. In this subsection, the situations 𝜏 = 0 and𝜔 ≥ 0

are considered.

Theorem 3. If R
0

> 1, then the infection equilibrium 𝐸
∗ is

globally asymptotically stable for 𝜏 = 0 and 𝜔 ≥ 0.

Proof. Define a Lyapunov functional:

𝑈
1
(𝑡) =

𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(𝐺
𝑠
(𝑡) − 𝐺

∗

𝑠
− 𝐺
∗

𝑠
ln

𝐺
𝑠
(𝑡)

𝐺
∗

𝑠

)

+
𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(𝐺
𝑖
(𝑡) − 𝐺

∗

𝑖
− 𝐺
∗

𝑖
ln

𝐺
𝑖
(𝑡)

𝐺
∗

𝑖

)

+ (𝑇
𝑠
(𝑡) − 𝑇

∗

𝑠
− 𝑇
∗

𝑠
ln

𝑇
𝑠
(𝑡)

𝑇
∗

𝑠

)

+ (𝑇
𝑖 (𝑡) − 𝑇

∗

𝑖
− 𝑇
∗

𝑖
ln

𝑇
𝑖 (𝑡)

𝑇
∗

𝑖

)

+ 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
𝑈
+ (𝑡) ,

(15)

where

𝑈
+ (𝑡) = ∫

𝜔

0

(
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

− 1 − ln
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

)𝑑𝜃. (16)

The derivatives of 𝑈
+
(𝑡) are given by

𝑑𝑈
+
(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
∫

𝜔

0

(
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

− 1 − ln
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

)𝑑𝜃

= ∫

𝜔

0

𝑑

𝑑𝑡
(
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

− 1 − ln
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

)𝑑𝜃

= − ∫

𝜔

0

𝑑

𝑑𝜃
(
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

− 1 − ln
𝐺
𝑖
(𝑡 − 𝜃)

𝐺
∗

𝑖

)𝑑𝜃

=
𝐺
𝑖 (𝑡)

𝐺
∗

𝑖

−
𝐺
𝑖 (𝑡 − 𝜔)

𝐺
∗

𝑖

+ ln
𝐺
𝑖 (𝑡 − 𝜔)

𝐺
𝑖
(𝑡)

.

(17)
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Hence, we obtain

𝑑𝑈
1

𝑑𝑡
=

𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(1 −
𝐺
∗

𝑠

𝐺
𝑠 (𝑡)

)𝐺
󸀠

𝑠
(𝑡)

+
𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝑆
∗

(1 −
𝐺
∗

𝑖

𝐺
𝑖 (𝑡)

)𝐺
󸀠

𝑖
(𝑡)

+ (1 −
𝑇
∗

𝑠

𝑇
𝑠 (𝑡)

)𝑇
󸀠

𝑠
(𝑡) + (1 −

𝑇
∗

𝑖

𝑇
𝑖 (𝑡)

)𝑇
󸀠

𝑖
(𝑡)

+ 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝑑𝑈
+ (𝑡)

𝑑𝑡

=
𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(𝜆 − 𝛽
1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡)

−𝑏
𝑔
𝐺
𝑠
(𝑡) +

𝐺
∗

𝑠

𝐺
𝑠
(𝑡)

(𝜆 − 𝛽
1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡) − 𝑏

𝑔
𝐺
𝑠
(𝑡)))

+
𝑒
−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(𝛽
1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡) − Γ𝐺

𝑖
(𝑡)

+
𝐺
∗

𝑖

𝐺
𝑖
(𝑡)

(𝛽
1
𝑇
𝑖
(𝑡) 𝐺
𝑠
(𝑡) − Γ𝐺

𝑖
(𝑡)))

+ (𝑠 − 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡 − 𝜔)

− 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑠
(𝑡)

+
𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

(𝑠 − 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡 − 𝜔)

−𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑠
(𝑡) ))

+ (𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡 − 𝜔)

+ 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖
(𝑡)

+
𝑇
∗

𝑖

𝑇
𝑖 (𝑡)

(𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡 − 𝜔)

+ 𝜃𝐻𝑇
𝑠
(𝑡) 𝑇
𝑖
(𝑡) − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖
(𝑡) ))

+ 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
(
𝐺
𝑖 (𝑡)

𝐺
∗

𝑖

−
𝐺
𝑖 (𝑡 − 𝜔)

𝐺
∗

𝑖

+ ln
𝐺
𝑖 (𝑡 − 𝜔)

𝐺
𝑖
(𝑡)

) .

(18)

Since 𝜆 = 𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠
+ 𝑏
𝑔
𝐺
∗

𝑠
, 𝑠 = 𝑒

−𝑏𝑇𝜔𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
− 𝜃𝐻𝑇

∗

𝑠
𝑇
∗

𝑖
−

(𝛽
3
𝐻 + 𝑏

𝑇
)𝑇
∗

𝑠
, and

Γ𝐺
∗

𝑖
= 𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠
,

(𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
∗

𝑖
= 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
+ 𝜃𝐻𝑇

∗

𝑠
𝑇
∗

𝑖
,

(19)

it follows that

𝑑𝑈
1

𝑑𝑡
=

𝑒
−𝑏𝑇𝜔𝛽
2
𝑏
𝑔
𝐺
∗

𝑠
𝑇
∗

𝑠

𝛽
1
𝑇
∗

𝑖

× (2 −
𝐺
∗

𝑠

𝐺
𝑠 (𝑡)

−
𝐺
𝑠
(𝑡)

𝐺
∗

𝑠

)

+ 𝜃𝐻𝑇
∗

𝑖
𝑇
∗

𝑠
(2 −

𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

−
𝑇
𝑠 (𝑡)

𝑇
∗

𝑠

)

+ (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
∗

𝑠
(2 −

𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

−
𝑇
𝑠
(𝑡)

𝑇
∗

𝑠

)

+ 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

× (4 −
𝐺
∗

𝑠

𝐺
𝑠 (𝑡)

−
𝐺
∗

𝑖
𝐺
𝑠 (𝑡) 𝑇𝑖 (𝑡)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖 (𝑡)

−
𝑇
∗

𝑠

𝑇
𝑠 (𝑡)

−
𝑇
∗

𝑖
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡 − 𝜔)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖 (𝑡)

) .

(20)

Using equality

ln
𝐺
𝑖
(𝑡 − 𝜔)

𝐺
𝑖 (𝑡)

= ln
𝐺
∗

𝑠

𝐺
𝑠 (𝑡)

+ ln
𝑇
∗

𝑠

𝑇
𝑠 (𝑡)

+ ln
𝑇
∗

𝑖
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡 − 𝜔)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖 (𝑡)

+ ln
𝐺
∗

𝑖
𝐺
𝑠 (𝑡) 𝑇𝑖 (𝑡)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖 (𝑡)

,

(21)

we obtain

𝑑𝑈
1

𝑑𝑡
= − 𝑏

𝑔
𝐺
∗

𝑠

1

𝐺
𝑠
(𝑡)

(𝐺
𝑠 (𝑡) − 𝐺

∗

𝑠
)
2

− 𝜃𝐻𝑇
∗

𝑖
𝑇
∗

𝑠

1

𝑇
𝑠 (𝑡)

(𝑇
𝑠
(𝑡) − 𝑇

∗

𝑠
)
2

− (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
∗

𝑠

1

𝑇
𝑠
(𝑡)

(𝑇
𝑠 (𝑡) − 𝑇

∗

𝑠
)
2

+ 𝑒
−𝑏𝑇𝜔

𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
(Ω
1
+ Ω
2
+ Ω
3
+ Ω
4
) ,

(22)

where

Ω
1
= 1 −

𝐺
∗

𝑠

𝐺
𝑠
(𝑡)

+ ln
𝐺
∗

𝑠

𝐺
𝑠
(𝑡)

,

Ω
2
= 1 −

𝐺
∗

𝑖
𝐺
𝑠
(𝑡) 𝑇
𝑖
(𝑡)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖
(𝑡)

+ ln
𝐺
∗

𝑖
𝐺
𝑠
(𝑡) 𝑇
𝑖
(𝑡)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖
(𝑡)

,

Ω
3
= 1 −

𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

+ ln
𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

,

Ω
4
= 1 −

𝑇
∗

𝑖
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡 − 𝜔)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖
(𝑡)

+ ln
𝑇
∗

𝑖
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡 − 𝜔)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖
(𝑡)

.

(23)

Since the function

𝑔 (𝑡) = 1 − 𝑓 (𝑡) + ln𝑓 (𝑡) (24)
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is always nonpositive for any function 𝑓(𝑡) > 0, and 𝑔(𝑡) = 0

if and only if 𝑓(𝑡) = 1. Therefore, we haveΩ
1
, Ω
2
, Ω
3
, Ω
4
≤ 0.

It is easy to see that 𝑑𝑈
1
/𝑑𝑡 ≤ 0. It is clear that 𝑑𝑈

1
/𝑑𝑡 = 0

if and only if 𝐺
𝑠
(𝑡) = 𝐺

∗

𝑠
, 𝐺
𝑖
(𝑡) = 𝐺

∗

𝑖
, 𝑇
𝑠
(𝑡) = 𝑇

∗

𝑠
, 𝑇
𝑖
(𝑡) = 𝑇

∗

𝑖
.

Hence, it is also known from stability theorem [25] that the
infection equilibrium 𝐸

∗ is globally asymptotically stable for
any time delay 𝜔 ≥ 0 under the conditionR

0
> 1.

This completes the proof of Theorem 3.

4.2. Global Stability of the Infection EquilibriumWhen 𝜏 ≥ 0

and 𝜔 = 0. In this subsection, the situations 𝜏 ≥ 0 and 𝜔 = 0

are considered.

Theorem 4. If R
0

> 1, then the infection equilibrium 𝐸
∗ is

globally asymptotically stable for 𝜏 ≥ 0 and 𝜔 = 0.

Proof. Define a Lyapunov functional:

𝑈
2
(𝑡) =

𝑒
𝑏𝑔𝜏𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(𝐺
𝑠
(𝑡) − 𝐺

∗

𝑠
− 𝐺
∗

𝑠
ln

𝐺
𝑠
(𝑡)

𝐺
∗

𝑠

)

+
𝑒
𝑏𝑔𝜏𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(𝐺
𝑖
(𝑡) − 𝐺

∗

𝑖
− 𝐺
∗

𝑖
ln

𝐺
𝑖
(𝑡)

𝐺
∗

𝑖

)

+ (𝑇
𝑠
(𝑡) − 𝑇

∗

𝑠
− 𝑇
∗

𝑠
ln

𝑇
𝑠
(𝑡)

𝑇
∗

𝑠

)

+ (𝑇
𝑖 (𝑡) − 𝑇

∗

𝑖
− 𝑇
∗

𝑖
ln

𝑇
𝑖 (𝑡)

𝑇
∗

𝑖

)

+ 𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
𝑈
− (𝑡) ,

(25)

where

𝑈
− (𝑡) = ∫

𝜏

0

(
𝑇
𝑖
(𝑡 − 𝜃)

𝑇
∗

𝑖

− 1 − ln
𝑇
𝑖
(𝑡 − 𝜃)

𝑇
∗

𝑖

)𝑑𝜃. (26)

The derivatives of 𝑈
−
(𝑡) are given by

𝑑𝑈
−
(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
∫

𝜏

0

(
𝑇
𝑖 (𝑡 − 𝜃)

𝑇
∗

𝑖

− 1 − ln
𝑇
𝑖 (𝑡 − 𝜃)

𝑇
∗

𝑖

)𝑑𝜃

= ∫

𝜏

0

𝑑

𝑑𝑡
(
𝑇
𝑖 (𝑡 − 𝜃)

𝑇
∗

𝑖

− 1 − ln
𝑇
𝑖 (𝑡 − 𝜃)

𝑇
∗

𝑖

)𝑑𝜃

= − ∫

𝜏

0

𝑑

𝑑𝜃
(
𝑇
𝑖 (𝑡 − 𝜃)

𝑇
∗

𝑖

− 1 − ln
𝑇
𝑖 (𝑡 − 𝜃)

𝑇
∗

𝑖

)𝑑𝜃

=
𝑇
𝑖 (𝑡)

𝑇
∗

𝑖

−
𝑇
𝑖 (𝑡 − 𝜏)

𝑇
∗

𝑖

+ ln
𝑇
𝑖 (𝑡 − 𝜏)

𝑇
𝑖
(𝑡)

.

(27)

Hence, we obtain

𝑑𝑈
2

𝑑𝑡
=

𝑒
𝑏𝑔𝜏𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝐺
∗

𝑠

(1 −
𝐺
∗

𝑠

𝐺
𝑠 (𝑡)

)𝐺
󸀠

𝑠
(𝑡)

+
𝑒
𝑏𝑔𝜏𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖
𝑆
∗

(1 −
𝐺
∗

𝑖

𝐺
𝑖 (𝑡)

)𝐺
󸀠

𝑖
(𝑡)

+ (1 −
𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

)𝑇
󸀠

𝑠
(𝑡)

+ (1 −
𝑇
∗

𝑖

𝑇
𝑖
(𝑡)

)𝑇
󸀠

𝑖
(𝑡) + 𝛽

2
𝑇
∗

𝑠
𝐺
∗

𝑖

𝑑𝑈
−
(𝑡)

𝑑𝑡

=

𝑏
𝑔
𝛽
2
𝐺
∗

𝑠
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖

(2 −
𝐺
∗

𝑠

𝐺
𝑠
(𝑡)

−
𝐺
𝑠
(𝑡)

𝐺
∗

𝑠

)

+ 𝜃𝐻𝑇
∗

𝑖
𝑇
∗

𝑠
(2 −

𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

−
𝑇
𝑠
(𝑡)

𝑇
∗

𝑠

)

+ (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
∗

𝑠
(2 −

𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

−
𝑇
𝑠
(𝑡)

𝑇
∗

𝑠

)

+ 𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
ln

𝑇
𝑖
(𝑡 − 𝜏)

𝑇
𝑖
(𝑡)

+ 𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
(4 −

𝐺
∗

𝑠

𝐺
𝑠 (𝑡)

−
𝐺
∗

𝑖
𝐺
𝑠
(𝑡) 𝑇
𝑖
(𝑡 − 𝜏)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖 (𝑡)

−
𝑇
∗

𝑠

𝑇
𝑠 (𝑡)

−
𝑇
∗

𝑖
𝑇
𝑠 (𝑡) 𝐺𝑖 (𝑡)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖 (𝑡)

) .

(28)

Using equality

ln
𝑇
𝑖
(𝑡 − 𝜏)

𝑇
𝑖
(𝑡)

= ln
𝐺
∗

𝑠

𝐺
𝑠
(𝑡)

+ ln
𝑇
∗

𝑠

𝑇
𝑠
(𝑡)

+ ln
𝑇
∗

𝑖
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖
(𝑡)

+ ln
𝐺
∗

𝑖
𝐺
𝑠
(𝑡) 𝑇
𝑖
(𝑡 − 𝜏)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖
(𝑡)

,

(29)

we obtain

𝑑𝑈
2

𝑑𝑡
= −

𝑏
𝑔
𝛽
2
𝐺
∗

𝑠
𝑇
∗

𝑠
𝐺
∗

𝑖

𝛽
1
𝑇
∗

𝑖

1

𝐺
𝑠 (𝑡)

(𝐺
𝑠
(𝑡) − 𝐺

∗

𝑠
)
2

− 𝜃𝐻𝑇
∗

𝑖
𝑇
∗

𝑠

1

𝑇
𝑠 (𝑡)

(𝑇
𝑠
(𝑡) − 𝑇

∗

𝑠
)
2

− (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
∗

𝑠

1

𝑇
𝑠
(𝑡)

(𝑇
𝑠 (𝑡) − 𝑇

∗

𝑠
)
2

+ 𝛽
2
𝑇
∗

𝑠
𝐺
∗

𝑖
(Ω
1
+ Ω
5
+ Ω
3
+ Ω
6
) ,

(30)

where

Ω
5
= 1 −

𝐺
∗

𝑖
𝐺
𝑠
(𝑡) 𝑇
𝑖
(𝑡 − 𝜏)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖
(𝑡)

+ ln
𝐺
∗

𝑖
𝐺
𝑠
(𝑡) 𝑇
𝑖
(𝑡 − 𝜏)

𝐺
∗

𝑠
𝑇
∗

𝑖
𝐺
𝑖
(𝑡)

,

Ω
6
= 1 −

𝑇
∗

𝑖
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖
(𝑡)

+ ln
𝑇
∗

𝑖
𝑇
𝑠
(𝑡) 𝐺
𝑖
(𝑡)

𝑇
∗

𝑠
𝐺
∗

𝑖
𝑇
𝑖
(𝑡)

.

(31)

Since the function

𝑔 (𝑡) = 1 − 𝑓 (𝑡) + ln𝑓 (𝑡) (32)

is always non-positive for any function𝑓(𝑡) > 0, and 𝑔(𝑡) = 0

if and only if 𝑓(𝑡) = 1. Therefore, we haveΩ
1
, Ω
5
, Ω
3
, Ω
6
≤ 0.
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It is easy to see that 𝑑𝑈
2
/𝑑𝑡 ≤ 0. It is clear that 𝑑𝑈

2
/𝑑𝑡 = 0

if and only if 𝐺
𝑠
(𝑡) = 𝐺

∗

𝑠
, 𝐺
𝑖
(𝑡) = 𝐺

∗

𝑖
, 𝑇
𝑠
(𝑡) = 𝑇

∗

𝑠
, 𝑇
𝑖
(𝑡) = 𝑇

∗

𝑖
.

Hence, it is also known from stability theorem [25] that the
infection equilibrium 𝐸

∗ is globally asymptotically stable for
any time delay 𝜏 ≥ 0 under the conditionR

0
> 1.

This completes the proof of Theorem 4.

5. Permanence

System (3) is said to be uniformly persistent if there exists
a constant 𝜂 > 0 such that any solution (𝐺

𝑠
(𝑡), 𝐺
𝑖
(𝑡),

𝑇
𝑠
(𝑡), 𝑇
𝑖
(𝑡)) of (3) satisfies

lim inf
𝑡→∞

𝐺
𝑠
(𝑡) ≥ 𝜂, lim inf

𝑡→∞

𝐺
𝑖
(𝑡) ≥ 𝜂,

lim inf
𝑡→∞

𝑇
𝑠
(𝑡) ≥ 𝜂, lim inf

𝑡→∞

𝑇
𝑖
(𝑡) ≥ 𝜂.

(33)

Nowwe give a result on the uniform persistence of system
(3). To proceed, we introduce the following notation and
terminology. Denote by 𝑃(𝑡), 𝑡 ≥ 0 the family of solution
operators corresponding to (3). The 𝜔-limit set 𝜔(𝑥) of 𝑥

consists of 𝑦 ∈ 𝑋 such that there exists a sequence 𝑡
𝑛

→ ∞

as 𝑛 → ∞ with 𝑃(𝑡
𝑛
)𝑥 → 𝑦 as 𝑛 → ∞.

Theorem 5. System (3) is uniformly persistent if it satisfies
R
0
> 1.

Proof. Let

𝑋
0
= {𝜙 ∈ 𝑋 : 𝜙

2
(0) > 0, 𝜙

4
(0) > 0} ,

𝜕𝑋 = 𝑋 \ 𝑋
0
= {𝜙 ∈ 𝑋 : 𝜙

2
(0) = 0 or 𝜙

4
(0) = 0} ,

(34)

which is relatively closed in𝑋.
Now we prove that 𝑋0 is positively invariant for 𝑃(𝑡). By

the second and forth equations of (3), we have

𝑑𝐺
𝑖
(𝑡)

𝑑𝑡
≥ −Γ𝐺

𝑖
(𝑡) ,

𝑑𝑇
𝑖 (𝑡)

𝑑𝑡
≥ − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖 (𝑡) ,

∀𝑡 ≥ 0.

(35)

Since 𝐺
𝑖
(0, 𝜙) = 𝜙

2
(0) > 0 and 𝑇

𝑖
(0, 𝜙) = 𝜙

4
(0) > 0, it follows

from (35) that

𝐺
𝑖
(𝑡, 𝜙) ≥ 𝜙

2 (0) 𝑒
−Γ𝑡

,

𝑇
𝑖
(𝑡, 𝜙) ≥ 𝜙

4 (0) 𝑒
−(𝛽3𝐻+𝑏𝑇)𝑡

,

∀𝑡 ≥ 0.

(36)

Thus,𝑋0 is positively invariant for 𝑃(𝑡).
We set

𝑀
𝜕
= {𝜙 ∈ 𝑋 : Y (t) 𝜙 satisfies (3) ,

Y (t) 𝜙 ∈ 𝜕𝑋, ∀𝑡 ≥ 0} .

(37)

We claim that

𝑀
𝜕
= {(𝐺

𝑠
, 0, 𝑇
𝑠
, 0)} . (38)

Assuming Y(t) ∈ 𝑀
𝜕
, for all 𝑡 ≥ 0, it suffices to show that

𝐺
𝑖
(𝑡) = 𝑇

𝑖
(𝑡) = 0, for all 𝑡 ≥ 0. If it is not true, then there

exists 𝑡
0
> 0 such that either (a) 𝐺

𝑖
(𝑡
0
) = 0, 𝑇

𝑖
(𝑡
0
) > 0 or (b)

𝐺
𝑖
(𝑡
0
) > 0, 𝑇

𝑖
(𝑡
0
) = 0.

For case (a), from the forth equation of (3), we have

𝑑𝑇
𝑖
(𝑡)

𝑑𝑡
≥ − (𝛽

3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖 (𝑡) .

(39)

Since 𝑇
𝑖
(𝑡
0
) > 0, we have

𝑇
𝑖
(𝑡) ≥ 𝑇

𝑖
(𝑡
0
) 𝑒
−(𝛽3𝐻+𝑏𝑇)(𝑡−𝑡0)

> 0, ∀𝑡 ≥ 𝑡
0
. (40)

By the invariant of 𝑀
𝜕
, we have 𝐺

𝑖
(𝑡) ≡ 0, for all 𝑡 ≥ 0. Then

from the second equation of (3), we have 𝑇
𝑖
(𝑡 − 𝜏)𝐺

𝑠
(𝑡) ≡ 0,

for all 𝑡 ≥ 0.
From the first equation of (3), we obtain 𝐺̇

𝑠
(𝑡) = 𝜆 −

𝑏
𝑔
𝐺
𝑠
(𝑡), thus lim

𝑡→+∞
𝐺
𝑠
(𝑡) = 𝜆/𝑏

𝑔
. By the invariant of 𝑀

𝜕
,

we have 𝐺
𝑠
(𝑡) = 𝜆/𝑏

𝑔
.

Then from the second equation of (3), we obtain 𝑇
𝑖
(𝑡 −

𝜏) = 0; by the invariant of𝑀
𝜕
, we have 𝑇

𝑖
(𝑡) ≡ 0, for all 𝑡 ≥ 0.

From the first and third equations of (3), we obtain 𝑇̇
𝑠
(𝑡) =

𝑠−(𝛽
3
𝐻+𝑏
𝑇
)𝑇
𝑠
(𝑡); thus lim

𝑡→+∞
𝑇
𝑠
(𝑡) = 𝑠/(𝛽

3
𝐻+𝑏
𝑇
). By the

invariant of𝑀
𝜕
, we have 𝑇

𝑠
(𝑡) = 𝑠/(𝛽

3
𝐻+𝑏
𝑇
), ∀𝑡 ≥ 0, which

contradicts the assumption that (𝐺
𝑠
(𝑡), 𝐺
𝑖
(𝑡), 𝑇
𝑠
(𝑡), 𝑇
𝑖
(𝑡)) ∈

𝑀
𝜕
, for all 𝑡 ≥ 0. Similarly, we can obtain a contradiction

for case (b). This proves the claim (38).
Let 𝐴 = ⋂

𝑥∈𝐴𝑏
𝜔(𝑥), where 𝐴

𝑏
is the global attractor of

𝑃(𝑡) restricted to 𝜕𝑋. We show that 𝐴 = 𝐸
0
. In fact, from

𝐴 ∈ 𝑀
𝜕
and the first and third equations of (3), we have

lim
𝑡→∞

𝐺
𝑠
(𝑡) = 𝐺

0

𝑠
and lim

𝑡→∞
𝑇
𝑠
(𝑡) = 𝑇

0

𝑠
. Thus, 𝐸

0
is the

isolated invariant set in𝑋.
Next, we show that 𝑊𝑠(𝐸

0
) ∩ 𝑋
0
= 0. If this is not true,

then there exists a solution (𝐺
𝑠𝑡
, 𝐺
𝑖𝑡
, 𝑇
𝑠𝑡
, 𝑇
𝑖𝑡
) ∈ 𝑋
0 such that

lim
𝑡→∞

𝐺
𝑠
(𝑡) = 𝐺

0

𝑠
, lim

𝑡→∞

𝐺
𝑖
(𝑡) = 0,

lim
𝑡→∞

𝑇
𝑠 (𝑡) = 𝑇

0

𝑠
, lim
𝑡→∞

𝑇
𝑖 (𝑡) = 0.

(41)

For any sufficiently small constant 𝜀 > 0, there exists a
positive constant 𝑇

0
= 𝑇
0
(𝜀) such that

𝐺
𝑠
(𝑡) > 𝐺

0

𝑠
− 𝜀 > 0, ∀𝑡 ≥ 𝑇

0
,

𝑇
𝑠 (𝑡) > 𝑇

0

𝑠
− 𝜀 > 0, ∀𝑡 ≥ 𝑇

0
.

(42)

For the constant 𝜀 given above, it follows from the second and
forth equations of (3) that

𝐺̇
𝑖 (𝑡) ≥ 𝑒

−𝑏𝑔𝜏
𝛽
1
𝑇
𝑖 (𝑡 − 𝜏)

× (𝐺
0

𝑠
− 𝜀) − Γ𝐺

𝑖
(𝑡) ,

𝑇̇
𝑖
(𝑡) ≥ 𝑒

−𝑏𝑇𝜔
𝛽
2
(𝑇
0

𝑠
− 𝜀)

× 𝐺
𝑖
(𝑡 − 𝜔) + 𝜃𝐻(𝑇

0

𝑠
− 𝜀) 𝑇

𝑖
(𝑡)

− (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑇
𝑖
(𝑡) .

(43)
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If 𝐺
𝑖
(𝑡), 𝑇
𝑖
(𝑡) → 0, as 𝑡 → ∞, then by a standard

comparison argument and the nonnegativity, the solution
(𝑥(𝑡), 𝑦(𝑡)) of the following monotone system

𝑥̇ (𝑡) = 𝑒
−𝑏𝑔𝜏

𝛽
1
𝑦 (𝑡 − 𝜏) (𝐺

0

𝑠
− 𝜀) − Γ𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑒
−𝑏𝑇𝜔

𝛽
2
(𝑇
0

𝑠
− 𝜀) 𝑥 (𝑡 − 𝜔)

+ 𝜃𝐻(𝑇
0

𝑠
− 𝜀) 𝑦 (𝑡)

− (𝛽
3
𝐻 + 𝑏

𝑇
) 𝑦 (𝑡)

(44)

with the initial condition 𝑥(𝑡) = 𝐺
𝑖
(𝑡), 𝑦(𝑡) = 𝑇

𝑖
(𝑡), for all 𝑡 ∈

[𝑡
0
, 𝑡
0
+𝑇
0
] converges to (0, 0) as well.Thus, lim

𝑡→∞
𝑊(𝑡) = 0,

where𝑊(𝑡) > 0 is defined by

𝑊(𝑡) =

𝑒
−𝑏𝑇𝜔𝛽
2
(𝑇
0

𝑠
− 𝜀)

Γ
𝑥 (𝑡)

+ 𝑦 (𝑡) + 𝑒
−𝑏𝑇𝜔

𝛽
2
(𝑇
0

𝑠
− 𝜀)∫

𝑡

𝑡−𝜔

𝑥 (𝜉) 𝑑𝜉

+

𝑒
−𝑏𝑔𝜏−𝑏𝑇𝜔𝛽

1
𝛽
2
(𝐺
0

𝑠
− 𝜀) (𝑇

0

𝑠
− 𝜀)

Γ
∫

𝑡

𝑡−𝜏

𝑦 (𝜉) 𝑑𝜉.

(45)

Differentiating𝑊(𝑡) with respect to time 𝑡 gives

𝑑𝑊 (𝑡)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(44)

= [𝜃𝐻 (𝑇
0

𝑠
− 𝜀)

+

𝑒
−𝑏𝑔𝜏−𝑏𝑇𝜔𝛽

1
𝛽
2
(𝐺
0

𝑠
− 𝜀) (𝑇

0

𝑠
− 𝜀)

Γ

− (𝛽
3
𝐻 + 𝑏

𝑇
) ] 𝑦 (𝑡) .

(46)

Because R
0
> 1, we have 𝜃𝐻(𝑇

0

𝑠
− 𝜀) + 𝑒

−𝑏𝑔𝜏−𝑏𝑇𝜔𝛽
1
𝛽
2
(𝐺
0

𝑠
−

𝜀)(𝑇
0

𝑠
− 𝜀)/Γ − (𝛽

3
𝐻 + 𝑏

𝑇
) > 0 for a sufficiently small 𝜀.

Therefore, 𝑊(𝑡) goes to either infinity or a positive number
𝑡 → ∞, which leads to a contradiction with lim

𝑡→∞
𝑊(𝑡) =

0. Thus we have𝑊𝑠(𝐸
0
) ∩ 𝑋
0
= 0.

Define 𝑝 : 𝑋 → 𝑅
+
by

𝑝 (𝜙) = min {𝜙
2
(0) , 𝜙

4
(0)} , ∀𝜙 ∈ 𝑋. (47)

It is clear that𝑋0 = 𝑝
−1
(0,∞) and 𝜕𝑋 = 𝑝

−1
(0). Thus by [20,

Theorem 3], we have

lim inf
𝑡→∞

(𝐺
𝑖
(𝑡) , 𝑇
𝑖
(𝑡)) ≥ (𝜂

0
, 𝜂
0
) (48)

for some constant 𝜂
0

> 0. Let 𝜂 = min{𝜂
0
, 𝜀}, where 𝜀

is the constant such that lim inf
𝑡→∞

𝐺
𝑠
(𝑡) ≥ 𝜀 > 0 and

lim inf
𝑡→∞

𝑇
𝑠
(𝑡) ≥ 𝜀 > 0.We showed that lim inf

𝑡→∞
𝐺
𝑠
(𝑡) ≥

𝜂, lim inf
𝑡→∞

𝐺
𝑖
(𝑡) ≥ 𝜂, lim inf

𝑡→∞
𝑇
𝑠
(𝑡) ≥ 𝜂, and

lim inf
𝑡→∞

𝑇
𝑖
(𝑡) ≥ 𝜂.

This completes the proof of Theorem 5.

Table 1: Parameter values used in the simulations shown in figures.

Parameter Value per month Source
𝜆 varies Assumed
𝑏
𝑔

0.087 20
𝛽
1

0.01 2
𝛽
2

0.02525 2
𝛼 2.31 20
𝛾 0.5775 2
𝑠 varies Assumed
𝜃 0.00001 2
𝐻 10 2
𝑏
𝑇

0.0277 Unpublished date
𝛽
3

0.0113 2

6. Numerical Simulations

In this section, by using suitable numerical methods, we sim-
ulate the systems to illustrate the analytical results obtained
in Sections 3–5. Moreover, we would verify the performance
as shown in Section 5 and find that the system (3) is
globally asymptotically stable when two delays are present
simultaneously.

Table 1 shows the literature reported values for parame-
ters which we used for the simulations. Besides the parameter
value shown in Table 1, we can find 𝜂 by using the equation
𝜂 = 𝛼 + 𝛾 + 𝑏

𝑔
.

For system (3), we choose 𝜆 = 3, 𝑠 = 2, 𝜏 = 10, and 𝜔 =

15, and other values are shown in Table 1. By computation,
we obtain 𝑅

0
= 0.0818 < 1, and the infection equilibrium

does not exist. By the analysis of Section 2, we know that
the infection-free equilibrium 𝐸

0
= (34.4828, 0, 14.2146, 0)

is globally asymptotically stable (see Figure 1). Furthermore,
we choose 𝜆 = 8, 𝑠 = 6, 𝜏 = 0, and 𝜔 = 15, and other values
are shown in Table 1. In Figure 2, we know that under the
condition indicated in the Theorem 3 with 𝑅

0
= 1.5645 > 1

the infection equilibrium 𝐸
∗
= (63.7684, 1.324, 38.421, 4.15)

will be globally asymptotically stable. In Figure 3, we know
that under the condition indicated in the Theorem 4 with
𝑅
0

= 1.8425 > 1, the infection equilibrium 𝐸
∗

=

(75.346, 1.237, 39.96, 3.856) will be globally asymptotically
stable with 𝜏 = 3 and 𝜔 = 0. In Figure 4, we know that under
the condition indicated in Theorem 5 with 𝑅

0
= 1.1638 > 1,

the infection equilibrium 𝐸
∗
= (68.72, 1.0472, 39.456, 4.385)

will be globally asymptotically stable with 𝜏 = 5 and 𝜔 = 10.

7. Conclusion

In the present paper, we investigate an epidemic model
for tick-borne disease with non-viraemic transmission and
two time delays. By constructing Lyapunov functionals, we
prove that the infection-free equilibrium 𝐸

0
of system (3)

is globally asymptotically stable when R
0

≤ 1. If R
0

> 1

then the infection equilibrium 𝐸
∗ is globally asymptotically

stable when one delay is absent. By applying the persistence
theory for infinite dimensional systems, we obtain that the
populations of system (3) can coexist permanently ifR

0
> 1.
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Figure 1: The infection-free equilibrium 𝐸
0
of system (3) is globally asymptotically stable when 𝜏 = 10, 𝜔 = 15, and R

0
≤ 1. The initial

functions are (60, 10, 40, and 10).
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Figure 2: The infection equilibrium 𝐸
∗ of system (3) is asymptotically stable when 𝜏 = 0, 𝜔 = 15, and R

0
> 1. The initial functions are

(100, 10, 100, and 10).

The reproductive number plays a crucial role for epidemic
dynamics. Considering the basic reproductive numberR

0
=

𝑒
−𝑏𝑔𝜏−𝑏𝑇𝜔𝜆𝑠𝛽

1
𝛽
2
/Γ𝑏
𝑔
(𝛽
3
𝐻 + 𝑏

𝑇
)
2
+ 𝑠𝜃𝐻/(𝛽

3
𝐻 + 𝑏

𝑇
)
2 as a

function of 𝜏 and 𝜔, we can find that it is decreasing in 𝜏

and 𝜔 and it tends to 0 if the time delay 𝜏 or 𝜔 tends to
1. Therefore, the basic reproductive number can be reduced
by increasing the intracellular delay. This may provide an
insight for developing vaccination and regular treatment with
acaricides that try to increase the intracellular delay.

It is interesting to consider the global stability of the infec-
tion equilibrium𝐸

∗ with two time delays; from the numerical
simulations, it is shown that the infection equilibrium 𝐸

∗ is
globally asymptotically stable when R

0
> 1; we leave this as

a future work.
The nonseasonal model can be analysed analytically

unlike the seasonal models. The non seasonal model is also
simpler and quicker to implement in Mathematica. However,
the effect of the seasonal behavior of ticks will be explored
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Figure 3: The infection equilibrium 𝐸
∗ of system (3) is asymptotically stable when 𝜏 = 3, 𝜔 = 0, and R

0
> 1. The initial functions are

(100, 10, 100, and 10).
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Figure 4: The infection equilibrium 𝐸
∗ of system (3) is asymptotically stable when 𝜏 = 5, 𝜔 = 10, and R

0
> 1. The initial functions are

(100, 10, 100, and 10).

before deciding whether any form of seasonality will be
incorporated in future work.
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